On the units of a modular group ring

K.R. Pearson

It is shown that a finite group G is a normal subgroup of the group of units of the group ring of G over the ring of integers modulo n if and only if G is abelian or $n=2$ and G is isomorphic to the symmetric group on 3 letters.

Let R be a ring with identity $1, G$ a finite group and let $R G$ denote the corresponding group ring. If α is a unit in R and if $g \in G$ then αg is a unit in $R G$, and is called a trivial unit. In particular $\{1 g \mid g \in G\}$ is always a subgroup of the group $(R G)^{*}$ of units of $R G$; by a slight abuse of notation this set will also be denoted by G. We consider the following conditions.

I Every unit in $R G$ is trivial.
II Every unit of finite order in $R G$ is trivial.
III Every conjugate in $(R G)^{*}$ of an element of G is trivial; or equivalently, G is a normal subgroup of $(R G)^{*}$.

It is clear that, in general, $I \Rightarrow I I \Rightarrow I I I$.
For the case $R=Z$, the ring of rational integers, these conditions have been examined by Higman [8] and Berman [2]. Higman showed that I holds if and only if G is either abelian of exponent dividing 4 or 6 or hamiltonian of order a power of 2 . Berman showed that II holds if and only if G is either abelian or hamiltonian of order a power of 2 . In addition, although it is not stated explicitly, his proof shows that (still when $R=Z$) II and III are equivalent.

If R has characteristic zero, it is clear that any one of these

Received 12 April 1972.
three conditions implies the corresponding condition for the case $R=2$. Hence the results of Higman and Berman give some information about the general case when R has characteristic zero.

In this case we consider the conditions when $R=Z_{n}$, the ring of rational integers modulo n. The results then give some information about the case where R has finite characteristic. Because $Z_{n} G$ is a finite ring it is clear that, when $R=Z_{n}$, I and II are equivalent. We prove the following results.

THEOREM 1. Let G be a finite group. G is a normal subgroup of $\left(z_{n} G\right) *$ if and only if G is abetian or $n=2$ and $G \simeq S_{3}$, the symmetric group on 3 letters.

THEOREM 2. Let G be a finite nontrivial group. Every unit in $Z_{n}{ }^{G}$ is trivial if and only if $n=2$ and $|G| \leq 3$ or $n=3$ and $|G|=2$.

A result related to Theorem 1 has been proved in [4] by Eldridge. He has proved that if G is a locally finite p-group and H is a subgroup of G, then H is normal in $\left(2_{p} G\right) *$ if and only if H is central in G.

51 contains some preliminary results which are perhaps of independent interest. Theorem 1 is proved in $\S \S 2-4$, while Theorem 2 is proved in $\S 5$.

1. The behaviour of unit groups under ring homomorphisms

Let R be a ring with identity and let $\phi: R \rightarrow S$ be a surjective ring homomorphism. It is easy to see that ϕ maps the group R^{*} of units of R into the group S^{*} of units of S. That $R^{*} \phi$ is not always the whole of S^{*} may be seen by considering, for example, the canonical homomorphism from Z to $Z / n Z$. It is of interest to know conditions under which $\phi: R^{*} \rightarrow S^{*}$ is surjective. When the kernel of ϕ is contained in the Jacobson radical of R this is known to be the case (see (2.1) of [6] or Lemma 1 of [5]). The following result shows that it is also the case when R is artinian (irrespective of the kernel of ϕ).

THEOREM 3. Let R be a ring with identity such that R / J is artinion, where J is the Jacobson radical of R. If $\phi: R \rightarrow S$ is a
surjective ring homomorphism then ϕ induces a surjective group homomorphism $\phi: R^{*} \rightarrow S^{*}$, where R^{*} and S^{*} denote the group of units of R and S respectively.

Proof. We must show that ϕ is onto. Let K denote the kernel of ϕ.

