Canad. J. Math. Vol. **62** (1), 2010 pp. 19–33 doi:10.4153/CJM-2010-002-9 © Canadian Mathematical Society 2010

Solutions for Semilinear Elliptic Systems with Critical Sobolev Exponent and Hardy Potential

Mohammed Bouchekif and Yasmina Nasri

Abstract. In this paper we consider an elliptic system with an inverse square potential and critical Sobolev exponent in a bounded domain of \mathbb{R}^N . By variational methods we study the existence results.

1 Introduction

In this paper we study the existence of nontrivial solutions of the following system

$$(S_{A,\mu}) \begin{cases} -\Delta u - \frac{\mu}{|x|^2} u = au + bv + (\alpha + 1)u|u|^{\alpha - 1}|v|^{\beta + 1} & \text{in }\Omega, \\ -\Delta v - \frac{\mu}{|x|^2} v = bu + cv + (\beta + 1)|u|^{\alpha + 1}v|v|^{\beta - 1} & \text{in }\Omega, \\ u = v = 0 & \text{on }\partial\Omega, \end{cases}$$

where Ω is a smooth bounded domain in \mathbb{R}^N $(N \ge 3)$ containing 0 in its interior; a, b, c are real parameters; $\alpha, \beta > 0$ such that $\alpha + \beta \le \frac{4}{N-2}$; and $0 \le \mu < \overline{\mu} := (\frac{N-2}{2})^2$.

We start by giving a brief history for the scalar case. The problem

$$(P_{\lambda,\mu}) \begin{cases} L_{\mu}u := -\triangle u - \mu \frac{u}{|x|^2} = u|u|^{\frac{4}{N-2}} + \lambda u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

has been considered by many authors (see [6, 9, 11, 12] and the references cited therein). The quasilinear case was treated for example by Ghoussoub and Yuan in [10].

Problem $(P_{\lambda,0})$ has been the object of the famous paper of Brézis and Nirenberg in [4]. Jannelli in [11] generalized the results of [4] to problem $(P_{\lambda,\mu})$ for $\mu \ge 0$. He proved the following:

• If $0 \le \mu \le \overline{\mu} - 1$, then problem $(P_{\lambda,\mu})$ has at least one positive solution in $H_0^1(\Omega)$ for all $0 < \lambda < \mu_1$, where $\mu_1 = \mu_1(\mu)$ is the first eigenvalue of L_{μ} in $H_0^1(\Omega)$.

Received by the editors March 8, 2007.

AMS subject classification: 35B25, 35B33, 35J50, 35J60.

Keywords: critical Sobolev exponent, Palais-Smale condition, Linking theorem, Hardy potential.

• If $\overline{\mu} - 1 < \mu < \overline{\mu}$, then problem $(P_{\lambda,\mu})$ has at least one positive solution for $\lambda_*(\mu) < \lambda < \mu_1$, where

$$\lambda_*(\mu) = \min_{\varphi \in H^1_0(\Omega) \setminus \{0\}} \frac{\int_\Omega \frac{|\nabla \varphi(x)|^2}{|x|^{2\sigma}} \, dx}{\int_\Omega \frac{\varphi^2(x)}{|x|^{2\sigma}} \, dx},$$

with $\sigma = \sqrt{\mu} + \sqrt{\mu - \mu}$.

- If $\overline{\mu} 1 < \mu < \overline{\mu}$ and $\Omega = B(0, R)$ (*i.e.*, the ball centred at 0 with radius *R*), then problem $(P_{\lambda,\mu})$ has no nontrivial solution for $\lambda \leq \lambda_*(\mu)$.
- If λ ≤ 0 and Ω is a smooth starshaped domain, then by a Pohozaev type identity problem (P_{λ,µ}) has no positive solution.

• The case $\lambda \ge \mu_1$ has been discussed in several papers; we quote [5–7,9].

Cappozi and Gazzola [5] proved the following results:

- If N = 4, $\lambda > 0$, and $\lambda \notin \sigma_0$, where σ_0 denotes the spectrum of $-\triangle$ with zero Dirichlet boundary problem, then problem $(P_{\lambda,0})$ has at least one nontrivial solution.
- If $N \ge 5$, then problem $(P_{\lambda,0})$ has at least one nontrivial solution for all $\lambda > 0$.

Ferrero and Gazzola [9] developed some technical asymptotic estimates in their proof for $\mu \ge 0$. Chen [7] gave a partial positive answer to an open problem proposed in [9] by using the linking theorem and delicate energy estimates. Recently Cao and Han [6] solved completely the open problem proposed in [9]; they proved that if $N \ge 5$ and $0 \le \mu < \overline{\mu} - (\frac{N+2}{N})^2$, then problem $(P_{\lambda,\mu})$ admits a nontrivial solution for all $\lambda > 0$. They established an asymptotic behavior of the eigenfunction, which is crucial in their proof.

In this work we deal with the case of elliptic systems, we refer to de Figueiredo (see [8]) for a general view about the theory of elliptic systems. The results of [4] have been also generalized to system ($S_{A,0}$) by Alves *et al.* [1].

Our system $(S_{A,\mu})$ can be written as follows:

$$\begin{cases} -\overrightarrow{\Delta}U - \mu \frac{U}{|x|^2} = AU + \nabla H & \text{in } \Omega\\ U = 0 & \text{on } \partial\Omega \end{cases}$$

where $\overrightarrow{\Delta} := \begin{pmatrix} \Delta \\ \Delta \end{pmatrix}$, $U = \begin{pmatrix} u \\ v \end{pmatrix}$, $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ and $H(u, v) = |u|^{\alpha+1} |v|^{\beta+1}$.

Borrowing ideas of Alves *et al.* [1] and Cao and Han [6], we prove some existence and nonexistence results for $(S_{A,\mu})$ with $\mu > 0$. By establishing a Pohozaev type identity adapted for systems, we give a nonexistence result. We distinguish three main cases, depending on the position of the eigenvalues of the matrix *A* for the existence results.

The paper is organized as follows. In Section 2 we recall some preliminaries and main results, Section 3 contains the case where the eigenvalues of the matrix *A* are negative. Section 4 is devoted to the case where the eigenvalues of the matrix *A* are between 0 and μ_1 . In Section 5, we consider the case where the eigenvalues belong to $[\mu_1, +\infty[$.

