
8

The conformal Einstein field equations

To use conformal rescalings to analyse the global existence of asymptotically

simple spacetimes one requires a suitable conformal representation of the

Einstein field equations. The naive direct approach to this problem is to make use

of the transformation law of the Ricci tensor. However, this leads to equations

which are singular at the conformal boundary, so that the standard theory

of partial differential equations (PDEs) cannot be applied. Remarkably, by

introducing new variables, it is possible to obtain a system of equations for

various conformal fields which is regular even at the conformal boundary and

whose solutions imply, in turn, solutions to the Einstein field equations – this

construction was first done in Friedrich (1981b). These equations are known as

the conformal Einstein field equations.

This chapter provides derivations of two versions of the conformal field

equations introduced by Friedrich: the so-called standard conformal Einstein field

equations written in terms of the Levi-Civita connection of a conformally rescaled

(unphysical) spacetime, and the extended conformal field equations which are

given in terms of a Weyl connection. These two versions of the conformal

equations can be expressed in tensorial, frame or spinorial form. The presentation

in this chapter allows for the presence of general classes of matter models. It also

provides a discussion of some basic properties of the equations, in particular,

their conformal covariance and their relation to the Einstein field equations.

8.1 A singular equation for the conformal metric

Assume one has two spacetimes (M̃, g̃) and (M, g) which are related to each

other by means of a conformal transformation given by

gab = Ξ2g̃ab. (8.1)

Following the conventions of Section 7.1, (M̃, g̃) is called the physical space-

time, while (M, g) is known as the unphysical spacetime . For simplicity, the

discussion in this section is restricted to the case R̃ab = 0.
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8.2 The metric regular conformal field equations 185

From the discussion in Chapter 5, the conformal rescaling (8.1) implies the

transformation law

Rab = R̃ab − 2Ξ−1∇a∇bΞ− gabg
cd
(
Ξ−1∇c∇dΞ− 3Ξ−2∇cΞ∇dΞ

)
(8.2)

for the Ricci tensor. Combining this expression with the vacuum Einstein field

equations one obtains the following conformal vacuum Einstein field equation:

Rab −
1

2
Rgab = −2Ξ−1 (∇a∇bΞ−∇c∇cΞgab)− 3Ξ−2∇cΞ∇cΞgab. (8.3)

The latter equation can be interpreted as an Einstein field equation for the

unphysical metric g with an unphysical matter with energy-momentum tensor

Tab given by

Tab ≡ −2Ξ−1 (∇a∇bΞ−∇c∇cΞgab)− 3Ξ−2∇cΞ∇cΞgab.

Equation (8.3) contains factors of Ξ−1 which become singular at Ξ = 0. Following

the discussion of Chapter 7, such points correspond to the conformal boundary of

the spacetime – a region of the unphysical spacetime (M, g) for which one would

like to be able to make analytic statements. This is not possible for Equation (8.3)

as the standard theory of PDEs assumes equations which are formally regular. It

is important to observe that multiplying Equation (8.3) by Ξ2 does not improve

the state of affairs as one has then an equation whose principal part (i.e. the

terms containing the higher order derivatives) vanishes at Ξ = 0.

8.2 The metric regular conformal field equations

In what follows, it will be shown that by introducing new variables and

reinterpreting old ones, it is possible to obtain a set of equations which is regular

even at the conformal boundary. Under suitable conditions, a solution of this

system implies a solution to the physical Einstein field equations.

The analysis of this section assumes a general matter content of the spacetime

so that

R̃ab −
1

2
R̃g̃ab + λg̃ab = T̃ab (8.4)

and

∇̃aT̃ab = 0.

From the above it follows directly that

R̃ = 4λ− T̃ , (8.5a)

L̃ab ≡
1

2
R̃ab +

1

12
R̃g̃ab =

1

2
T̃ab +

1

6
(λ− T̃ )g̃ab, (8.5b)

where T̃ ≡ g̃abT̃ab and L̃ab denotes the physical Schouten tensor.

https://doi.org/10.1017/9781009291347.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.011


186 The conformal Einstein field equations

8.2.1 The regularisation of the transformation law

for the Schouten tensor

The starting point of the construction is the singular transformation law for

the Ricci tensor given by Equation (8.2). In practice, it is more convenient to

work with the Schouten tensor than with the Ricci tensor. The analogue of

Equation (8.2) for the Schouten tensor is given by

Lab = L̃ab − Ξ−1∇a∇bΞ +
1

2
Ξ−2∇cΞ∇cΞ gab. (8.6)

Formally, the most singular term in this equation is 1
2Ξ

−2∇cΞ∇cΞ. From the

transformation law

R = Ξ−2R̃− 6Ξ−1∇c∇cΞ + 12Ξ−2∇cΞ∇cΞ, (8.7)

it follows that

Ξ−2∇cΞ∇cΞ =
1

12

(
R− Ξ−2R̃

)
+

1

2
Ξ−1∇c∇cΞ. (8.8)

The right-hand side of the last expression contains the singular term − 1
12Ξ

−2R̃.

Yet substituting Equation (8.8) into (8.6), some cancellations occur. Making use

of Equation (8.5b) one obtains

Lab =
1

2
T̃ab+

1

6
(λ− T̃ )g̃ab−Ξ−1∇a∇bΞ+

1

24

(
R− Ξ−2R̃

)
gab+

1

4
Ξ−1∇c∇cΞgab.

Now, defining the Friedrich scalar

s ≡ 1

4
∇c∇cΞ +

1

24
RΞ, (8.9)

and writing Ξ−2R̃gab = R̃g̃ab, one obtains

Lab =
1

2
T̃ab +

(
1

6
λ− 1

6
T̃ − 1

24
R̃

)
g̃ab − Ξ−1∇a∇bΞ + Ξ−1sgab,

=
1

2
T̃ab −

1

8
T̃ g̃ab − Ξ−1∇a∇bΞ + Ξ−1sgab, (8.10)

where in the last expression, Equation (8.5a) has been used. The last expression

brings about the question of the transformation law for the energy-momentum

tensor T̃ab upon the conformal rescaling g = Ξ2g̃. As T̃ab is not a geometric object

derived from the metric g̃ and concomitants thereof, one is free to choose the

transformation law which best suits the analysis. As will be further elaborated in

Chapter 9, a convenient choice is to define the unphysical energy-momentum

tensor Tab as

Tab ≡ Ξ−2T̃ab.

It follows then that

1

2
T̃ab −

1

8
T̃ g̃ab = Ξ2

(
1

2
Tab −

1

8
Tgab

)
=

1

2
Ξ2T{ab}, (8.11)
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where T ≡ gabTab so that T̃ = Ξ4T and T{ab} denotes the g-trace-free part of

Tab. Substituting Equation (8.11) into Equation (8.10) one obtains

Lab =
1

2
Ξ2T{ab} − Ξ−1∇a∇bΞ + Ξ−1sgab. (8.12)

This last equation still contains formally singular terms. To get around this

problem, one reads it not as determining the components of the conformal metric

g contained in Lab, but as conditions on the second covariant derivative of the

conformal factor Ξ. Adopting this point of view, and multiplying Equation (8.12)

by Ξ one obtains

∇a∇bΞ = −ΞLab + sgab +
1

2
Ξ3T{ab}. (8.13)

Equation (8.13) promotes the fields s and Lab to the level of unknowns for which

suitable equations need to be constructed. This will be done in the following

sections.

8.2.2 The equation for s

In order to construct an equation for s, one applies ∇c to Equation (8.13) and

obtains

∇c∇a∇bΞ = −∇cΞLab − Ξ∇cLab +∇csgab

+
3

2
Ξ2∇cΞT{ab} +

1

2
Ξ3∇cT{ab}. (8.14)

By commuting covariant derivatives, the right-hand side of this equation can be

rewritten as

∇c∇a∇bΞ = ∇a∇c∇bΞ−Rd
bca∇dΞ.