Suppose firstly that $J=0$. Then R is an internal direct sum

$$
R=R_{1} \dot{+}+R_{t},
$$

where each R_{i} is a simple artinian ring. By renumbering if necessary we can assume that

$$
K=R_{u+1} \mp \ldots \dot{+} R_{t}
$$

Suppose $x \in R$ is such that $x \phi \in S^{*}$; then there is an element y in R such that $x y-1 \in K$ and $y x-1 \in K$. Let

$$
1=e_{1}+\ldots+e_{t}
$$

where $e_{i} \in R_{i}$. Then if

$$
\begin{aligned}
& z=x e_{1}+\ldots+x e_{u}+e_{u+1}+\ldots+e_{t}, \\
& w=y e_{1}+\ldots+y e_{u}+e_{u+1}+\ldots+e_{t},
\end{aligned}
$$

$z \omega=1=\omega z$ and $z-x \in K$. Thus $z \in R^{*}$ and $z \phi=x \phi$.
Now consider the general case. Suppose $x \in R$ is such that $x \phi \in S^{*}$. Then $x+K \in(R / K)^{*}$ and so $x+(J+K) \in[R /(J+K)]^{*}$. Since $J \subseteq J+K$ there is a natural homomorphism $\psi: R / J \rightarrow R /(J+K)$. Because R / \mathcal{J} is semisimple it follows from the above that there exists $x_{1} \in R$ such that $x_{1}+J \in(R / J)$ * and $x_{1}+(J+K)=x+(J+K)$. By Lemma 1 of [5], there exists $y \in R^{*}$ such that $x_{1}+J=y+J$. Hence there exists $k \in K, j \in J$ such that

$$
x+k=y+j=y\left(1+y^{-1} j\right)
$$

But $y^{-1} j \in J$, so $1+y^{-1} j \in R^{*}$ and hence $z=y+j \in R^{*}$. Also $z \phi=x \phi$ since $z-x \in K$.

COROLLARY 4. Let R be on artinion ring with identity and let G be a finite group such that $G \triangleleft(R G)^{*}$. If $P \triangleleft G$ then $(G / P) \triangleleft[R(G / P)] *$.

Proof. Since $R G$ is artinian ([8], Appendix 2, Proposition 6) we can apply the theorem to the homomorphism $\phi: R G \rightarrow R(G / P)$ which extends the identity on R, and the canonical homomorphism from G to G / P.

COROLLARY 5. If $G \triangleleft\left(z_{n}\right)^{*}$ and m divides n then $G \&\left(z_{m}^{G}\right)^{*}$.
If R is a finite ring

$$
\delta(R)=\left|R^{*}\right| /|R|,
$$

the proportion of invertible elements in R, has been considered in [6]. If $\phi: R \rightarrow S$ is a surjective ring homomorphism, it is shown in (3.2) of [6] that $\delta(R)=\delta(S)$ if the kernel of ϕ equals the Jacobson radical of R.

PROPOSITION 6. Let R be a finite ring and let $\phi: R \rightarrow S$ be a surjective ring homomorphism with kernel K. Then $\delta(R)=\delta(S)$ if and only if K is contained in the Jacobson radical of R.

Proof. ϕ induces a surjective group homomorphism from R^{*} to S^{*} whose kernel is $R^{*} \cap(1+K)$. It is thus easy to see that $\delta(R)=\delta(S)$ if and only if $1+K \subseteq R^{*}$, which in turn is the case if and only if K is a quasi-regular ideal.

2. Outline the proof of Theorem 1

If G is abelian, it is clear that $G \triangleleft\left(Z_{n} G\right)$. That $S_{3} \triangleleft\left(Z_{2} S_{3}\right) *$ is shown in the following lemma. This completes the sufficiency part of Theorem 1.