Preliminaries and Main Results 2

Notations We make use of the following notation:

- $L^p(\Omega), 1 \leq p \leq \infty$, denote Lebesgue spaces, the norm L^p is denoted by $|\cdot|_p$ for $1 \leq p \leq \infty$.
- $E: = H_0^1(\Omega) \times H_0^1(\Omega)$ endowed with the norm $||(u, v)||_{\mu} = (||u||_{\mu}^2 + ||v||_{\mu}^2)^{\frac{1}{2}}$, where

$$||u||_{\mu} = (\int_{\Omega} |\nabla u|^2 - \mu \frac{u^2}{|x|^2} dx)^{\frac{1}{2}};$$

this norm is equivalent to the standard norm in *E* by Hardy's inequality.

- E' is the dual of E.
- $2^* := \frac{2N}{N-2}$ is the critical Sobolev exponent.
- B_R is the ball centered at 0 with radius R.
- supp φ denotes the support of the function φ .
- $\langle \cdot \rangle$ denotes the usual inner product in \mathbb{R}^N .
- $\circ(1)$ denotes $\circ_n(1) \to 0$ as $n \to +\infty$.

• C_1, C_2, C_3, \ldots denote (possibly different) positive constants. Let $\mathcal{M} = \{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} : a > 0, c > 0, b^2 < ac \}$. If $A \in \mathcal{M}$, then there exist two eigenvalues λ_1, λ_2 such that $0 < \lambda_1 \leq \lambda_2$.

We have

(2.1)
$$\lambda_1(|u|^2 + |v|^2) \le \langle AU, U \rangle \le \lambda_2(|u|^2 + |v|^2) \quad \text{for all } (u, v) \in \mathbb{R}^2.$$

As a consequence of the Hardy inequality, the operator L_{μ} with zero Dirichlet boundary condition is positive and has a discrete spectrum σ_{μ} in $H_0^1(\Omega)$ if $0 \le \mu < \overline{\mu}$. The smallest eigenvalue μ_1 is simple and $\mu_i \to +\infty$ as $i \to +\infty$.

Moreover, each L^2 normalized eigenfunction e_i corresponding to $\mu_i \in \sigma_\mu$ belongs to the space $H_0^1(\Omega)$ and is not in $L^{\infty}(\Omega)$, however for the case when $\mu = 0, e_i \in$ $L^{\infty}(\Omega).$

Lemma 2.1 Let Ω be a domain (not necessarily bounded), $0 \le \mu < \overline{\mu}$ and $\alpha + \beta \le$ $\frac{4}{N-2}$. We define

(2.2)
$$S_{\mu} = S_{\mu}(\Omega) := \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} (|\nabla u|^2 - \mu \frac{u^2}{|x|^2}) \, dx}{(\int_{\Omega} |u|^{\alpha + \beta + 2} \, dx)^{\frac{2}{\alpha + \beta + 2}}}$$

and

(2.3)
$$S_{\mu,\alpha,\beta} = S_{\mu,\alpha,\beta}(\Omega) := \inf_{(u,v)\in E\setminus\{(0,0)\}} \frac{\int_{\Omega} (|\nabla u|^2 + |\nabla v|^2 - \mu \frac{u^2 + v^2}{|x|^2}) \, dx}{(\int_{\Omega} |u|^{\alpha+1} |v|^{\beta+1} \, dx)^{\frac{2}{\alpha+\beta+2}}}$$

Then we have

$$S_{\mu,\alpha,\beta} = \left[\left(\frac{\alpha+1}{\beta+1} \right)^{\frac{\beta+1}{\alpha+\beta+2}} + \left(\frac{\alpha+1}{\beta+1} \right)^{\frac{-\alpha-1}{\alpha+\beta+2}} \right] S_{\mu}$$

Moreover, if ω_0 realizes S_{μ} , then $(u_0, v_0) = (B\omega_0, C\omega_0)$ realizes $S_{\mu,\alpha,\beta}$ for any positive constants B and C such that $\frac{B}{C} = (\frac{\alpha+1}{\beta+1})^{\frac{1}{2}}$.

Proof The proof of the lemma is essentially given in [1] with minor modifications.

As in [11] we consider the family of functions

$$\omega_{\varepsilon}^{*}(x) = \frac{C_{\varepsilon}^{\frac{N-2}{4}}}{(\varepsilon^{2}|x|^{\frac{\sigma'}{\sqrt{\mu}}} + |x|^{\frac{\sigma}{\sqrt{\mu}}})\sqrt{\mu}} \quad \text{for } \varepsilon > 0$$

where $C_{\varepsilon} = 4\varepsilon^2 N(\overline{\mu} - \mu)/(N - 2)$, $\sigma = \sqrt{\overline{\mu}} + \sqrt{\overline{\mu} - \mu}$ and $\sigma' = \sqrt{\overline{\mu}} - \sqrt{\overline{\mu} - \mu}$. For $\varepsilon > 0$, the function ω_{ε}^* solves the equation

$$-\triangle u - \mu \frac{u}{|x|^2} = u|u|^{\frac{4}{N-2}} \quad \text{in} \quad \mathbb{R}^N \setminus \{0\}$$

From Lemma 2.1 we conclude that the problem

$$\begin{cases} -\Delta u - \mu \frac{u}{|\mathbf{x}|^2} = (\alpha + 1)u|u|^{\alpha - 1}|v|^{\beta + 1} & \text{in } \mathbb{R}^N \setminus \{0\}, \\ -\Delta v - \mu \frac{v}{|\mathbf{x}|^2} = (\beta + 1)|u|^{\alpha + 1}v|v|^{\beta - 1} & \text{in } \mathbb{R}^N \setminus \{0\}, \\ u(x) = v(x) = 0 & \text{as } |x| \to \infty \end{cases}$$

has a solution in the form $(B\omega_{\varepsilon}^*, C\omega_{\varepsilon}^*)$, where B and C are positive constants satisfying

$$\frac{B}{C} = \left(\frac{\alpha+1}{\beta+1}\right)^{\frac{1}{2}}.$$

Let $0 \le \phi(x) \le 1$ be a function in $C_0^{\infty}(\Omega)$ defined as

$$\phi(x) = egin{cases} 1 & ext{if } |x| \leq R, \ 0 & ext{if } |x| \geq 2R, \end{cases}$$

where $B_{2R} \subset \Omega$.

Taking

$$\widetilde{\omega}_{arepsilon} = rac{\omega_arepsilon}{\|\omega_arepsilon\|_{2^*}} \quad ext{with } \omega_arepsilon = \phi(x) \omega_arepsilon^*$$

Let us introduce the corresponding functional energy of system $(S_{A,\mu})$

$$J_{\mu}(u,v) = \frac{1}{2} \|(u,v)\|_{\mu}^{2} - \frac{1}{2} \int_{\Omega} \langle AU, U \rangle \, dx - \int_{\Omega} |u|^{\alpha+1} |v|^{\beta+1} \, dx.$$

It is well known that a weak solution $(u, v) \in E$ (in our case $u \neq 0$ and $v \neq 0$) of $(S_{A,\mu})$ is precisely a critical point of J_{μ} . That is,

$$\int_{\Omega} \left(\nabla u \nabla \varphi + \nabla v \nabla \psi - \frac{\mu}{|x|^2} (u\varphi + v\psi) - (au\varphi + bv\varphi + bu\psi + cv\psi) \right) dx$$
$$- \int_{\Omega} \left((\alpha + 1)u|u|^{\alpha - 1}|v|^{\beta + 1}\varphi + (\beta + 1)|u|^{\alpha + 1}v|v|^{\beta - 1}\psi \right) dx = 0$$

for all $(\varphi, \psi) \in E$.