Hence, contracting the indices b and c one finds that Equation (8.14) implies

∇a(∇c∇cΞ) +Rca∇cΞ = −Lca∇cΞ− Ξ∇cLac +∇as

+
3

2
Ξ2∇cΞT{ac} +

1

2
Ξ3∇cT{ac}. (8.15)

Now, the definition of the field s, Equation (8.9), implies that

∇a(∇c∇cΞ) = 4∇as−
1

6
Ξ∇aR− 1

6
R∇aΞ.

Using this expression in (8.15) and observing that

Rab = 2Lab +
1

6
Rgab, (8.16)

one obtains

3∇as−
1

6
Ξ∇aR = −3Lac∇cΞ− Ξ∇cLac +

3

2
Ξ2∇cΞT{ac} +

1

2
Ξ3∇cT{ac}.
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188 The conformal Einstein field equations

Now, let Gab ≡ Rab− 1
2Rgab denote the Einstein tensor of the metric g. One has

that ∇aGab = 0. This last equation can be rewritten in terms of the Schouten

tensor as

∇cLca −
1

6
∇aR = 0. (8.17)

Making use of this last expression one obtains

∇as = −Lac∇cΞ +
1

2
Ξ2∇cΞT{ac} +

1

6
Ξ3∇cT{ca}. (8.18)

This is a suitable equation for s.

8.2.3 The equations for the curvature

Equation (8.13) brings the unphysical Schouten tensor Lab into play. Thus, one

needs to obtain an equation which can be regarded as a differential condition

on Lab. The natural place to look for such an equation is the second Bianchi

identity; see Section 2.4.3. In Section 5.2.2, it has been shown that the second

Bianchi identity together with the decomposition of the Riemann tensor in terms

of the Weyl and Schouten tensors lead to the expressions

∇̃cL̃db − ∇̃dL̃cb = ∇̃aC
a
bcd,

∇cLdb −∇dLcb = ∇aC
a
bcd;

compare Equations (5.11) and (5.13). As it stands, the second of the above

equations is not a satisfactory differential condition for Lab as it contains, in

its right-hand side, the divergence of the Weyl tensor. One needs to find an

expression for the latter in terms of undifferentiated fields. Observe that the

right-hand side of this equation can be expressed in terms of the physical energy-

momentum tensor T̃ab using formula (8.5b). This will not be done at this point.

Instead, it is more convenient to expresses it in terms of the physical Cotton

tensor Ỹcdb ≡ ∇̃cL̃db − ∇̃dL̃cb, so that

∇̃aC
a
bcd = Ỹcdb. (8.19)

Now, one would like to express the divergence ∇̃aC
a
bcd in terms of an expression

involving the covariant derivative ∇. For this, one makes use of the identity

∇a(Ξ
−1Ca

bcd) = Ξ−1∇̃aC
a
bcd;

see Equation (5.8). Making use of the latter in Equation (8.19) one obtains

∇a(Ξ
−1Ca

bcd) = Ξ−1Ỹcdb.

This equation seems to lead to a dead end because of the Ξ−1 terms appearing on

both sides, and which do not cancel out. However, defining the rescaled Weyl

tensor

dabcd ≡ Ξ−1Ca
bcd, (8.20)
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8.2 The metric regular conformal field equations 189

and the rescaled Cotton tensor

Tcdb ≡ Ξ−1Ỹcdb, (8.21)

one obtains the formally regular equation

∇ad
a
bcd = Tcdb. (8.22)

This last equation suggests that theWeyl tensor Ca
bcd be replaced by the rescaled

Weyl tensor dabcd in the construction of a regular set of conformal field equations.

In Chapter 10 it will be seen that the definitions of dabcd and Tcdb are justified in

the sense that under suitable assumptions the tensors dabcd and Tcdb are regular

at the points where Ξ = 0; see, in particular, Theorem 10.3.

One is now in the position of returning to the analysis of the equation for the

Schouten tensor. Writing Ca
bcd in terms of dabcd one obtains

∇cLdb −∇dLcb = ∇a(Ξd
a
bcd)

= ∇aΞd
a
bcd + Ξ∇ad

a
bcd.

Finally, using Equation (8.22) in the last term yields

∇cLdb −∇dLcb = ∇aΞd
a
bcd + ΞTcdb, (8.23)

which, again, is formally regular if Ξ = 0.

8.2.4 The regularised transformation rule for the Ricci scalar

To relate solutions of the conformal field equations to solutions of the Einstein

field equations, one also needs to consider a regularised version of the transfor-

mation rule for the Ricci scalar, Equation (8.7). Multiplying this transformation

law by Ξ2 and rearranging the various terms one obtains

R̃ = Ξ2R+ 6Ξ∇c∇cΞ− 12∇cΞ∇cΞ.

Finally, using Equations (8.5a) and (8.9) one concludes that

λ = 6Ξs− 3∇cΞ∇cΞ +
1

4
Ξ4T. (8.24)

To understand the role of this equation it is useful to compute the derivative

of its right-hand side. One has that

∇a

(
6Ξs− 3∇cΞ∇cΞ +

1

4
Ξ4T

)
= 6∇aΞs+ 6Ξ∇as− 6∇a∇cΞ∇cΞ + Ξ3∇aΞT +

1

4
Ξ4∇aT

= Ξ4(∇cTca + Ξ−1∇aΞT ),

where in the second equality Equations (8.13) and (8.18) have been used to

remove, respectively, the terms ∇a∇cΞ and ∇aΞ.
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190 The conformal Einstein field equations

As will be further discussed in Chapter 9, the tensors T̃ab and Tab satisfy the

relation

gbc∇bTca = Ξ−4g̃bc(∇̃bT̃ca − Ξ−1∇̃aΞT̃bc).

Hence, if ∇̃bT̃ba = 0 it follows that

∇cTca + Ξ−1∇aΞT = 0. (8.25)

This last relation implies that

∇a

(
6Ξs− 3∇cΞ∇cΞ +

1

4
Ξ4T

)
= 0.

One has the following result:

Lemma 8.1 (propagation of the cosmological constant) If Equations

(8.13), (8.18) and (8.25) are satisfied on M and, in addition, Equation (8.24)

holds at a point p ∈ M, then Equation (8.24) is also satisfied on M.

Thus, Equation (8.24) plays the role of a constraint which is preserved, upon

evolution, by virtue of the other conformal field equations.

8.2.5 Properties of the metric conformal field equations

The discussion of the previous sections is summarised in the following list of

equations:

∇a∇bΞ = −ΞLab + sgab +
1

2
Ξ3T{ab}, (8.26a)

∇as = −Lac∇cΞ +
1

2
Ξ2∇cΞT{ac} +

1

6
Ξ3∇cT{ca}, (8.26b)

∇cLdb −∇dLcb = ∇aΞd
a
bcd + ΞTcdb, (8.26c)

∇ad
a
bcd = Tcdb, (8.26d)

6Ξs− 3∇cΞ∇cΞ +
1

4
Ξ4T = λ. (8.26e)

These are known as the (regular) metric conformal Einstein field equa-

tions. Equations (8.26a)–(8.26e) should be read as differential conditions for the

fields Ξ, s, Lab, d
a
bcd. As already mentioned, Equation (8.26e) plays the role of

a constraint. At the points where Ξ �= 0, these equations are complemented by

the physical conservation equation ∇̃aT̃ab = 0 expressed in terms of conformal

quantities:

∇cTca + Ξ−1∇aΞT = 0. (8.27)

Observe that in contrast to Equations (8.26a)–(8.26e), Equation (8.27) is not

formally regular at Ξ = 0. This equation will be analysed in more detail in

Chapter 9.
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8.2 The metric regular conformal field equations 191

In what follows, for a solution to the metric conformal Einstein field

equations it will be understood that a collection of fields

(gab,Ξ, s, Lab, d
a
bcd, Tab)

satisfies Equations (8.26a)–(8.26e) and (8.27).