LEMMA 7. $S_{3} \triangleleft\left(z_{2} S_{3}\right) *$.
Proof. If $S_{3}=\left\langle a, b \mid a^{2}=b^{3}=1, b a=a b^{2}\right\rangle$ then $\theta: S_{3} \rightarrow z_{2} \oplus M_{2}\left(z_{2}\right)$ given by

$$
a \theta=\left(1,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right), \quad b \theta=\left(1,\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right)
$$

defines a group homomorphism, and so can be extended to a ring homomorphism $\theta: Z_{2} S_{3} \overrightarrow{l_{2}} \not Z_{2} M_{2}\left(z_{2}\right) \cdot \theta$ is onto and its kernel is $J=\{0, \gamma\}$ where $\gamma=1+b+b^{2}+a+a b+a b^{2} . \gamma^{2}=0$ and J is the radical of $Z_{2} S_{3}$. By Theorem 3, θ induces a surjective homomorphism from $\left(z_{2} S_{3}\right) *$ onto $\operatorname{GL}\left(2, z_{2}\right)$ whose kernel is $1+J$. Since $\left|\operatorname{GL}\left(2, z_{2}\right)\right|=6$ and since θ is one-to-one when restricted to S_{3} it follows that $\left(z_{2} S_{3}\right) *=S_{3}(1+J)$. Because γ is in the centre of $z_{2} S_{3}$, we see that $\left(Z_{2} S_{3}\right) *=S_{3} \times(1+J)$ and $S_{3} \triangleleft\left(z_{2} S_{3}\right) *$.

The necessity part of Theorem 1 remains. Suppose that $G \triangleleft\left(z_{n}\right)^{*}$ and that G is not abelian. In 553,4 we consider the case where n is a prime and show that $n=2$ and $G \simeq S_{3}$. In view of Corollary 5 above it follows that $G \simeq S_{3}$ and $n=2^{k}$ for some $k \geq 1$. If $k \geq 2$ and $y=2^{k-1}$. then $(1+y a)^{2}=1$ so that $1+y a$ is a unit of order 2 in $2_{n} S_{3}$ - But

$$
(1+y a) b(1+y a)=b+y a b+y a b^{2} k S_{3} .
$$

Hence $k=1$. This will complete the necessity part.

3.

LEMMA 8. If p is a prime, if p does not divide $|G|$ and if $G \triangleleft\left(Z_{p} G\right)^{*}$, then G is abelion.

Proof. For suppose, if possible, that G is not abelian. Since $R=Z_{p} G$ is semisimple, there exists a central idempotent e in R such that $R e \simeq M_{n}\left(G F\left(p^{k}\right)\right)$ for some $n \geq 2$ and $k \geq 1$. Since $G \triangleleft R^{*}$ it follows that $G e \triangleleft(R e)^{*} \simeq \operatorname{SL}\left(n, p^{k}\right)$. Let $\theta:(R e)^{*} \rightarrow G L\left(n, p^{k}\right)$ be an isomorphism. Now p divides $\left|S L\left(n, p^{k}\right)\right|$ ([1], Theorem 4.11) so that $\mathrm{SL}\left(n, p^{k}\right) \theta^{-1}$ is not contained in Ge. Since the centre of GL $\left(n, p^{k}\right)$ is
contained in the centre of $M_{n}\left(G F\left(p^{k}\right)\right)$ ([1], Theorem 4.8), $G e \subseteq$ centre ($R e$)* would mean $G e \subseteq$ centre ($R e$) and then $R e$ would be commutative since it is spanned by $G e$ over $Z_{p} e$. Thus it follows from [1], Theorem 4.9, that $n=2, k=1$ and $p=2$ or 3 .

If $p=2$, we get $|G e|=3$ since $\operatorname{GL}(2,2) \simeq S_{3}$. But then Re has dimension at most 3 over $Z_{p} e$ and so cannot be isomorphic to $M_{2}\left(z_{2}\right)$.

Thus $p=3$. Now the only normal subgroup of $G L(2,3)$ which has order not divisible by 3 and which is not contained in the centre of GL $(2,3)$ is isomorphic to the quaternion group H of order 8 . Thus $G e \simeq H$. Since $G e$ is a homomorphic image of G it follows from Corollary 4 that $H \triangleleft\left(2_{3}\right)^{*}$. Let

$$
H=\left\langle i, j \mid i^{2}=j^{2}=t, t^{2}=1, j i=t i j\right\rangle .
$$

Then in $Z_{3}{ }^{H}$, if $x=(i+j+i j)(1-t)$ we have $x^{2}=0$ and therefore $1+x$ is a unit with inverse $1-x$. But

$$
(1+x) i(1-x)=1-j-i j-t+t i+t j+t i j k S .
$$

Thus we have a contradiction.
LEMMA 9. If p is a prime ≥ 3, if p divides $|G|$ and if $G \triangleleft\left(z_{p} G\right)^{*}$, then G is abelian.