Systems with critical Sobolev exponent and Hardy potential

Definition 2.2 Let $c \in \mathbb{R}$, *E* be a Banach space and $I \in C^1(E, \mathbb{R})$,

- (i) (u_n, v_n) is a (PS)_c sequence in *E* for *I* at level *c* if $I(u_n, v_n) \to c$ and $I'(u_n, v_n) \to 0$ strongly in *E'* as $n \to +\infty$.
- (ii) We say that *I* satisfies the (PS)_c condition if any (PS)_c sequence in *E* for *I* has a convergent subsequence.

In this paper we obtain the following results.

Theorem 2.3 Let $A \in M_{2\times 2}$ symmetric matrix such that $\lambda_1 \leq \lambda_2 \leq 0$ and $\alpha + \beta = \frac{4}{N-2}$. If Ω is a smooth starshaped domain with respect to the origin then system $(S_{A,\mu})$ has no nontrivial solution.

Theorem 2.4 Suppose $\alpha + \beta = \frac{4}{N-2}$ and $A \in \mathcal{M}$. If $0 \le \mu \le \overline{\mu} - 1$, then system $(S_{A,\mu})$ has a solution for all $\lambda_2 < \mu_1$. If $\overline{\mu} - 1 < \mu < \overline{\mu}$, then system $(S_{A,\mu})$ has a solution for all $\mu^* < \lambda_1 \le \lambda_2 < \mu_1$ where

$$\mu^* = \min_{\varphi \in H^1_0(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \frac{|\nabla \varphi(x)|^2}{|x|^{2\sigma}} dx}{\int_{\Omega} \frac{\varphi^2(x)}{|x|^{2\sigma}} dx}$$

and $\sigma = \sqrt{\mu} + \sqrt{\mu} - \mu$.

Corollary 2.5 Suppose $0 \le \mu < \overline{\mu}$, $\alpha + \beta < \frac{4}{N-2}$, and $A \in \mathcal{M}$. Then system $(S_{A,\mu})$ has a solution for all $\lambda_2 < \mu_1$.

Theorem 2.6 Suppose $N \ge 5$, $\alpha + \beta = \frac{4}{N-2}$, $0 \le \mu < \overline{\mu} - (\frac{N+2}{N})^2$, and $A \in \mathcal{M}$. Assume one of the following conditions holds:

- There exists $k \in \mathbb{N}^*$ such that $\mu_k \leq \lambda_1 \leq \lambda_2 < \mu_{k+1}$.
- There exist $k, k' \in \mathbb{N}^*$, $k \neq k'$ such that

$$\mu_k \le a - |b| \le \lambda_1 \le a + |b| < \mu_{k+1} \le \mu_{k'} \le c - |b| \le \lambda_2 \le c + |b| < \mu_{k'+1}.$$

Then system $(S_{A,\mu})$ *has at least one solution.*

3 Eigenvalues of *A* are Nonpositive

In this section, we give an nonexistence result which is based on a Pohozaev type identity adapted for systems.

Proof of Theorem 2.3 We will use a Pohozaev type identity. The idea consists of multiplying each equation by $\langle x, \nabla u \rangle$ and $\langle x, \nabla v \rangle$, respectively, and integrating by parts. We obtain

$$(3.1) \quad \int_{\partial\Omega} (|\nabla u|^2 + |\nabla v|^2) \langle x, \nu \rangle \, d\sigma + \left(\frac{N-2}{2}\right) \int_{\Omega} (|\nabla u|^2 + |\nabla v|^2) \, dx$$
$$= \mu \left(\frac{N-2}{2}\right) \int_{\Omega} \frac{u^2 + v^2}{|x|^2} \, dx + \frac{N}{2} \int_{\Omega} \langle AU, U \rangle \, dx + N \int_{\Omega} |u|^{\alpha+1} |v|^{\beta+1} \, dx.$$

where ν is the outwards normal to $\partial\Omega$. On the other hand, multiplying each equation by u, v respectively and integrating over Ω we obtain

$$(3.2) \quad \int_{\Omega} \left(|\nabla u|^2 - \frac{\mu}{|x|^2} u^2 \right) dx = \int_{\Omega} \left(a|u|^2 + bvu + (\alpha + 1)|u|^{\alpha + 1} |v|^{\beta + 1} \right) dx$$
$$(3.3) \quad \int_{\Omega} \left(|\nabla v|^2 - \frac{\mu}{|x|^2} v^2 \right) dx = \int_{\Omega} \left(buv + c|v|^2 + (\beta + 1)|u|^{\alpha + 1} |v|^{\beta + 1} \right) dx.$$

Replacing (3.2) and (3.3) in (3.1), we obtain

$$\int_{\partial\Omega} (|\nabla u|^2 + |\nabla v|^2) \langle x, \nu \rangle \, d\sigma = \int_{\Omega} \langle AU, U \rangle \, dx.$$

Using (2.1) with $\lambda_2 \leq 0$, we get

$$\int_{\partial\Omega} (|\nabla u|^2 + |\nabla v|^2) \langle x, \nu \rangle \, d\sigma \le 0,$$

which is in contradiction with the fact that Ω is starshaped, *i.e.*, $\langle x, \nu \rangle > 0$ a.e. on $\partial \Omega$.

4 Eigenvalues of *A* Belong to $[0, \mu_1[$

For proving Theorem 2.4, we need some auxiliary results.

- **Lemma 4.1** Let $0 < \lambda_1 \le \lambda_2 < \mu_1$, $0 \le \mu < \overline{\mu}$, and $\alpha + \beta \le \frac{4}{N-2}$. (i) There exist $\rho > 0$ and R > 0 such that $J_{\mu}(u, v) \ge \rho$ for all $(u, v) \in E$ with $\|(u, v)\|_{\mu} = R$.
- (ii) There exists $(u_0, v_0) \in E$ with $||(u_0, v_0)||_{\mu} > R$ such that $J_{\mu}(u_0, v_0) \leq 0$.