Remark. The discussion so far has not considered an equation for the

components of the metric gab. To obtain the required condition assume that

the Schouten tensor Lab is determined through Equation (8.26c) and consider

the relation (8.16) expressed in terms of some local coordinates (xμ):

Rμν = 2Lμν +
1

6
Rgμν .

Recalling that the components Rμν can be expressed in terms of second-order

derivatives of the components of the metric, one can read the previous expression

as a differential condition for gμν . To cast this equation in the form of some

recognisable type of PDE one needs to make a particular choice of coordinates;

see the discussions in Section 13.5.1 and in the Appendix of Chapter 13 on the

reduced Einstein field equations.

The conformal vacuum Einstein field equations

An important particular case of Equations (8.26a)–(8.26e) occurs when T̃ab = 0

on the whole of M̃. Then one also has that Tabc = 0, and the conformal field

equations reduce to:

∇a∇bΞ = −ΞLab + sgab, (8.28a)

∇as = −Lac∇cΞ, (8.28b)

∇cLdb −∇dLcb = ∇aΞd
a
bcd, (8.28c)

∇ad
a
bcd = 0, (8.28d)

6Ξs− 3∇cΞ∇cΞ = λ. (8.28e)

Equations (8.28a)–(8.28e) are known as the conformal vacuum Einstein field

equations.

The metric conformal field equations and the Einstein field equations

Any solution to the Einstein field equations satisfies Equations (8.26a)–(8.26e)

for any (smooth) choice of conformal factor Ξ. The converse of this observation

is given in the following result.

Proposition 8.1 (solutions of the conformal Einstein field equations as

solutions to the Einstein field equations) Let

(gab,Ξ, s, Lab, d
a
bcd, Tab)
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denote a solution to Equations (8.26a)–(8.26d) and (8.27) such that Ξ �= 0 on an

open set U ⊂ M. If, in addition, Equation (8.26e) is satisfied at a point p ∈ U ,
then the metric g̃ab = Ξ−2gab is a solution to the Einstein field Equations (8.4)

on U .

Proof It will be first shown that the Schouten tensor L̃ab of the metric g̃ab =

Ξ−2gab satisfies Equation (8.5b). Notice that the metric g̃ab is well defined on

U as Ξ �= 0. The transformation law for the Schouten tensor under conformal

rescalings gives

L̃ab = Lab + Ξ−1∇a∇bΞ− 1

2
Ξ−2∇cΞ∇cΞgab.

Using Equations (8.26a) and (8.26b) the latter simplifies to

L̃ab =
1

2
T̃ab +

1

6
(λ− T̃ )g̃ab,

as required. In order to conclude that the Einstein field equations hold, one also

needs to compute the Ricci scalar of the metric g̃ab. As a consequence of Lemma

8.1 one has that Equation (8.26e) holds on the whole of U . From the latter, again

using (8.26a) and (8.26b) and recalling that T̃ = Ξ4T , it follows that R̃ = 4λ−T̃ .

Combining the obtained expressions for L̃ab and R̃ one readily concludes that

(8.4) is indeed satisfied.

Conformal freedom and conformal gauge

Consider a solution (gab,Ξ, s, Lab, d
a
bcd, Tab) to the metric conformal field

Equations (8.26a)–(8.26e) and (8.27). As a consequence of Proposition 8.1, one

has that g̃ = Ξ−2g and T̃ab = Ξ2Tab, give rise to a solution of the Einstein

field equations as long as Ξ �= 0. Consider now another conformal factor Ξ́.

From Ξ́, together with the physical fields g̃ab and T̃ab, one can construct, by

direct computation using the definitions of Sections 8.2.1–8.2.3, a collection of

conformal fields (ǵab, Ξ́, ś, Ĺab, d́
a
bcd, T́ab). In particular, one has that ǵab = Ξ́2g̃ab

and T́ab = Ξ−2Tab. These fields constitute, in turn, a solution to the metric

conformal field equations. That is, they satisfy

∇́a∇́bΞ́ = −Ξ́Ĺab + śǵab +
1

2
Ξ́3T́{ab},

∇́aś = −Ĺac∇́cΞ́ +
1

2
Ξ́2∇́cΞ́T́{ac} +

1

6
Ξ́3∇́cT́{ca},

∇́cĹdb − ∇́dĹcb = ∇́aΞd́
a
bcd + Ξ́T́cdb,

∇́ad́
a
bcd = T́cdb,

6Ξ́ś− 3∇́cΞ́∇́cΞ́ +
1

4
Ξ́4T́ = λ,

∇́cT́ca + Ξ́−1∇́aΞ́T́ = 0.

https://doi.org/10.1017/9781009291347.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.011


8.2 The metric regular conformal field equations 193

The unphysical metrics g and ǵ are conformally related to each other: one has

that ǵ = κ2g with κ ≡ Ξ́Ξ−1, Ξ �= 0. Using the transformation formulae of

Chapter 5, one can express the solution (ǵab, Ξ́, ś, Ĺab, d́
a
bcd, T́ab) in terms of

(gab,Ξ, s, Lab, d
a
bcd, Tab) and κ. One has that

Ξ́ = κΞ, ǵab = κ2gab, (8.29a)

ś = κ−1s+ κ−2∇cκ∇cΞ +
1

2
κ−3Ξ∇cκ∇cκ, (8.29b)

Ĺab = Lab − κ−1∇a∇bκ+
1

2
κ−2∇cκ∇cκ gab, (8.29c)

d́abcd = κdabcd, (8.29d)

T́ab = κ−2Tab. (8.29e)

The two sets of solutions to the metric conformal field equations are said to be

conformally related.

From the discussion of the previous paragraphs it follows that there exists an

infinite number of solutions to the metric conformal field equations giving rise

to the same solution of the Einstein field equations. This is a manifestation of

the conformal invariance of the equations. This conformal invariance is tied

to a conformal freedom (or gauge) which, in turn, manifests itself in the

properties of the unphysical metric g. This conformal freedom has to be fixed

in some way if one is to apply the theory of PDEs to the metric conformal field

equations.

The issue of the conformal gauge discussed in the previous paragraph is

closely related to the Ricci scalar R of the unphysical metric g. The scalar

R does not explicitly appear in the conformal Equations (8.26a)–(8.26e) and

(8.27). Hence, it is not determined by the equations. Of course, given a solution

(gab,Ξ, s, Lab, d
a
bcd, Tab), one can readily compute R. In general, conformally

related solutions to the metric conformal field equations will give rise to different

Ricci scalars. In order to understand better the connection between the conformal

gauge and the Ricci scalar, consider a metric ǵ conformally related to g via ǵ =

κ2g. The transformation law for the Ricci scalar under conformal transformations

implies that

6∇a∇aκ−Rκ = −Ŕκ3, (8.30)

from where Ŕ can be determined. Alternatively, if Ŕ is an arbitrary scalar on M,

then Equation (8.30) can be read as a linear wave equation for κ. Given suitable

initial data for this equation, it can be solved locally. The solution κ gives, in

turn, the metric ǵ = κ2g. From this point of view, the scalar field Ŕ plays the

role of a conformal gauge source function. In particular, one could choose

Ŕ = 0. As will be seen in later chapters of this book, this choice, despite its

simplicity, is not necessarily the best one.
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8.3 Frame and spinorial formulation of the conformal field equations

8.3.1 The frame formulation

This section provides a discussion of a frame formulation of the conformal

Einstein field equations. This version of the field equations is more flexible than

the metric one.

General definitions, frame fields

In what follows, consider a set of frame fields {ea}, a = 0, . . . ,3 which is

orthonormal with respect to the metric g. Frames of this type will be said to be

g-orthonormal. One has that

g(ea, eb) = ηab = diag(1,−1,−1,−1).

Following the conventions of Chapter 2, let Γa
c
b = 〈ωc,∇aeb〉 denote the

connection coefficients of the connection ∇. As a consequence of the metric

compatibility of ∇ one has that

Γa
d
bηdc + Γa

d
cηbd = 0.

The components, Σa
c
b of the torsion of ∇ are given by the relation

Σa
c
bec = [ea, eb]− (Γa

c
b − Γb

c
a)ec.

In the case of ∇ one naturally has that Σa
c
b = 0.