Proof. Let H be a p-Sylow subgroup of G. We first show that H is in the centre of G. For let $g \in G, h \in H$ and let h have order p^{m} with $m \geq 1$. Since $(1-h)^{p^{m}}=1-\not Z^{p^{m}}=0,1-h$ is nilpotent and hence so is $(1-h)^{2}$. Thus $I-(I-h)^{2}=2 h-h^{2}$ is a unit in $Z_{p} G$. Hence there exists $g^{\prime} \in G$ such that $\left(2 h-h^{2}\right) g=g^{\prime}\left(2 h-h^{2}\right)$, or

$$
2 h g-h^{2} g=2 g^{\prime} h-g^{\prime} h^{2} .
$$

Since $h \neq e, h g$ and $h^{2} g$ are distinct. Thus we get two possibilities, namely
(i) $g^{\prime} h^{2}=h^{2} g$ and $g^{\prime} h=h g$, in which case $g h=h g$; or
(ii) $2=-1$ (that is, $p=3$), $g^{\prime} h=h^{2} g$ and $g^{\prime} h^{2}=h g$, in which case $g^{-1} h g=h^{-1}$.

Suppose, if possible, that $g h \neq h g ;$ then $p=3, g \neq e, g \neq h^{-1}$ and $g h g^{-1}=h^{-1}$. Since $g h g^{-1}=h^{-1}$, it is easy to see that $(1-h) g$ is nilpotent, and so $\alpha=1+(1-h) g$ is a unit. Hence there exists $h^{\prime} \in G$ such that $\alpha h=h^{\prime} \alpha$, which gives

$$
h+g h-h g h=h^{\prime}+h^{\prime} g-h^{\prime} h g .
$$

Since $h, g h$ and $h g h$ are distinct, we have $h^{\prime} h g=h g h=g$ and $h^{\prime}=h^{-1}$. Then $h+g h=h^{-1}+h^{-1} g$. Since $h \neq h^{-1}$ we get $h^{-1}=g h$, whence $g=h^{-2}$ and we have a contradiction.

We can now show that G is abelian. For suppose, if possible, that $x, y \in G$ and $x y \neq y x$. If $h \neq 1$ is an element of H then h is in the centre of G and $B=1+(1-h) x$ is a unit. Thus there exists $z \in G$ such that $\beta y=z \beta$, and so

$$
y+x y-h x y=z+z x-h z x
$$

Since $x y \neq y x, y \neq e$ and $x \neq h^{-1}$ so that $y, x y$ and $h x y$ are distinct. Thus $h x y=h z x$ and $z=x y x^{-1}$. Now $y+x y=x y x^{-1}+x y$, which means $y=x y x^{-1}$ or $x y=y x$.
4. $n=2$ and $|G|$ is even

We are left with $G \triangleleft\left(Z_{2} G\right)^{*}$ and $|G|$ even. We show that either G is abelian or $G \simeq S_{3}$.

In what follows we will often have a situation similar to the following. Suppose

$$
x_{1}+\ldots+x_{n}=y_{1}+\ldots+y_{n}
$$

where $x_{i}, y_{i} \in Z_{2} G$ and x_{1}, \ldots, x_{n} are distinct. Then the y_{i} must be a permutation of the x_{j} and so this leads to $n!$ possible cases.

LEMMA 10. If $h \in G$ has order 2^{m} with $m \geq 2$ then h is in the centre of G.

Proof. Let $a \in G$. Since $1+(1+h) h$ is a unit, there exists $z \in G$ with $\left(1+h+h^{2}\right) g=z\left(1+h+h^{2}\right)$. This gives $g h^{-1}=h^{8}$ where $a= \pm 1$. Thus $(1+h) g$ is nilpotent and so there exists $w \in G$ with

$$
[1+(1+h) g] g=w[1+(1+h) g] .
$$

If $g h \neq h g$ then $g h g^{-1}=h^{-1}$ and this leads to a contradiction.
LEMMA 11. If any two elements of order 2 in G commute then G is abelian.