Proof From (2.1) and (2.3) we get

$$J_{\mu}(u,v) \geq \frac{1}{2} \left(1 - \frac{\lambda_2}{\mu_1} \right) \, \|(u,v)\|_{\mu}^2 - C \, \|(u,v)\|_{\mu}^{\alpha+\beta+2} \geq \rho$$

for $||(u, v)||_{\mu} = R$ small enough. We have

$$J_{\mu}(tu, tv) = \frac{t^2}{2} \|(u, v)\|_{\mu}^2 - \frac{t^2}{2} \int_{\Omega} \langle AU, U \rangle \, dx - t^{\alpha + \beta + 2} \int_{\Omega} |u|^{\alpha + 1} \, |v|^{\beta + 1} \, dx \to +\infty$$

as $t \to +\infty$, thus there exists (u_0, v_0) with $||(u_0, v_0)|| > R$ such that $J_{\mu}(u_0, v_0) \leq 0$.

Let

$$c:=\inf_{g\in\Gamma}(\max_{t\in[0,1]}J_{\mu}[g(t)]),$$

where

$$\Gamma := \left\{ g \in \mathcal{C}([0,1], E) : g(0) = (0,0), \ g(1) = (u_0, v_0) \right\}$$

Now we will prove that J_{μ} satisfies (PS)_c below some critical threshold.

Systems with critical Sobolev exponent and Hardy potential

Lemma 4.2 If
$$c < \frac{2}{N-2} (\frac{1}{2^*} S_{\mu,\alpha,\beta})^{\frac{N}{2}}$$
, then J_{μ} satisfies (PS)_c.

Proof Let (u_n, v_n) be a (PS)_c sequence in *E*. We obtain, for large *n*,

$$(4.1) \ 2J_{\mu}(u_n,v_n) - \left\langle J'_{\mu}(u_n,v_n), (u_n,v_n) \right\rangle = (\alpha+\beta) \int_{\Omega} |u_n|^{\alpha+1} |v_n|^{\beta+1} \, dx \le 2c + o(1).$$

On the other hand, there exists $C_{\lambda} := C(N, \alpha, \beta, \lambda) > 0$ such that

(4.2)
$$|u|^{\alpha+1} |v|^{\beta+1} - \lambda(|u|^2 + |v|^2) \ge -C_{\lambda}$$

for all $(u, v) \in \mathbb{R} \times \mathbb{R} \setminus \{\mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R}\}\)$, where λ is a positive constant. Indeed, consider the function

$$H_{\lambda}(u,v) = |u|^{\alpha+1} |v|^{\beta+1} - \lambda(|u|^2 + |v|^2).$$

Then (u, v) is an extremum point of H_{λ} if

(4.3)
$$(\alpha + 1)u|u|^{\alpha - 1}|v|^{\beta + 1} - 2\lambda u = 0$$

and

(4.4)
$$(\beta+1)|u|^{\alpha+1} v|v|^{\beta-1} - 2\lambda v = 0.$$

Multiplying (4.3) and (4.4) by $(\beta+1)u$ and $(\alpha+1)v$ respectively and subtracting them, we get

$$\left|\frac{u}{\nu}\right| = \left(\frac{\alpha+1}{\beta+1}\right)^{1/2} \quad i.e., |\nu| = k|u| \text{ with } k := \left(\frac{\alpha+1}{\beta+1}\right)^{-1/2}.$$

Put

$$g(u) := H_{\lambda}(|u|, k|u|) = k^{\beta+1} |u|^{2^*} - \lambda(1+k^2)|u|^2,$$

g(u) attains its minimum at

$$u_0 = \left(\frac{2\lambda(1+k^2)}{2^*k^{\beta+1}}\right)^{\frac{1}{\alpha+\beta}}, \quad \text{with} \quad g(u_0) = -C_\lambda := -\frac{1}{N} \frac{\left(2\lambda(1+k^2)\right)^{\frac{2^*}{\alpha+\beta}}}{(2^*k^{\beta+1})^{\frac{2}{\alpha+\beta}}}.$$

Thus, we have $H_{\lambda}(u, v) \ge -C_{\lambda}$ for all $(u, v) \in \mathbb{R} \times \mathbb{R} \setminus \{\mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R}\}$. Finally, (4.1), and (4.2), with $\lambda := \lambda_2$, yield

$$\begin{split} \|(u_n, v_n)\|_{\mu}^2 &= 2J_{\mu}(u_n, v_n) + \int_{\Omega} \langle AU_n, U_n \rangle \, dx + 2 \int_{\Omega} |u_n|^{\alpha + 1} \, |v_n|^{\beta + 1} \, dx \\ &\leq 2J_{\mu}(u_n, v_n) + \lambda_2 \int_{\Omega} (|u_n|^2 + |v_n|^2) \, dx + 2 \int_{\Omega} |u_n|^{\alpha + 1} \, |v_n|^{\beta + 1} \, dx \\ &\leq C \big(1 + \|(u_n, v_n)\|_{\mu} \big) \,; \end{split}$$

consequently (u_n, v_n) is bounded in *E*.

Thus there exists a subsequence, again denoted by (u_n, v_n) , such that

(4.5)

$$(u_n, v_n) \to (u, v) \text{ weakly in } E,$$

$$\left(\frac{u_n}{x}, \frac{v_n}{x}\right) \to \left(\frac{u}{x}, \frac{v}{x}\right) \text{ weakly in } [L^2(\Omega)]^2,$$

$$(u_n, v_n) \to (u, v) \text{ strongly in } L^r \times L^s \text{ for all } 1 \le r, s < 2^*,$$

$$(u_n, v_n) \to (u, v) \text{ a.e. on } \Omega,$$

it follows that (u, v) is a weak solution of system $(S_{A,\mu})$, *i.e.*,

(4.6)
$$\langle I'_{\mu}(u,v),(\varphi,\psi)\rangle = 0 \text{ for all } (\varphi,\psi) \in E.$$

We put $\varphi_n = u_n - u$ and $\psi_n = v_n - v$. From the Brézis–Lieb Lemma [3], we obtain the following relations

(4.7)
$$|\nabla u_n|_2^2 = |\nabla u|_2^2 + |\nabla \varphi_n|_2^2 + o(1),$$

(4.8)
$$\left|\frac{u_n}{x}\right|_2^2 = \left|\frac{u}{x}\right|_2^2 + \left|\frac{\varphi_n}{x}\right|_2^2 + o(1),$$