The geometric and the algebraic curvature

The discussion of the conformal field equations in terms of a frame formalism

requires the expression of the components Rc
dab of the Riemann tensor Rc

dab

with respect to the frame {ea}; see Equation (2.31). Let P c
dab denote the right-

hand side of equation (2.31), namely,

P c
dab ≡ ea(Γb

c
d)− eb(Γa

c
d)

+Γf
c
d(Γb

f
a − Γa

f
b) + Γb

f
dΓa

c
f − Γa

f
dΓb

c
f .

In what follows, P c
dab will be known as the geometric curvature. To complete

the discussion one also needs to consider the decomposition of the Riemann

tensor in terms of the Weyl tensor Cc
dab and the Schouten tensor Lab; see

Equation (2.21b). The frame version of the decomposition is given by

Rc
dab = Cc

dab + 2Sd[a
ceLb]e,

where, consistent with the general conventions of Chapter 2, Cc
dab and Lab

denote, respectively, the components of the tensors Cc
dab and Lab with respect

to {ea}. The components ρcdab of the algebraic curvature are given by

ρcdab ≡ Ξdcdab + 2Sd[a
ceLb]e.
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In the above definition it has been used that Cc
dab = Ξdcdab. The geometric

and algebraic curvature serve as useful shorthands of expressions which will be

repeatedly used. Observe, in particular, that the equation P c
dab = ρcdab encodes

the idea that the fields Cc
dab and Lab correspond to the components of the Weyl

and Schouten tensor of the connection defined by Γa
b
c.

The frame zero quantities and the frame conformal field equations

The frame version of the conformal field Equations (8.26a)–(8.26e) and (8.27)

are readily obtained by contraction with the frame {ea} and the coframe {ωa}.
One obtains

∇a∇bΞ = −ΞLab + sηab +
1

2
Ξ3T{ab},

∇as = −Lac∇cΞ +
1

2
Ξ2∇cΞT{ac} +

1

6
Ξ3∇cT{ca},

∇cLdb −∇dLcb = ∇aΞd
a
bcd + ΞTcdb,

∇ad
a
bcd = Tcdb,

6Ξs− 3∇cΞ∇cΞ +
1

4
Ξ4T = λ,

and

∇cTca + Ξ−1∇aΞT = 0,

where the directional derivative ∇a acts on components of tensorial fields

according to the rules in (2.28). The above frame conformal field equations will

be complemented by the structure equations

Σa
c
bec = 0,

P c
dab = ρcdab,

which express that for the connection∇, its torsion must vanish and its geometric

and algebraic curvature must coincide.

For convenience of the subsequent discussion one introduces a set of zero

quantities:

Σab ≡ Σa
c
bec, (8.31a)

Ξc
dab ≡ P c

dab − ρcdab, (8.31b)

Zab ≡ ∇a∇bΞ + ΞLab − sηab −
1

2
Ξ3T{ab}, (8.31c)

Za ≡ ∇as+ Lac∇cΞ− 1

2
Ξ2∇cΞT{ac} −

1

6
Ξ3∇cT{ca}, (8.31d)

Δcdb ≡ ∇cLdb −∇dLcb −∇aΞd
a
bcd − ΞTcdb, (8.31e)

Λbcd ≡ ∇ad
a
bcd − Tcdb, (8.31f)

Z ≡ 6Ξs− 3∇cΞ∇cΞ +
1

4
Ξ4T − λ, (8.31g)

Ma ≡ ∇cTca + Ξ−1∇aΞT. (8.31h)
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In terms of the above zero quantities, the frame version of the conformal

field equations can be compactly written as

Σab = 0, Ξc
dab = 0, Zab = 0, Za = 0, (8.32a)

Δcdb = 0, Λbcd = 0, Z = 0, Ma = 0. (8.32b)

Accordingly, a solution to the frame conformal Einstein field equa-

tions is a collection (ea,Γa
b
c,Ξ, s, Lab, d

a
bcd, Tab) satisfying Equations (8.32a)

and (8.32b). The equations associated to the zero quantities Σab and Ξc
dab

provide differential conditions for the components of the frame vectors {ea} and

for the connection coefficients Γa
b
c. The role of the equations associated to the

zero quantities Zab, Za, Δcdb, Λbcd, Z and Ma is similar to that of their metric

counterparts in Section 8.2.

By considering a frame version of the conformal field equations, one introduces

a further gauge freedom into the system. This gauge freedom corresponds to the

Lorentz transformations preserving the g-orthonormality of the frame vectors

{ea}. In this case one speaks of a frame gauge freedom. As in the case of the

conformal freedom discussed in Section 8.2.5, this freedom needs to be fixed in

order to be able to apply the methods of the theory of PDEs. These issues will

be discussed further in Chapter 13.

The frame conformal field equations and the Einstein field equations

As in the case of the metric conformal field equations, a solution to the frame

conformal field equations implies, under suitable conditions, a solution to the

Einstein field equations; see Proposition 8.1. More precisely, one has:

Proposition 8.2 (solutions to the frame conformal field equations as

solutions to the Einstein field equations) Let

(ea,Γa
b
c,Ξ, s, Lab, d

a
bcd, Tab)

denote a solution to the frame conformal field Equations (8.32a) and (8.32b)

with Γa
c
b satisfying the metric compatibility condition

Γa
d
bηdc + Γa

d
cηbd = 0,

and such that

Ξ �= 0, det(ηabea ⊗ eb) �= 0,

on an open set U ⊂ M. Then the metric g̃ = Ξ−2ηabω
a ⊗ ωb, where {ωa} is

the dual frame to {ea}, is a solution to the Einstein field Equations (8.4) on U .

Proof As a consequence of the metric compatibility assumption and Σab = 0,

the coefficients Γa
c
b can be interpreted as the connection coefficients of a

Levi-Civita connection with respect to the frame {ea}. By the uniqueness of
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the Levi-Civita connection, g = ηabω
a ⊗ ωb is the metric associated to this

connection. Notice that by assumption g is well defined on U . Furthermore,

because of Ξc
dab = 0 and exploiting the uniqueness of the decomposition of the

Riemann tensor in terms of the Weyl and the Schouten tensors, it follows that Lab

are the components, with respect to the frame {ea}, of the Schouten tensor of the

metric g. From here, following arguments analogous to those used in the proof of

Proposition 8.1 one concludes that g̃ = Ξ−2ηabω
a⊗ωb and T̃ab = Ξ2ωa

aω
b
bTab

give a solution to the Einstein field Equations (8.4) on U .

8.3.2 Spinorial formulation of the conformal field equations

The frame conformal field equations lead, in a natural way, to a spinorial

formulation. This formulation of the equations reveals in a more clear fashion

the inherent algebraic structure of the equations and provides a systematic

procedure for the construction of evolution equations. The formulation discussed

in this section is not an abstract spinor formulation, but rather a frame spinor

formulation.

General remarks concerning the spinorial formulation

Following the discussion in Section 3.1.13, the g-orthonormal frame {ea} gives

rise to a frame {eAA′} such that g(eAA′ , eBB′) = εABεA′B′ ; that is, {eAA′} is

a null tetrad. In what follows, let

ΣAA′CC′
BB′ , PCC′

DD′AA′BB′ , ρCC′
DD′AA′BB′ , TAA′BB′ ,

LAA′BB′ , dAA′
BB′CC′DD′ , TAA′BB′CC′ ,

denote, respectively, the spinorial counterparts of the fields

Σa
c
b, P c

dab, ρcdab, Tab, Lab, dabcd, Tabc.

The spinorial counterpart of the geometric curvature, PCC′
DD′AA′BB′ , is

expressed in terms of the spinorial connection coefficients ΓAA′BB′
CC′ . These,

in turn, can be expressed in terms of the reduced spin connection coefficients

ΓAA′BC ; see formula (3.33). As the connection ∇ is metric, it follows that

ΓAA′BC = ΓAA′(BC); compare Section 3.2.2. By analogy to the split of the

spinorial counterpart of the curvature tensor – Equation (3.35) – one can split

the geometric curvature as

PCC′
DD′AA′BB′ = PC

DAA′BB′δD′C
′
+ P̄C′

D′AA′BB′δD
C .