Proof. Let $b \in G$ have order 2 . We show that b is in the centre of G. For let $g \in G$. If for $x \in G, b^{x}$ denotes $x b x^{-1}$ then, for all $t \geq 1$,

$$
((1+b) g)^{t}=(1+b)\left(1+z^{g}\right) \ldots\left(1+z^{g}\right) g^{t}
$$

There exists an integer n such that $g^{n}=1$ and so

$$
((1+b) g)^{n+1}=(1+b)\left(1+b^{g}\right) \ldots\left(1+b^{g^{n-1}}\right)(1+b) g^{n+1}=0
$$

since $b, b^{g}, \ldots, b^{9^{n-1}}$ all commute and $(1+b)^{2}=0$. Thus $\alpha=1+(1+b) g$ is a unit and there exists $h \in G$ with $\alpha g=h \alpha$. Consideration of the six cases gives $g b=b g$.

Suppose $x, y \in G$ and $x y \neq y x$. Then let $b \in G$ have order 2 . Since $\beta=1+(1+b) x$ is a unit, there exists $z \in G$ with $\beta y=z \beta$ and this yields $y x=b x y$. Now $y^{x^{2}}=y$ and $y^{x} \neq y$ so that $y^{x^{n}}=y$ if and only if n is even. Thus x has even order, say $2^{8} t$ where t is odd and $s \geq 1$. Then if $z=x^{t}, z$ has order 2^{s} and $y z=b^{t} x^{t} y=b z y$. Now if $s \geq 2$ this contradicts Lemma 10 while if $\boldsymbol{s}=1$ this contradicts the paragraph above. Hence G is abelian.

LEMMA 12. If $x, y \in G$ both have order 2 and if $x y \neq y x$ then
xy has order 3.
Proof. Let $x y=b$ and let b have order m. Then (b, x) is a dihedral group of degree m and $m \geq 3$. Now $((1+x) b(1+x))^{2}=0$ and so $\beta=1+(1+x) b(1+x)$ is a unit. Thus there exists $g \in G$ such that $\beta b=g \beta$. Since $g \in\langle b, x\rangle$ and g has the same order as b, it follows from a knowledge of the dihedral group that $g=b^{j}$ for some j. From $B b=b^{j} \beta$ we get $x b^{2}+x=x b^{1-j}+x b^{1-j}$. If $b^{1-j}=1$ we get $b^{4}=1$, which contradicts Lemma 10 , and so $b^{1-j}=b^{2}$. If we substitute this in $\beta b=b^{j} \beta$ we get $b^{3}=1$ and $m=3$.

LEMMA 13. Let $a \in G$ have order 2 and suppose there exists $b \in G$ of order 2 such that $a b \neq b a$. If $c \in G$ has order 2 then $a c \neq c a$.

Proof. For suppose $a c=c a$; then $(a+c)^{2}=0$ and there exists $d \in G$ such that

$$
(1+a+c) a b=d(1+a+c),
$$

and this leads to a contradiction.
COROLLARY 14. Let $a, b \in G$ both have order 2 with $a b \neq b a$. If $c, d \in G$ both have order 2 then $c d \neq d c$.

Proof. By the lemma, $a c \neq c a$. Then from the lemma with a, b, c replaced by c, a, d respectively we get $c d \neq d c$.

LEMMA 15. If G is not abelian then $|G|$ is not divisible by 4 .
Proof. If 4 divides $|G|$ then G contains a subgroup of order 4 . This cannot be cyclic, by Lemma 10 , so contains two commuting elements of order 2 . It then follows from Corollary 14 and Lemma 11 that G is abelian.

LEMMA 16. Suppose G is not abelico. Then G contains two elements a, b of order 2 such that $a b \neq b a$. The only elements of order 2 in G are a, b, and $a b a$ cond, if K is the subgroup generated by these elements of order 2 , then $K=\{1, a, b, a b a, a b, b a\}$ and $K \simeq S_{3}$.