(4.9)
$$|\nabla v_n|_2^2 = |\nabla v|_2^2 + |\nabla \psi_n|_2^2 + o(1),$$

(4.10)
$$\left|\frac{\nu_n}{x}\right|_2^2 = \left|\frac{\nu}{x}\right|_2^2 + \left|\frac{\psi_n}{x}\right|_2^2 + o(1)$$

and

(4.11)
$$\int_{\Omega} |u_n|^{\alpha+1} |v_n|^{\beta+1} dx = \int_{\Omega} |u|^{\alpha+1} |v|^{\beta+1} dx + \int_{\Omega} |\varphi_n|^{\alpha+1} |\psi_n|^{\beta+1} dx + o(1).$$

Using (4.5) to (4.11) we get

(4.12)
$$J_{\mu}(u,v) + \frac{1}{2} \|(\varphi_n,\psi_n)\|_{\mu}^2 - \int_{\Omega} |\varphi_n|^{\alpha+1} |\psi_n|^{\beta+1} dx = c + o(1)$$

and

$$\|(u,v)\|_{\mu}^{2} + \|(\varphi_{n},\psi_{n})\|_{\mu}^{2} = \int_{\Omega} \langle AU,U\rangle \, dx$$
$$+ 2^{*} \int_{\Omega} (|u|^{\alpha+1} \, |v|^{\beta+1} + |\varphi_{n}|^{\alpha+1} \, |\psi_{n}|^{\beta+1}) \, dx + o(1).$$

Since $\langle J'(u,v), (u,v) \rangle = 0$,

$$\|(\varphi_n,\psi_n)\|_{\mu}^2 = 2^* \int_{\Omega} |\varphi_n|^{\alpha+1} |\psi_n|^{\beta+1} dx + o(1).$$

Therefore, along a subsequence we may assume that, as $n \to +\infty$,

$$\|(\varphi_n,\psi_n)\|_{\mu}^2 \to k \text{ and } 2^* \int_{\Omega} |\varphi_n|^{\alpha+1} |\psi_n|^{\beta+1} dx \to k.$$

By (2.3) we get

$$\|(\varphi_n,\psi_n)\|_{\mu}^2 \geq S_{\mu,\alpha,\beta} \Big(\int_{\Omega} |\varphi_n|^{\alpha+1} |\psi_n|^{\beta+1} dx\Big)^{2/2^*}.$$

At the limit we have $k \geq S_{\mu,\alpha,\beta}(\frac{k}{2^*})^{\frac{2}{2^*}}$. It follows that either k = 0 or $k \geq 2^*(\frac{S_{\mu,\alpha,\beta}}{2^*})^{\frac{N}{2}}$. The case k = 0 is trivial. If k > 0, then $k \geq 2^*(S_{\mu,\alpha,\beta}/2^*)^{N/2}$. Passing to the limit in (4.12), we obtain

$$J_{\mu}(u,v)+rac{k}{N}=c<rac{2}{N-2}\Big(rac{1}{2^*}S_{\mu,lpha,eta}\Big)^{N/2}.$$

From this, we conclude that $J_{\mu}(u, v) < 0$ for all $(u, v) \in E$.

Taking $(\phi, \psi) = (u, v)$ in (4.6) we have

$$J_{\mu}(u,v) = \left(\frac{2^{*}}{2} - 1\right) \int_{\Omega} |u|^{\alpha+1} |v|^{\beta+1} dx \ge 0;$$

thus we get a contradiction. Hence (u_n, v_n) converges strongly to (u, v) in *E*.

Remark Lemma 4.2 is true for $\lambda_2 \ge \mu_1$.

Lemma 4.3 Suppose that $0 \le \mu < \overline{\mu}$ and $0 < \lambda_1 \le \lambda_2 < \mu_1$ then we have

$$\sup_{t\geq 0} J_{\mu}(tB\widetilde{\omega}_{\varepsilon}, tC\widetilde{\omega}_{\varepsilon}) < \frac{2}{N-2} \left(\frac{1}{2^*}S_{\mu,\alpha,\beta}\right)^{N/2} \quad for \, \varepsilon > 0 \, small.$$

Proof Let B, C > 0 such that $\frac{B}{C} = (\frac{\alpha+1}{\beta+1})^{\frac{1}{2}}$. We have

$$J_{\mu}(tB\widetilde{\omega}_{\varepsilon}, tC\widetilde{\omega}_{\varepsilon}) \leq t^{2} \left(\frac{B^{2}+C^{2}}{2}\right) Q_{\lambda_{1}}(\widetilde{\omega}_{\varepsilon}) - t^{2^{*}} B^{\alpha+1} C^{\beta+1} := g(t),$$

where $Q_{\lambda_1}(\widetilde{\omega}_{\varepsilon}) := \|\widetilde{\omega}_{\varepsilon}\|_{\mu}^2 - \lambda_1 |\widetilde{\omega}_{\varepsilon}|_2^2$. Observe that the function g attains its maximum at $(t_0, g(t_0))$, where

$$t_0 = \left(\frac{B^2 + C^2}{2^* B^{\alpha+1} C^{\beta+1}} Q_{\lambda_1}(\widetilde{\omega}_{\varepsilon})\right)^{\frac{1}{\alpha+\beta}}$$

and

$$g(t_0) = \frac{2}{N-2} \left(\frac{B^2 + C^2}{2^* B^{\alpha+1} C^{\beta+1}} Q_{\lambda_1}(\widetilde{\omega}_{\varepsilon}) \right)^{\frac{N}{2}}.$$

Thanks to Jannelli [11] we have

$$\begin{aligned} Q_{\lambda_1}(\widetilde{\omega}_{\varepsilon}) < S_{\mu} & \text{if } \mu \leq \overline{\mu} - 1, \quad \text{for all } 0 < \lambda_1 \leq \lambda_2 < \mu_1, \\ Q_{\lambda_1}(\widetilde{\omega}_{\varepsilon}) < S_{\mu} & \text{if } \overline{\mu} - 1 < \mu < \overline{\mu}, \quad \text{for all } \mu^* < \lambda_1 \leq \lambda_2 < \mu_1, \end{aligned}$$

with ε sufficiently small.

By Lemma 2.1 we deduce that

$$\sup_{t\geq 0} J_{\mu}(tB\widetilde{\omega}_{\varepsilon}, tC\widetilde{\omega}_{\varepsilon}) < \frac{2}{N-2} \Big(\frac{1}{2^*} S_{\mu,\alpha,\beta}(\Omega)\Big)^{\frac{N}{2}} \quad \text{for } \varepsilon > 0 \text{ small}.$$

Proof of Theorem 2.4 From Lemmas 4.1, 4.2, and 4.3, J_{μ} satisfies the conditions of the mountain pass theorem [2]. Then there exists $(u, v) \in E$ such that $J'_{\mu}(u, v) = 0$ and $J_{\mu}(u, v) = c > 0$.