In what follows, the discussion will make use only of the reduced spinorial

geometric curvature

PC
DAA′BB′ ≡ eAA′(ΓBB′CD)− eBB′(ΓAA′CD)

−ΓFB′CDΓAA′FB − ΓBF ′CDΓ̄AA′F
′
B′ + ΓFA′CDΓBB′FA

+ΓAF ′CDΓ̄BB′F
′
A′ + ΓAA′CFΓBB′FD − ΓBB′CFΓAA′FD.
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The spinorial algebraic curvature has a similar split. Its information is encoded

in the field

ρCDAA′BB′ ≡ −ΨC
DABεA′B′ + LDB′AA′δB

C − LDA′BB′δA
C ,

where it is recalled that ΨABCD is the Weyl spinor; see Equation (3.43). One

then introduces the totally symmetric rescaled Weyl spinor φABCD as

φABCD ≡ Ξ−1ΨABCD.

Consistent with Equation (3.43), φABCD is related to the spinorial counterpart

of dabcd via

dAA′BBCC′DD′ = −φABCDεA′B′εC′D′ − φ̄A′B′C′D′εABεCD. (8.33)

Hence, the reduced spinorial algebraic curvature can be written as

ρCDAA′BB′ ≡ −ΞφC
DABεA′B′ + LDB′AA′δB

C − LDA′BB′δA
C .

The spinorial counterpart of T{ab}, the symmetric trace-free part of Tab,

is given by T(AB)(A′B′); compare Equation (3.12). Finally, exploiting the

antisymmetry Tcdb = −Tdcb of the rescaled Cotton tensor, one has the split

TCC′DD′BB′ = TCDBB′εC′D′ + T̄C′D′BB′εCD, (8.34)

where TCDBB′ ≡ 1
2TCQ′D

Q′
BB′ . Observe that TCDBB′ = T(CD)BB′ .

The spinorial zero quantities

The spinorial counterparts of the frame conformal Einstein field equations are

obtained by suitable contraction with the Infeld-van der Waerden symbols.

Simpler expressions are obtained if one takes into account the remarks made

in the previous subsection. It is convenient to introduce the following spinorial

zero quantities:

ΣAA′BB′ ≡ [eAA′ , eBB′ ]− (ΓAA′CC′
BB′ − ΓBB′CC′

AA′)eCC′ , (8.35a)

ΞC
DAA′BB′ ≡ PC

DAA′BB′ − ρCDAA′BB′ , (8.35b)

ZAA′BB′ ≡ ∇AA′∇BB′Ξ + ΞLAA′BB′ − sεABεA′B′

− 1

2
Ξ3T(AB)(A′B′), (8.35c)

ZAA′ ≡ ∇AA′s+ LAA′CC′∇CC′
Ξ

− 1

2
Ξ2∇CC′

ΞT(AC)(A′C′) −
1

6
Ξ3∇CC′

T(AC)(A′C′), (8.35d)

ΔCC′DD′BB′ ≡ ∇CC′LDD′BB′ −∇DD′LCC′BB′ (8.35e)

−∇AA′ΞdAA′
BB′CC′DD′ − ΞTCC′DD′BB′ , (8.35f)
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ΛBB′CC′DD′ ≡ ∇AA′dAA′
BB′CC′DD′ − TCC′DD′BB′ , (8.35g)

Z ≡ 6Ξs− 3∇CC′∇CC′
+

1

4
Ξ4T − λ, (8.35h)

MAA′ ≡ ∇CC′
TCC′AA′ + Ξ−1∇AA′ΞT. (8.35i)

Hence, the spinorial conformal Einstein field equations are given in terms of the

above zero quantities as

ΣAA′BB′ = 0, ΞC
DAA′BB′ = 0, ZAA′BB′ = 0, ZAA′ = 0, (8.36a)

ΔCC′DD′BB′ = 0, ΛBB′CC′DD′ = 0, Z = 0, MAA′ = 0. (8.36b)

A reduced set of zero quantities can be obtained by explicitly making use of the

antisymmetry of several of the spinorial zero quantities. In particular, it is noticed

that as ΔCC′DD′BB′ = −ΔDD′CC′BB′ and ΛBB′CC′DD′ = −ΛBB′DD′CC′

one can write

ΔCC′DD′BB′ = ΔCDBB′εC′D′ + Δ̄C′D′BB′εCD,

ΛBB′CC′DD′ = ΛBB′CDεC′D′ + Λ̄B′BC′D′εCD,

where

ΔCDBB′ ≡ 1

2
ΔCQ′D

Q′
BB′ , ΛBB′CD ≡ 1

2
ΛBB′CQ′D

Q′
.

A direct computation using the splits (8.33) and (8.34) yields

ΔCDBB′ = ∇(C
Q′

LD)Q′BB′ +∇Q
B′ΞφCDBQ + ΞTCDBB′ , (8.37a)

ΛBB′CD = ∇Q
B′φBCDQ + TCDBB′ . (8.37b)

Thus, an equivalent spinorial formulation of the conformal field equations is

given by

ΣAA′BB′ = 0, ΞC
DAA′BB′ = 0, ZAA′BB′ = 0, ZAA′ = 0 (8.38a)

ΔCDBB′ = 0, ΛBB′CD = 0, Z = 0, MAA′ = 0. (8.38b)

The antisymmetry of the zero quantities ΣAA′BB′ and ΞC
DAA′BB′ can also

be exploited to obtain reduced zero quantities ΣAB = Σ(AB) and ΞC
DAB =

ΞC
D(AB). This strategy will not be pursued further.

The spinorial conformal field equations and the Einstein field equations

As a consequence of the equivalence between spinorial and frame expressions

discussed in Section 3.1.9, it follows that each of the two spinorial formulations

of the conformal field Equations (8.36a) and (8.36b) or (8.38a) and (8.38b) is

equivalent to the frame conformal field Equations (8.32a) and (8.32b). Thus, an

analogue of Proposition 8.2 holds for the spinorial conformal field equations with

the metric

g̃ = Ξ−2εABεA′B′ωAA′ ⊗ ωBB′
,
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yielding the required solution to the Einstein field equations. In this last

expression {ωAA′} denotes the duals of the frame {eAA′}.

8.3.3 Conformal freedom in the frame and spinorial

conformal field equations

The transformation laws for the various conformal fields under a conformal gauge

change follow from the tensorial version given in (8.29a)–(8.29e). As before,

assume that one has two metrics g and ǵ such that g = κ2ǵ. Consider now

a g-orthonormal frame {ea} with associated coframe {ωa}. From

g(ea, eb) = κ2ǵ(ea, eb) = ηab,

it follows that {éa} and {ώa}, with

éa ≡ κea, ώa ≡ κ−1ωa,

are a ǵ-orthonormal frame and a ǵ-orthonormal coframe, respectively. As a con-

sequence, the tensorial transformation formulae (8.29a)–(8.29e) may pick up fac-

tors of κ depending on whether they are contracted with ea or éa. For, example

d́abcd ≡ ώa
aéb

béc
céd

dd́abcd

= κ3ωa
aeb

bec
ced

ddabcd = κ3dabcd.

Similar considerations lead to

Ĺab = κ2Lab + κ2∇a(κ
−1∇bκ)−

1

2
Sab

cd∇cκ∇dκ,

T́ab = κ2Tab,

where

Sab
cd ≡ ea

aeb
bωc

cω
d
dSab

cd

≡ δa
cδb

d + δa
dδb

c − ηabη
cd.

The spinorial counterparts of the conformal fields obey similar transforma-

tions. If {εAA} and {έAA} denote the spin dyads associated, respectively, to the

frame vectors {ea} and {éa}, then

έA
A = κεA

A.

As a consequence one has, for example, that

Ψ́ABCD = κ3ΨABCD.

8.4 The extended conformal Einstein field equations

The conformal Einstein field equations discussed in the previous sections are

expressed in terms of the Levi-Civita connection of the unphysical metric g.