Proof. The existence of a and b is given by Lemma ll. We know
from Lemma 12 that $a b$ has order 3 and hence $a b a$ has order 2 . Suppose that c is an element of order 2 which is distinct from a, b and $a b a$, and let $d=a b, f=a c$ and let H be the subgroup generated by d and f; we know that d and f have order 3 . Also $d f=(a b a) c, \quad d^{2} f=b c, \quad d f^{2}=a(b c) a, \quad d^{2} f^{2}=b(a c a)$ all have order 3 . Thus, for all i, j,

$$
\begin{equation*}
f^{j} d^{i} f^{j}=d^{-1} f^{-j} d^{-i} \tag{1}
\end{equation*}
$$

It now follows as on page 321 of [7] that any element of H can be written as $d^{i}, d^{i} f d^{j}, d^{i} f^{-1} d^{j}$ or $d^{i} f d^{j} f^{-1} d^{k}$. It can then be verified by using (1) that H has exponent 3 . Hence H is abelian, by Lemma 8, and $d f=f d$. If $x=1+(1+d)\left(1+f+f^{2}\right)$ then $x^{3}=1$ and $b x b=x^{2}$, which gives $x b x^{-1}=b x$ and means that $x \in G$. Since $f, d f$ and $d f^{2}$ are distinct, x must then equal one of them, and this yields $f=d$ or d^{2}, which in turn yields $c=b$ or $a b a$ and is a contradiction.

It is routine to verify that K is as stated and is isomorphic to S_{3}.

In what follows we assume G is nonabelian. Let N be the radical of $S=Z_{2} G$, let $\phi: S \rightarrow S / N=\bar{S}$ be the canonical map, let

$$
\bar{S}=\bar{S}\left(e_{1} \phi\right)+\ldots+\bar{S}\left(e_{t} \phi\right)
$$

where the $e_{i} \phi$ are central primitive orthogonal idempotents in \bar{S} and let

$$
\bar{S}\left(e_{i} \phi\right) \simeq M_{n_{i}}\left(G F\left(2^{k}\right)\right)
$$

LEMMA 17.
(i) At least one $n_{i} \geq 2$.
(ii) If $n_{i} \geq 2$ then $n_{i}=2, k_{i}=1$ and $(G \phi)\left(e_{i} \phi\right)=\left(\bar{S}\left(e_{i} \phi\right)\right)^{*} \simeq G L(2,2)$.

Proof. (i) We know from Theorem 3 that $\phi: S^{*} \rightarrow \bar{S}^{*}$ is onto and has kernel $I+N$. If $g \in G \cap(l+N)$ then $l+g \in N$ and so
$(1+g)^{2^{k}}=1+g^{2^{k}}=0$ for some k; hence g has order 2 by Lemma 16 . But $1+a \neq N$, since otherwise $(1+a) b=b+a b \in N$, and this is impossible because $(b+a b)^{3}=(b+a b)^{2} \neq 0$. Similarly $1+b k N$ and $1+a b a \nmid N$. Thus $G \cap(1+N)=\{1\}$ and $G \phi \simeq G$. Hence \bar{S} is not commutative, so at least one $n_{i} \geq 2$.
(ii) Suppose $n_{i} \geq 2$. Now $(G \phi)\left(e_{i} \phi\right) \triangleleft\left(\bar{S}\left(e_{i} \phi\right)\right) *$ and, since $\bar{S}\left(e_{i} \phi\right)$ is spanned by $(G \phi)\left(e_{i} \phi\right)$ over $z_{2},(G \phi)\left(e_{i} \phi\right)$ is not contained in the centre of $\left(\bar{S}\left(e_{i} \phi\right)\right)^{*}$. If $n_{i} \geq 3$ or if $n_{i}=2$ and $k_{i}>1$ it follows from Theorem 4.9 of [1] that $(G \phi)\left(e_{i} \phi\right)$ contains a subgroup H with $H \simeq \operatorname{SL}\left(n_{i}, 2^{k_{i}}\right)$ but in this case $4\left|\left|S L\left(n_{i}, 2^{k_{i}}\right)\right|\right.$ ([1], Theorem 4.11), and this contradicts Lemma 15. Thus $n_{i}=2$ and $k_{i}=1$. Since $S\left(e_{i} \phi\right)$ is spanned by $(G \phi)\left(e_{i} \phi\right)$ over z_{2} and has dimension 4 , it follows that $(G \phi)\left(e_{i} \phi\right)=\left(S\left(e_{i} \phi\right)\right) *$, since otherwise $\left|(G \phi)\left(e_{i} \phi\right)\right| \leq 3$.