5 Eigenvalues of *A* Are Higher Than or Equal to μ_1

In this section, we consider two subcases:

- (a) There exists $k \in \mathbb{N}^*$ such that $\mu_k \leq \lambda_1 \leq \lambda_2 < \mu_{k+1}$.
- (b) There exist $k, k' \in \mathbb{N}^*, k \neq k'$ such that $\mu_k \leq \lambda_1 < \mu_{k+1} \leq \mu_{k'} \leq \lambda_2 < \mu_{k'+1}$.

Consider the technique introduced by Ferrero and Gazzola in [9]. Fix $k \in \mathbb{N}^*$, and for each $i \in \mathbb{N}^*$ denote by e_i an L^2 normalized eigenfunction relative to $\mu_i \in \sigma_{\mu}$. Let X_k denote the space spanned by the eigenfunctions corresponding to the eigenvalues $\mu_1, \mu_2, \ldots, \mu_k$, $Y_k = (X_k)^{\perp}$ and let $P_k: H_0^1(\Omega) \to X_k$ denote the orthogonal projection.

Always take $m \in \mathbb{N}$ large enough so that $B_{1/m} \subset \Omega$, and consider the function $\zeta_m \colon \Omega \to \mathbb{R}$ defined by

$$\zeta_m(x) = \begin{cases} 0 & \text{if } x \in B_{\frac{1}{m}}, \\ m|x| - 1 & \text{if } x \in B_{\frac{2}{m}} \backslash B_{\frac{1}{m}}, \\ 1 & \text{if } x \in \Omega \backslash B_{\frac{2}{m}}, \end{cases}$$

the approximate eigenfunctions $e_i^m := e_i \zeta_m$, and the space $X_k^m := \operatorname{span}\{e_i^m : i = 1, \ldots, k\}$. For all $\varepsilon > 0$, consider the shifted functions

$$\omega_{\varepsilon}^{m}(x) = egin{cases} \omega_{\varepsilon}^{*}(x) - \omega_{\varepsilon}^{*}\left(rac{1}{m}
ight) & ext{if } x \in B_{rac{1}{m}} igackslash \{0\} \ 0 & ext{if } x \in \Omega ig B_{rac{1}{m}}. \end{cases}$$

We shall need the following lemma.

Lemma 5.1 [6]

- (i) $||e_i^m e_i||_{\mu} \to 0 \text{ as } m \to \infty.$
- (ii) $\max_{\{u \in X_k^m, |u|_2=1\}} \|u\|_{\mu}^2 \le \mu_k + C_1 m^{-2\sqrt{\mu-\mu}}.$

From [9] with $\varepsilon = m^{-(\frac{N+2}{N-2})\sqrt{\mu-\mu}}$, we obtain the estimates

(5.1)
$$\begin{aligned} \|\omega_{\varepsilon}^{m}\|_{\mu}^{2} &\leq S_{\mu}^{\frac{N}{2}} + C_{1}m^{-N\sqrt{\mu-\mu}}, \\ |\omega_{\varepsilon}^{m}|_{2^{*}}^{2^{*}} &\geq S_{\mu}^{\frac{N}{2}} - C_{2}m^{-\frac{2N}{N-2}\sqrt{\mu-\mu}}, \\ |\omega_{\varepsilon}^{m}|_{2}^{2} &\geq C_{3}m^{-(N+2)}. \end{aligned}$$

5.1 Eigenvalues of *A* belong to $[\mu_k, \mu_{k+1}]$ with $k \in \mathbb{N}^*$

Now we verify that the functional J_{μ} has linking geometry conditions.

Proposition 5.2 Assume that $\lambda_1, \lambda_2 \in [\mu_k, \mu_{k+1}]$ for some $k \in \mathbb{N}^*$. (i) There exist $\rho, \delta > 0$ such that $J_{\mu}(u, v) \ge \delta$ for all $(u, v) \in (\partial B_{\rho} \cap Y_k)^2$. (ii) There exists $R > \rho$ such that $J_{\mu}|_{\partial Q_{\mu}^m} \le p(m)$ with $p(m) \to 0$ as $m \to +\infty$, where

$$Q_{\varepsilon}^{m} = \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus \{ \operatorname{Br} \omega_{\varepsilon}^{m} / 0 \leq r < R \} \right) \times \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus \{ \operatorname{Cr} \omega_{\varepsilon}^{m} / 0 \leq r < R \} \right).$$

Proof For any $(u, v) \in (Y_k)^2$, we have

(5.2)
$$\|(u,v)\|_{\mu}^{2} \ge \mu_{k+1} \int_{\Omega} (|u|^{2} + |v|^{2}) dx.$$

Using (5.2) and (2.3), we get

$$J_{\mu}(u,v) \geq \frac{1}{2} \left(1 - \frac{\lambda_2}{\mu_{k+1}} \right) \| (u,v) \|_{\mu}^2 - C_1 \| (u,v) \|_{\mu}^{2^*}.$$

Thus we can choose $\rho = ||(u, v)||_{\mu}$ sufficiently small enough and $\delta > 0$ such that $J_{\mu}|_{(\partial B_{\rho} \cap Y_k)^2} \ge \delta$. For $(u, v) \in (X_k^m)^2$, we have

$$J_{\mu}(u,v) \leq \frac{1}{2} \|(u,v)\|_{\mu}^{2} - \frac{\lambda_{1}}{2} \int_{\Omega} (|u|^{2} + |v|^{2}) \, dx - \int_{\Omega} |u|^{\alpha+1} \, |v|^{\beta+1} \, dx.$$

From (4.2) and Lemma 5.1, we obtain

$$J_{\mu}(u,v) \leq \frac{1}{2}(\mu_{k} - \lambda_{1} + C_{2}m^{-2\sqrt{\mu}-\mu})\int_{\Omega}(|u|^{2} + |v|^{2}) dx - \int_{\Omega}|u|^{\alpha+1} |v|^{\beta+1} dx$$

$$\leq -H_{\lambda}(u,v) \quad \text{with } \lambda := C_{2}m^{-2\sqrt{\mu}-\mu}.$$

Then

$$J_{\mu}(u,v) \le C_3 m^{-N\sqrt{\mu}-\mu} \quad \text{where } C_3 := \frac{1}{N} \frac{\left(2C_2(1+k^2)\right)^{\frac{2^*}{\alpha+\beta}}}{\left(2^*k^{\beta+1}\right)^{\frac{2}{\alpha+\beta}}}.$$

