Mode Determination by Fourier Analysis of Line-Profile Variations: Application to τ Peg

E.J. Kennelly¹, G.A.H. Walker¹, W.J. Merryfield², J.M. Matthews³

¹ University of British Columbia, ² University of Victoria, ³ Université de Montréal

Abstract

The identification of modes of oscillation is an important first step towards the seismology of stars. Low- and high-degree $(0 \le \ell \le 16^+)$ nonradial modes of oscillation may appear as variations in the line profiles of rapidly rotating δ Scuti stars. We present a technique whereby complex patterns in the line profiles are decomposed into Fourier components in both time and "Doppler space". The technique is applied to the 7.3-hour time series of high-resolution data obtained from CFHT for the δ Scuti star τ Peg. In addition to the lowdegree mode which has been identified in photometric studies (Breger 1991), we find evidence for at least three high-degree modes near $\ell = |m| = 7$, 11 and 15. Correcting for the rotation of the star, most of these modes appear to oscillate with frequencies near 17 cycles day⁻¹. Our results are found to be in good agreement with the theoretical limits imposed on the frequencies of oscillation by the models of Dziembowski (1990).

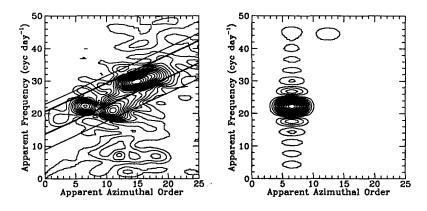


Figure Caption. The two-dimensional Fourier spectrum of the line-profile variations of τ Peg (left) and a window function generated from a time series of synthetic line profiles resulting from an $\ell = |m| = 6$ mode (right). Theoretical limits to the pulsation frequency are plotted for Dziembowski's standard (thick lines) and He-rich models (thin lines).

References:

Breger, M., 1991, Astron. Astrophys. 250, 107.
Dziembowski, W., 1990, in: Progress of Seismology of the Sun and Stars, eds. Y. Osaki and H. Shibahashi, Lecture Notes in Physics 367, p 359.

147