This section provides a more general version of the equations by rewriting them
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in terms of a Weyl connection. The resulting system of equations is known as the

extended conformal Einstein field equations. The use of Weyl connections

introduces a further freedom in the equations. This freedom can be exploited to

incorporate conformally privileged gauges. The idea of reexpressing the vacuum

conformal field equations in terms of a Weyl connection was first introduced

in Friedrich (1995). Further discussions can be found in Friedrich (1998c, 2002,

2004). The extension of these ideas to the matter case has been given in Lübbe

and Valiente Kroon (2012, 2013b).

In what follows, for ease of presentation, the discussion in this section is

restricted to the vacuum case.

Basic setting

As in the previous sections of this chapter, let g denote an unphysical Lorentzian

metric related to a physical metric g̃ via g = Ξ2g̃. The metric g̃ is assumed to

satisfy the vacuum Einstein field equations. Let ∇ and ∇̃ denote, respectively,

the Levi-Civita connections of the metrics g and g̃.

In what follows, consider a Weyl connection ∇̂ defined via

∇̂−∇ = S(f), (8.39)

where f is a smooth covector. As

∇− ∇̃ = S(Ξ−1dΞ),

it follows that ∇̂− ∇̃ = S(f + Ξ−1dΞ). Hence, defining

β ≡ f + Ξ−1dΞ,

one has that

∇̂− ∇̃ = S(β).

It is convenient to define

d ≡ Ξf + dΞ, (8.40)

so that d = Ξβ.

As the Weyl connection ∇̂ is torsion free, it follows that its Riemann curvature

tensor R̂c
dab can be decomposed in terms of its Schouten tensor L̂ab and the Weyl

tensor of the conformal class of Cc
dab; see Equation (5.28a). Using the latter and

recalling the definition of the rescaled Weyl tensor dcdab, Equation (8.20), one

obtains the equation

R̂c
dab = 2Sd[a

ceL̂b]e + Ξdcdab.

Consistent with the discussion in Section 5.3.2, Equations (5.29a)–(5.29c), the

Schouten tensors of the connections ∇̃, ∇ and ∇̂ are related to each other via
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L̂ab − Lab = ∇afb −
1

2
Sab

cdfcfd,

L̂ab − L̃ab = ∇̂aβb +
1

2
Sab

cdβcβd,

Lab − L̃ab = ∇a(Ξ
−1∇bΞ) +

1

2
Ξ−2Sab

cd∇cΞ∇dΞ.

Taking into account the above expressions and recalling that ∇̂S = 0 one has

that

∇̂cL̂db − ∇̂dL̂cb = (∇̂cLdb − Scd
effeLfb − Scb

effeLdf )

−(∇̂dLcb − Sdc
effeLfb − Sdb

effeLcf )

= ∇̂cL̂db − ∇̂dL̂cb + (∇̂c∇̂d − ∇̂d∇̂c)fb

+Sdb
effe(∇̂cff − Lcf )− Scb

effe(∇̂dff − Ldf ).

A further computation using Equation (5.29a) and the definition of the tensor

S yields

Sdb
effe(∇̂cff − Lcf )− Scb

effe(∇̂dff − Ldf ) = (Scb
ef L̂df − Sdb

ef L̂cf )fe

= 2Sb[c
ef L̂d]ffe.

Hence, recalling the split (5.28a) of the Riemann tensor one obtains

∇̂cL̂db − ∇̂dL̂cb = ∇cLdb −∇dLcb + faC
a
bcd.

Thus, the Weyl connection version of the vacuum Cotton equation is given by

∇̂aL̂bc − ∇̂bL̂ac = ded
e
cab.

Now, for the Bianchi Equation (8.22) one has that

∇̂ad
a
bcd = ∇ad

a
bcd − Sah

faffd
h
bcd + Sab

fhffd
a
hcd

+Sac
fhffd

a
bhd + Sad

fhffd
a
bch

= ∇ad
a
bcd − fad

a
dcb + fad

a
cdb

= ∇ad
a
bcd − fad

a
bcd,

where in the last line it has been used that dabcd satisfies the first Bianchi identity

dabcd+dacdb+dadbc = 0. Hence, Equation (8.22) expressed in terms of the Weyl

connection ∇̂ takes the form:

∇̂ad
a
bcd = fad

a
bcd.

As a summary of this section one has the two equations:

∇̂aL̂bc − ∇̂bL̂ac = ddd
d
cab, (8.41a)

∇̂dddcab = fdd
d
cab. (8.41b)

These two equations will be regarded as the core of the extended conformal

Einstein field equations. They provide differential conditions on the Schouten

tensor of the Weyl connection and the rescaled Weyl tensor.
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8.4.1 The frame version of the extended conformal field equations

Equations (8.41a) and (8.41b) need to be supplemented with equations which

provide information about the metric g associated to the conformal factor Ξ and

which also allow to determine the covector f giving rise to the Weyl connection

∇̂. The most convenient way of doing this is to make use of a frame formalism.

As in Section 8.3.1 let {ea}, a = 0, . . . ,3 denote a frame field which is

g-orthonormal so that g(ea, eb) = ηab. As ∇ is the Levi-Civita connection of g,

its connection coefficients, Γa
c
b = 〈ωc,∇aeb〉, satisfy the metric compatibility

condition of Equation (2.29).

Let now ∇̂ denote the Weyl connection constructed from the Levi-Civita

connection ∇ and the covector f using Equation (8.39). If Γ̂a
c
b = 〈ωc, ∇̂aeb〉

denotes the connection coefficients of ∇̂ with respect to the frame {ea}, one has
that

Γ̂a
c
b = Γa

c
b + Sab

cdfd, (8.42a)

= Γa
c
b + δa

cfb + δb
cfa − ηabη

cdfd. (8.42b)

In particular, one has that

fa =
1

4
Γ̂a

b
b, (8.43)

as Γa
b
b = 0 in the case of a metric connection.

Let Σ̂a
c
b denote the torsion of the connection ∇̂. Using the transformation

formula for the torsion under change of connections, Equation (2.15), together

with Equation (8.42a), one obtains

Σ̂a
c
b − Σa

c
b = −2S[ab]

cdfd = 0.

Thus,

Σ̂a
c
b = 0,

as Σa
c
b = 0. As in Section 8.3.1 it is convenient to distinguish between the

geometric curvature P̂ c
dab – that is, the expression for the components of the

Riemann tensor of the connection ∇̂ in terms of the connection coefficients Γ̂a
c
b

– and the algebraic curvature ρ̂cdab – that is, the expression of the Riemann

tensor in terms of the Schouten and Weyl tensors. These are given by

P̂ c
dab ≡ ea(Γ̂b

c
d)− eb(Γ̂a

c
d)

+Γ̂f
c
d(Γ̂b

f
a − Γ̂a

f
b) + Γ̂b

f
dΓ̂a

c
f − Γ̂a

f
dΓ̂b

c
f ,

ρ̂cdab ≡ Ξdcdab + 2Sd[a
ceL̂b]e.

In analogy to the discussion of Section 8.3.1, it is convenient to introduce a set

of geometric zero quantities associated to the various equations. In the present

case let:

https://doi.org/10.1017/9781009291347.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.011


204 The conformal Einstein field equations

Σ̂ab ≡ [ea, eb]− (Γ̂a
c
b − Γ̂b

c
a)ec, (8.44a)

Ξ̂c
dab ≡ P̂ c

dab − ρcdab, (8.44b)

Δ̂cdb ≡ ∇̂cL̂db − ∇̂dL̂cb − dad
a
bcd, (8.44c)

Λ̂bcd ≡ ∇̂ad
a
bcd − fad

a
bcd. (8.44d)

Now, taking into account Equation (8.43) one has that

Ξ̂c
cab = ea(Γ̂b

c
c)− eb(Γ̂a

c
c) + Γ̂d

c
c(Γ̂b

d
a − Γ̂a

d
b)− 2Sc[a

ceL̂b]e,

= 4
(
ea(fb)− eb(fa)− fd(Γ̂b

d
a − Γ̂a

d
b)− L̂ba + L̂ab

)
,

= 4
(
∇̂afb − ∇̂bfa − L̂ba + L̂ab

)
.