Consequently, we have

$$\lim_{m\to\infty}\max_{(u,v)\in (X_k^m)^2}J_{\mu}(u,v)=0.$$

On the other hand, we have

$$J_{\mu}(\operatorname{Br} \omega_{\varepsilon}^{m}, \operatorname{Cr} \omega_{\varepsilon}^{m}) \leq r^{2} \left(\frac{B^{2}+C^{2}}{2}\right) \|\omega_{\varepsilon}^{m}\|_{\mu}^{2} - r^{2^{*}} B^{\alpha+1} C^{\beta+1} |\omega_{\varepsilon}^{m}|_{2^{*}}^{2^{*}},$$

so $J_{\mu}(\operatorname{Br} \omega_{\varepsilon}^{m}, \operatorname{Cr} \omega_{\varepsilon}^{m})$ becomes negative if r = R with R large enough. Therefore,

$$J_{\mu}(u,v) \leq C_{3}m^{-N\sqrt{\mu}-\mu}$$

for all $(u,v) \in \left(X_{k}^{m} \cup (X_{k}^{m} \oplus R\{B\omega_{\varepsilon}^{m}\})\right) \times \left(X_{k}^{m} \cup (X_{k}^{m} \oplus R\{C\omega_{\varepsilon}^{m}\})\right).$

Since

$$\max_{0 \le r \le R} J_{\mu}(\operatorname{Br} \omega_{\varepsilon}^{m}, \operatorname{Cr} \omega_{\varepsilon}^{m}) < +\infty$$

for $(u, v) \in \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus R\{B\omega_{\varepsilon}^{m}\} \right) \times \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus R\{C\omega_{\varepsilon}^{m}\} \right),$

as $(u, v) \in (X_k^m \oplus \mathbb{R}^+ \{ B\omega_{\varepsilon}^m \}) \times (X_k^m \oplus \mathbb{R}^+ \{ C\omega_{\varepsilon}^m \})$, we may write $u = w_1 + tB\omega_{\varepsilon}^m$ and $v = w_2 + tC\omega_{\varepsilon}^m$. Hence meas $(\operatorname{supp}(\omega_{\varepsilon}^m) \cap \operatorname{supp}(w_i)) = 0$. Then $J_{\mu} \mid_{\partial Q_{\varepsilon}^m} \leq 0$ for R large enough with

$$Q_{\varepsilon}^{m} = \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus \{ \operatorname{Br} \omega_{\varepsilon}^{m} / 0 \leq r < R \} \right) \times \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus \{ \operatorname{Cr} \omega_{\varepsilon}^{m} / 0 \leq r < R \} \right). \blacksquare$$

5.2 Eigenvalues of *A* Belong to $[\mu_k, \mu_{k+1}] \times [\mu_{k'}, \mu_{k'+1}]$ with k < k', $k, k' \in \mathbb{N}^*$

Proposition 5.3 Suppose $A \in \mathcal{M}$ and

$$\mu_k \le a - |b| \le \lambda_1 \le a + |b| < \mu_{k+1} \le \mu_{k'} \le c - |b| \le \lambda_2 \le c + |b| < \mu_{k'+1}$$

for some $k, k' \in \mathbb{N}^*$.

(i) There exist $\rho, \delta > 0$ such that $J_{\mu}(u, v) \ge \delta$ for all $(u, v) \in (\partial B_{\rho} \cap Y_k) \times (\partial B_{\rho} \cap Y_{k'})$. (ii) There exists $R > \rho$ such that $J_{\mu} \mid_{\partial Q_{\mu}^{m}} \le p(m)$, with $p(m) \to 0$ as $m \to +\infty$ and

$$Q_{\varepsilon}^{m} = \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus \{ \operatorname{Br} \omega_{\varepsilon}^{m} / 0 \leq r < R \} \right) \times \left((\overline{B}_{R} \cap X_{k'}^{m}) \oplus \{ \operatorname{Cr} \omega_{\varepsilon}^{m} / 0 \leq r < R \} \right).$$

Proof For any $(u, v) \in Y_k \times Y_{k'}$, we have

(5.3)
$$||u||_{\mu}^{2} \ge \mu_{k+1} \int_{\Omega} |u|^{2} dx \text{ and } ||v||_{\mu}^{2} \ge \mu_{k'+1} \int_{\Omega} |v|^{2} dx.$$

Then (2.3), (5.3) and Young's inequality imply that

$$J_{\mu}(u,v) \geq \frac{1}{2} \left(1 - \frac{a+|b|}{\mu_{k+1}} \right) \|u\|_{\mu}^{2} - C_{1} \|u\|_{\mu}^{2^{*}} + \frac{1}{2} \left(1 - \frac{c+|b|}{\mu_{k'+1}} \right) \|v\|_{\mu}^{2} - C_{2} \|v\|_{\mu}^{2^{*}} \geq \delta$$

for $\rho = \|(u, v)\|_{\mu}$ sufficiently small.

For any $(u, v) \in X_k^m \times X_{k'}^m$, we obtain from (2.1), (4.2) and Lemma 5.1 that

$$\begin{aligned} J_{\mu}(u,v) &\leq \frac{1}{2} \int_{\Omega} \left[\left(\mu_{k} - (a - |b|) \right) |u|^{2} + \left(\mu_{k'} - (c - |b|) \right) |v|^{2} \\ &+ C_{3} m^{-2\sqrt{\mu} - \mu} (|u|^{2} + |v|^{2}) \right] dx - \int_{\Omega} |u|^{\alpha + 1} |v|^{\beta + 1} dx \\ &\leq -H_{\lambda}(u,v) \quad \text{with } \lambda := C_{3} m^{-2\sqrt{\mu} - \mu}, \end{aligned}$$

so $J_{\mu}(u, v) \leq C_4 m^{-N\sqrt{\mu-\mu}}$. Then $\underline{\lim}_{m\to\infty} \max_{(u,v)\in X_k^m\times X_{k'}^m} J_{\mu}(u,v) = 0$. With similar arguments as in Proposition 5.2, we get $J_{\mu}|_{\partial Q_{\varepsilon}^{m}} \leq 0$, where

$$Q_{\varepsilon}^{m} = \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus \{ \operatorname{Br} \omega_{\varepsilon}^{m} / 0 \le r < R \} \right) \times \left((\overline{B}_{R} \cap X_{k'}^{m}) \oplus \{ \operatorname{Cr} \omega_{\varepsilon}^{m} / 0 \le r < R \} \right).$$