LEMMA 18. G is an internal direct product $G=K \otimes L$ for some abelian group L of odd order.

Proof. Let $\psi_{i}: \bar{S} \rightarrow \bar{S}\left(e_{i} \phi\right)$ be given by $\bar{s} \psi_{i}=\bar{s}\left(e_{i} \phi\right)$, and let L_{i} be the kernel of $\phi \psi_{i}$.

Suppose $n_{i}=2$. Since $G \phi \psi_{i} \simeq S_{3}$ and 4 does not divide $|G|$, $\left|L_{i}\right|$ must be odd. Hence $L_{i} \cap K=\{1\}$ or $\langle a b\rangle$.

Suppose that $L_{i} \cap K=\langle a b\rangle$ for all i such that $n_{i}=2$. Then if $n_{i}=2$,

$$
b \phi \psi_{i}=(a \cdot a b) \phi \psi_{i}=(a \cdot 1) \phi \psi_{i}=(1 \cdot a) \phi \psi_{i}=(a b a) \phi \psi_{i}
$$

Also, if $n_{j}=1$, then, since $S \phi \psi_{j}$ is commutative,

$$
b \phi \psi_{j}=(a \cdot a b) \phi \psi_{j}=(a b a) \phi \psi_{j}
$$

Thus $b \phi \psi_{i}=a b a \phi \psi_{i}$ for all i, which means that $b \phi=a b a \phi$ and
contradicts the fact that ϕ is one-to-one on G (see the proof of (i), Lemma 17).

Thus for some $i, n_{i}=2$ and $L_{i} \cap K=\{1\}$. Since L_{i} and K are both normal in G, and since

$$
|G|=\left|L_{i}\right|\left|\left(\bar{S}\left(e_{i} \phi\right)\right) *\right|=\left|L_{i}\right||k|,
$$

we must have $G=K \otimes L_{i}$. Further, it follows from Lemma 8 that L_{i} is abelian.

LEMMA 19. $G=K$.
Proof. Since L is abelian and of odd order, $Z_{2} L$ is isomorphic to a direct sum of fields $F_{1} \oplus \ldots \oplus F_{t}$. Then

$$
Z_{2} G=\left(z_{2} L\right) K \simeq\left(\begin{array}{c}
\oplus \\
i=1
\end{array} F_{i}\right)(K) \simeq \oplus_{i=1}^{t}\left(F_{i} S_{3}\right)=M,
$$

say. Now if N_{i} the radical of $F_{i} S_{3}$, then, as in Lemma 7, $F_{i} S_{3} / N_{i} \simeq F_{i} \oplus M_{2}\left(F_{i}\right)$. Thus if J is the radical of M, then

$$
M / J \simeq \oplus_{i=1}^{t}\left(F_{i} \oplus M_{2}\left(F_{i}\right)\right) .
$$

It now follows from Lemal that $F_{i} \simeq Z_{2}$ for all i. But then $Z_{2} L$ is isomorphic to t copies of z_{2} and $|L|=1$.

5. Proof of Theorem 2

Suppose that every unit in $Z_{n} G$ is trivial. It follows from Theorem 1 that either G is abelian or else $n=2$ and $G \simeq S_{3}$. In the latter case, if γ is the sum of all the elements of G then $\gamma^{2}=0$ so $(1+\gamma)(1-\gamma)=1$ and $1+\gamma$ is a non-trivial unit. Thus G is abelian.