In view of the latter, it is convenient to define

Ξ̂ab ≡ 1

4
Ξ̂c

cab = ∇̂afb − ∇̂bfa − L̂ab + L̂ba. (8.45)

In terms of the zero quantities discussed in the previous paragraphs, one defines

the extended conformal vacuum Einstein field equations as the conditions

Σ̂ab = 0, Ξ̂c
dab = 0, Δ̂cdb = 0, Λ̂bcd = 0. (8.46)

These equations yield differential conditions, respectively, for the components

of the frame {ea}, the spin coefficients Γ̂a
c
b (including the components fa of

the covector f), the components of the Schouten tensor L̂ab and the components

of the rescaled Weyl tensor dabcd. In contrast to the standard conformal field

Equations (8.32a) and (8.32b), there are no equations which can be regarded as

differential conditions on the conformal factor Ξ and the components da of the

covector d. As will be seen in Chapter 13, these objects will be fixed through

gauge conditions.

In order to relate the extended conformal field Equations (8.46) to the Einstein

field equations, one introduces further zero quantities:

δa ≡ da − Ξfa − ∇̂aΞ, (8.47a)

γab ≡ L̂ab − ∇̂aβb −
1

2
Sab

cdβcβd +
1

6
λΞ−2ηab, (8.47b)

ςab ≡ L̂[ab] − ∇̂[afb]. (8.47c)

The associated equations

δa = 0, γab = 0, ςab = 0, (8.48)

will be treated as constraints. The first equation expresses the relation between

the covectors d, f and the conformal factor Ξ. The second equation encodes the

relation between the components of the Schouten tensor of the Weyl connection

L̂ab and the physical Schouten tensor via the Einstein field equations – this

constraint is the analogue of the standard conformal equation Zab = 0. The role
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of the equations in (8.48) is similar to that of the equation Z = 0 of the standard

conformal field equations.

In the particular case when fa = 0 it follows from (8.40) that da = ∇aΞ.

Hence, one has that ∇̂ = ∇. Under these circumstances the extended conformal

field Equations (8.46) reduce to

Σab = 0, Ξc
dab = 0, Δcdb = 0, Λbcd = 0,

where the zero quantities Σab, Ξ
c
dab, Δcdb and Λbcd are as defined in Section

8.3.1.

The conformal covariance of the equations

As in the case of the standard conformal field equations, the extended conformal

field equations discussed in the previous section are conformally covariant. To

make this statement more precise, consider a spacetime (M̃, g̃) and two metrics

g and ǵ conformally related to g̃ via

g = Ξ2g̃, ǵ = Ξ́2g̃,

so that g = κ2ǵ with κ ≡ ΞΞ́−1. Let ∇, ∇́ denote, respectively, the Levi-Civita

connections of the metrics g and ǵ. One has that

∇− ∇̃ = S(Ξ−1dΞ), ∇́− ∇̃ = S(Ξ́−1dΞ́), (8.49)

and, furthermore,

∇− ∇́ = S(κ−1dκ).

In addition, consider the covectors f and f́ and define by means of these two

the Weyl connections ∇̂ and ∇̌ via

∇̂−∇ = S(f), ∇̌− ∇́ = S(f́). (8.50)

Combining Equations (8.49) and (8.50) one finds that the relation between the

physical connection ∇̃ and the Weyl connections ∇̂ and ∇̌ is given by

∇̂− ∇̃ = S(β), ∇̌− ∇̃ = S(β́),

where

β ≡ f + Ξ−1dΞ, β́ ≡ f́ + Ξ́−1dΞ́.

Combining these expressions one finds that

∇̂− ∇̌ = S(β − β́)

= S(k + κ−1dκ),

with k ≡ f − f́ . Hence, letting d = Ξβ and d́ = Ξ́β́, one concludes that

d = κ−1d́+ κΞ́k + Ξ́dκ. (8.51)
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Assume now that the fields (ea, Γ̂a
b
c, L̂ab, d

a
bcd,Ξ, da) constitute a solu-

tion to the extended conformal field Equations (8.46). Then, proceeding

in analogy to the discussion in Section 8.3.3, one finds that the fields

(éa, Γ̌a
b
c, Ľab, d́

a
bcd, Ξ́, d́a) with

éa = κea

Γ̌a
b
c = κΓ̂a

b
c + δc

b∇̂aκ− κSac
bd(kd + κ−1∇̂dκ),

Ľab = κ2L̂ab − κ2∇̂a(kb + κ−1∇̂bκ)

− 1

2
κ2Sab

cd(kc + κ−1∇̂cκ)(kd + κ−1∇̂dκ),

d́abcd = κ3dabcd,

Ξ́ = κ−1Ξ,

d́a = κda − Ξ∇̂aκ− κΞka,

are also a solution of the extended conformal equations. Observe that the

∇̂-quantities are components with respect to the frame {ea} which is

g-orthonormal, while the ∇̌-quantities are components on the {éa} frame which

is ǵ-orthonormal.

8.4.2 The spinorial version of the extended conformal field equations

The frame formulation of the extended conformal field equations discussed in

the previous subsection leads directly to its spinorial counterpart. The strategy

is analogous to the one adopted in Section 8.3.2.

The spinorial counterpart of the g-orthogonal frame {ea} is given by the null

tetrad {eAA′} satisfying g(eAA′ , eBB′) = εABεA′B′ . Furthermore, let ∇̂AA′ ≡
eAA′a∇̂a. Similarly, let

Σ̂AA′CC′
BB′ , P̂CC′

DD′AA′BB′ , ρ̂CC′
DD′AA′BB′ ,

L̂AA′BB′ , dAA′ , fAA′ ,

denote, respectively, the spinorial counterparts of the fields

Σa
c
b, P c

dab, ρcdab, L̂ab, da, fa.

The spinorial counterpart of the geometric curvature, P̂CC′
DD′AA′BB′ , is given

in terms of the spinorial connection coefficients Γ̂AA′BB′
CC′ . These, in turn, can

be expressed in terms of the reduced spin connection coefficients Γ̂AA′BC by

Γ̂AA′BB′
CC′ = Γ̂AA′BCδC′B

′
+

¯̂
ΓA′A

B′
C′δC

B, (8.52)

consistent with formula (3.33). The reduced Weyl spin connection coefficients

are related to the unphysical spin connection coefficients via

Γ̂AA′BC = ΓAA′BC + δA
BfCA′ , Γ̂AA′QQ = fAA′ ;

see Equation (5.32).
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The geometric and algebraic Weyl curvature admit, respectively, the splits

P̂CC′
DD′AA′BB′ = P̂C

DAA′BB′δD′C
′
+ P̄C′

D′AA′BB′δD
C ,

ρ̂CC′
DD′AA′BB′ = ρ̂CDAA′BB′δD′C

′
+ ¯̂ρC

′
D′AA′BB′δD

C .

The formula giving the reduced geometric curvature P̂C
DAA′BB′ in terms of

the reduced spin connection coefficients is identical to that for a Levi-Civita

connection. Namely, one has that

P̂C
DAA′BB′ ≡ eAA′(Γ̂BB′CD)− eBB′(Γ̂AA′CD)

− Γ̂FB′CDΓ̂AA′FB − Γ̂BF ′CD
¯̂
ΓAA′F

′
B′ + Γ̂FA′CDΓ̂BB′FA

+ Γ̂AF ′CD
¯̂
ΓBB′F

′
A′ + Γ̂AA′CEΓ̂BB′ED − Γ̂BB′CEΓ̂AA′ED.

In particular, it can be verified that

P̂Q
QAA′BB′ = eAA′(fBB′)− eBB′(fAA′) + Γ̂AA′QBfQB′ +

¯̂
ΓAA′Q

′
B′fBQ′

− Γ̂BB′QAfQA′ − ¯̂
ΓBB′Q

′
A′fAQ′

= ∇̂AA′fBB′ − ∇̂BB′fAA′ .