We next notice that if m divides n then every unit in $Z_{m} G$ is trivial. For let $\theta: Z_{n} G \rightarrow Z_{m}{ }^{G}$ be the homomorphism extending the canonical homomorphism from Z_{n} to Z_{m} and the identity on G. Then if
β is a unit in $Z_{m} G$, it follows from Theorem 3 that there is a unit α in $Z_{n} G$ such that $\alpha \theta=\beta$. Since α is trivial, β must be also.

Let p be a prime dividing n. Notice that p^{2} does not divide n, for otherwise, if γ is the sum of all the elements of G then $[(n / p) \gamma]^{2}=0$ and so $1+(n / p) \gamma$ is a non-trivial unit.

Let H be a subgroup of G of order k; then $Z_{p} H$ has only trivial units.

If p divides k and if γ is the sum of all the elements in H then $r^{p}=0$ in $Z_{p} H$ so that $I+\gamma$ is a unit. Because it is non-trivial if $k>2$, we must have $p=k=2$.

If $p \neq k$ and if k is a prime we know from Theorem 4.7 of [3] that

$$
Z_{p} H \simeq Z_{p} \oplus\left\{[(k-1) / \mu] \text { copies of } \operatorname{GF}\left(p^{\mu}\right)\right\}
$$

where μ is the order of p moduio k. Thus $Z_{p} H$ has

$$
(p-1)\left(p^{\mu}-1\right)^{[(k-1) / \mu]}
$$

units. But $Z_{p} H$ has only $(p-1) k$ trivial units. Since μ divides $k-1$ by Fermat's Theorem and k divides $p^{\mu}-1$, we must have $\mu=k-1$ and $p^{k-1}=k$. This latter equation means that either $p=2$ and $k=3$, or $p=3$ and $k=2$.

Firstly consider what happens if $p=3$; then G must be a 2-group. But, again using Theorem 4.7 of [3], $Z_{3} C_{4} \simeq 2 Z_{3} \oplus G F(9)$ has 32 units and only 8 trivial units, while $Z_{3}\left(C_{2} \times C_{2}\right) \simeq 4 Z_{3}$ has 16 units and only 8 trivial units. Thus G must be of order 2 . Also, in ${ }_{2} C_{2},(3+3 x)^{2}=0$ so $1+(3+3 x)$ is a non-trivial unit; thus $n=3$.

The only remaining possibility is that $n=2$. But, again using Theorem 4.7 of [3], $Z_{2} C_{9} \simeq Z_{2} \oplus G F(4) \oplus G F(64)$ has 189 units and only 9 trivial ones while $Z_{2}\left(C_{3} \times C_{3}\right) \simeq Z_{2} \oplus 4 G F(4)$ has 243 units but only

9 trivial units. Thus G must be cyclic of order 2 or 3 .
Conversely, it is easily checked that if $n=2$ and $|G| \leq 3$ or if $n=3$ and $|G|=2$ then $Z_{n} G$ has only trivial units.

References

[1] E. Artin, Geometric algebra (Interscience, New York, London, 1957).
[2] С.Д. Берман [S.D. Berman], "Об уравненин $x^{m}=1$ в целочисленном групповом кольце" [On the equation $x^{m}=1$ in an integral group ring], Ukrain. Mat. Ž. 7 (1955), 253-261.
[3] Charles Allen Cable, "On the decomposition of a group ring", (PhD dissertation, Pennsylvania State University, University Park, Pennsylvania, 1969).
[4] Klaus E. Eldridge, "On normal subgroups in modular group algebras", (unpublished).
[5] Klaus E. Eldridge and Irwin Fischer, "D.C.C. rings with a cyclic group of units", Duke Math. J. 34 (1967), 243-248.
[6] H.K. Farahat, "The multiplicative groups of a ring", Math. 2. 87 (1965), 378-384.
[7] Marshall Hall, Jr, The theory of groups (The Macmillan Company, New York, 1959).
[8] Graham Higman, "The units of group-rings", Proc. London Math. Soc. (2) 46 (1940), 231-248.
[9] J. Lambek, Lectures on mings and modules (Blaisdeli, Waltham, Massachusetts; 1966).

Department of Mathematics,
La Trobe University,
Bundoora,
Victoria.