Hence, one can write

P̂ABCC′DD′ = P̂(AB)CC′DD′ +
1

2
εAB(∇̂CC′fDD′ − ∇̂DD′fCC′).

The reduced algebraic curvature spinor satisfies a similar expression. Namely,

one has that

ρ̂ABCC′DD′ = ρ̂(AB)CC′DD′ − 1

2
εAB(L̂CC′DD′ − L̂DD′CC′),

with

ρ̂(AB)CC′DD′ = −ΞφABCDεC′D′ + L̂BC′DD′εAC − L̂BD′CC′εAD;

compare Equation (5.33).

The objects discussed in the previous paragraphs can be used, in turn, to

define the zero quantities:

Σ̂AA′BB′ ≡ [eAA′ , eBB′ ]− (Γ̂AA′CC′
BB′ − Γ̂BB′CC′

AA′)eCC′ , (8.53a)

Ξ̂C
DAA′BB′ ≡ P̂C

DAA′BB′ − ρ̂CDAA′BB′ , (8.53b)

Δ̂CC′DD′BB′ ≡ ∇̂CC′L̂DD′BB′ − ∇̂DD′L̂CC′BB′ (8.53c)

− dAA′dAA′
BB′CC′DD′ , (8.53d)

Λ̂BB′CC′DD′ ≡ ∇̂AA′dAA′
BB′CC′DD′

− fAA′dAA′
BB′CC′DD′ (8.53e)

https://doi.org/10.1017/9781009291347.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.011


208 The conformal Einstein field equations

One can exploit the symmetries of some of the above zero quantities to obtain

reduced zero quantities. In particular, one can write

Λ̂BB′CC′DD′ = Λ̂BB′CDεC′D′ +
¯̂
ΛB′BC′D′εCD,

with

Λ̂BB′CD ≡ 1

2
Λ̂BB′CQ′D

Q′
.

A similar idea can be applied to Σ̂AA′BB′ , Ξ̂C
DAA′BB′ and Δ̂CC′DD′BB′ . This

idea will not be pursued here.

The spinorial version of the extended conformal Einstein field equations is

expressed in terms of the above zero quantities as:

Σ̂AA′BB′ = 0, Ξ̂C
DAA′BB′ = 0, Δ̂CC′DD′BB′ = 0, (8.54a)

Λ̂BB′CD = 0. (8.54b)

Finally, let δAA′ , ςAA′BB′ and γAA′BB′ denote the spinorial counterparts of the

zero quantities δa and γab. One then requires that

δAA′ = 0, ςAA′BB′ = 0, γAA′BB′ = 0. (8.55)

8.4.3 The extended conformal Einstein field equations and the

Einstein field equations

As in the case of the other versions of the conformal field equations discussed in

this chapter, it is important to analyse the precise relation between the extended

conformal field equations and the (physical) Einstein field equations. One has the

following:

Proposition 8.3 (solutions to the extended conformal field equations

as solutions to the Einstein field equations) Let

(ea, Γ̂a
b
c, L̂ab, d

a
bcd)

denote a solution to the extended conformal field Equations (8.46) for some

choice of the conformal gauge fields (Ξ, da) satisfying the supplementary

Equations (8.48). Furthermore, suppose

Ξ �= 0, det(ηabea ⊗ eb) �= 0,

on an open subset U ⊂ M. Then the metric g̃ = Ξ−2ηabω
a⊗ωb, where {ωa} is

the dual frame to {ea}, is a solution to the Einstein field equations (8.4) on U .

Proof As a consequence of the conformal equation Σ̂ab = 0, the fields Γ̂a
b
c can

be interpreted as the connection coefficients, with respect to the frame field {ea},
of a torsion-free connection ∇̂. In order to show that ∇̂ is a Weyl connection, one

https://doi.org/10.1017/9781009291347.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.011


8.5 Further reading 209

needs to compute ∇̂aηbc. This is best done using spinors. As eAA′(εBC) = 0,

one has that

∇̂AA′εBC = −Γ̂AA′QBεQC − Γ̂AA′QCεBQ = −Γ̂AA′CB + Γ̂AA′BC

= −Γ̂AA′QQεBC = −fAA′εBC .

Recalling that εABεA′B′ is the spinorial counterpart of ηab and observing the

split (8.52) one concludes that ∇̂aηbc = −2faηbc; that is, ∇̂ is a Weyl connection.

Now, as Ξ̂c
dab = 0, the fields L̂ab and Ξdcdab obtained as a solution to the

extended conformal field equations correspond to, respectively, the Schouten

tensor and the Weyl tensor of the connection ∇̂, as a consequence of the

uniqueness of the decomposition in terms of irreducible components.

Given the Weyl connection ∇̂, one can define a new connection ∇ via ∇ ≡
∇̂−S(f). By construction, this connection is metric. The Schouten tensor of ∇
is then given by

Lab = L̂ab −∇afb +
1

2
Sab

cdfcfd.

As Ξ̂c
dab = 0, it follows that Ξ̂ab as defined by Equation (8.45) also vanishes. As

∇̂ is torsion free, so is ∇. Hence, one concludes that ∇ must be the Levi-Civita

connection of the metric g ≡ ηabω
a⊗ωb. The latter expression is a well-defined

Lorentzian metric on U as its determinant is, by hypothesis, non-vanishing.

Finally, one defines a physical connection ∇̃ via ∇̃ ≡ ∇ − S(Ξ−1dΞ). As

δa = 0 it follows that da = fa + ∇̂aΞ so that ∇̃ is the Levi-Civita connection of

the metric g̃ ≡ Ξ−2ηabω
a ⊗ωb. The latter is well defined as long as Ξ �= 0. The

Schouten tensor of ∇̃ is given by

L̃ab = Lab −∇a(Ξ
−1∇bΞ)− Ξ−2Sab

cd∇cΞ∇dΞ.

As a consequence of δa = 0 and γab = 0 one concludes that

L̃ab =
1

6
λΞ−2ηab.

Thus, g̃ is a solution to the vacuum Einstein field equations on U .

Remark. Given the equivalence between the frame and spinorial versions of the

extended conformal field equations, the latter result also provides the connection

between the spinorial extended conformal field equations and the Einstein field

equations.

8.5 Further reading

The standard conformal Einstein field equations were first introduced in Friedrich

(1981a,b, 1982). General aspects of the Cauchy problem of the conformal

equations were first discussed in Friedrich (1983); see also Friedrich (1984).

A systematic discussion of gauge issues and hyperbolic reductions of the

equations has been given in Friedrich (1985). A discussion of the conformal field
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equations with trace-free matter was first given in Friedrich (1991). The extended

conformal field equations were introduced in Friedrich (1995). Reviews discussing

various aspects of the conformal field equations can be found in Friedrich (2002,

2004). The extended conformal field equations with (trace-free) matter were first

discussed in Lübbe and Valiente Kroon (2012).

The conformal field equations can be related to other geometrical objects

(twistors); see Frauendiener and Sparling (2000). The extended conformal field

equations can be set in a more geometrical framework involving the language of

differential forms. A discussion of this has been given in Friedrich (1995). Certain

applications of the conformal equations require the use of a lift of the equations

to a suitable fibre bundle. A discussion of this type of procedure can be found

in Friedrich (1986b, 1998c).

A different approach to the construction of regular conformal field equations

based on the Fefferman-Graham obstructions – see, for example, Graham and

Hirachi (2005) – has been elaborated in Anderson (2005a) and Anderson and

Chruściel (2005). This approach gives rise to suitable field equations for an

arbitrary number of odd space dimensions and has been used to prove (global and

semi-global) existence and stability results of higher dimensional asymptotically

simple spacetimes.

In the context of conformal geometry, given a metric g, it is natural to ask

whether there exists a further metric in the conformal class [g] which is an

Einstein space. This problem has been addressed in, for example, Baston and

Mason (1987), Kozameh et al. (1985) and Mason (1986).
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