Set $c_{\varepsilon} = \inf_{h \in \Gamma_{\varepsilon,m}} \max_{U \in Q_{\varepsilon}^m} J_{\mu}(h(U))$ with

$$\Gamma_{\varepsilon,m} = \{h \in C(Q_{\varepsilon}^m, E) / h(U) = U, \forall U \in Q_{\varepsilon}^m\}$$

and

$$\begin{aligned} Q_{\varepsilon}^{m} &= \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus \{ \operatorname{Br} \omega_{\varepsilon}^{m} / 0 \leq r < R \} \right) \\ &\times \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus \{ \operatorname{Cr} \omega_{\varepsilon}^{m} / 0 \leq r < R \} \right) \quad \text{if } \mu_{k} \leq \lambda_{1} \leq \lambda_{2} < \mu_{k+1} \end{aligned}$$

or

$$\begin{aligned} Q_{\varepsilon}^{m} &= \left((\overline{B}_{R} \cap X_{k}^{m}) \oplus \{ \operatorname{Br} \omega_{\varepsilon}^{m} / 0 \leq r < R \} \right) \times \left((\overline{B}_{R} \cap X_{k'}^{m}) \oplus \{ \operatorname{Cr} \omega_{\varepsilon}^{m} / 0 \leq r < R \} \right) \\ & \text{if } \mu_{k} \leq \lambda_{1} < \mu_{k+1} \leq \mu_{k'} \leq \lambda_{2} < \mu_{k'+1}. \end{aligned}$$

Lemma 5.4 Let $\mu \in \left[0, \overline{\mu} - (\frac{N+2}{N})^2\right)$ and $A \in \mathcal{M}$. Assume one of the following conditions holds:

(i) There exists $k \in \mathbb{N}^*$ such that $\mu_k \leq \lambda_1 \leq \lambda_2 < \mu_{k+1}$. (ii) There exist $k, k' \in \mathbb{N}^*$, $k \neq k'$ such that $\mu_k \leq a - |b| \leq \lambda_1 \leq a + |b| < \mu_{k+1} \leq \mu_{k'} \leq c - |b| \leq \lambda_2 \leq c + |b| < \mu_{k'+1}$.

Then

$$c_{\varepsilon} < \frac{2}{N-2} \left(\frac{S_{\mu,\alpha,\beta}}{2^*}\right)^{\frac{N}{2}}.$$

Proof Let

$$\max_{(u,v)\in Q_{\varepsilon}^{m}}J_{\mu}(u,v)=J_{\mu}(y_{m}+t_{\varepsilon}^{m}B\omega_{\varepsilon}^{m},z_{m}+t_{\varepsilon}^{m}C\omega_{\varepsilon}^{m})$$

where B, C > 0 such that $\frac{B}{C} = (\frac{\alpha+1}{\beta+1})^{\frac{1}{2}}$ and

$$(y_m, z_m) \in \begin{cases} (X_k^m)^2 & \text{if } \mu_k \le \lambda_1 \le \lambda_2 < \mu_{k+1}, \\ X_k^m \times X_{k'}^m & \text{if } \mu_k \le \lambda_1 < \mu_{k+1} \le \mu_{k'} \le \lambda_2 < \mu_{k'+1}. \end{cases}$$

M. Bouchekif and Y. Nasri

From Propositions 5.2 and 5.3 we have

$$J_{\mu}(y_m, z_m) \leq C_1 m^{-N\sqrt{\mu}-\mu}.$$

Since meas(supp(ω_{ε}^{m}) \cap supp(y_{m})) = 0 and meas(supp(ω_{ε}^{m}) \cap supp(z_{m})) = 0, we conclude that

$$c_{\varepsilon} \leq \max_{(u,v)\in Q_{\varepsilon}^{m}} J_{\mu}(u,v) = J_{\mu}(y_{m},z_{m}) + J_{\mu}(t_{\varepsilon}^{m}B\omega_{\varepsilon}^{m},t_{\varepsilon}^{m}C\omega_{\varepsilon}^{m})$$
$$\leq C_{1}m^{-N\sqrt{\mu-\mu}} + (t_{\varepsilon}^{m})^{2}\frac{(B^{2}+C^{2})}{2}(\|\omega_{\varepsilon}^{m}\|_{\mu}^{2} - \lambda_{1}|\omega_{\varepsilon}^{m}|_{2}^{2})$$
$$- B^{\alpha+1}C^{\beta+1}(t_{\varepsilon}^{m})^{2^{*}}|\omega_{\varepsilon}^{m}|_{2^{*}}^{2^{*}}.$$

Using (5.1), we obtain

$$c_{\varepsilon} \leq C_{1}m^{-N\sqrt{\mu-\mu}} + (t_{\varepsilon}^{m})^{2}\frac{(B^{2}+C^{2})}{2}(S_{\mu}^{\frac{N}{2}} + C_{2}m^{-N\sqrt{\mu-\mu}} - \lambda_{1}C_{3}m^{-(N+2)}) - B^{\alpha+1}C^{\beta+1}(t_{\varepsilon}^{m})^{2^{*}}(S_{\mu}^{\frac{N}{2}} - C_{4}m^{-\frac{2N}{N-2}\sqrt{\mu-\mu}}).$$

Put

$$h(t_{\varepsilon}^{m}) := \frac{(t_{\varepsilon}^{m})^{2}}{2} (B^{2} + C^{2}) (S_{\mu}^{\frac{N}{2}} + C_{2}m^{-N\sqrt{\mu-\mu}} - \lambda_{1}C_{3}m^{-(N+2)}) - B^{\alpha+1}C^{\beta+1}(t_{\varepsilon}^{m})^{2^{*}} (S_{\mu}^{\frac{N}{2}} - C_{4}m^{-\frac{2N}{N-2}\sqrt{\mu-\mu}}).$$

Then

$$\max_{t_{\varepsilon}^m > 0} h(t_{\varepsilon}^m) \leq \frac{2}{N-2} \left(\frac{S_{\mu,\alpha,\beta}}{2^*}\right)^{\frac{N}{2}} + C_5 m^{-N\sqrt{\mu-\mu}} - \lambda_1 C_6 m^{-(N+2)}$$

Thus

$$c_{\varepsilon} \leq \max_{(u,v) \in Q_{\varepsilon}^{m}} J_{\mu}(u,v)$$

$$\leq C_{1}m^{-N\sqrt{\mu-\mu}} + \frac{2}{N-2} \left(\frac{S_{\mu,\alpha,\beta}}{2^{*}}\right)^{\frac{N}{2}} + C_{5}m^{-N\sqrt{\mu-\mu}} - \lambda_{1}C_{6}m^{-(N+2)}$$

Then we have

$$c_{\varepsilon} < \frac{2}{N-2} \left(\frac{S_{\mu,\alpha,\beta}}{2^*}\right)^{\frac{N}{2}}$$
 for $\mu \in \left[0, \overline{\mu} - \left(\frac{N+2}{N}\right)^2\right)$ and *m* large enough.

Proof of Theorem 2.6 From Lemma 4.2 and Propositions 5.2 and 5.3, J_{μ} satisfies all assumptions of the linking theorem [2]. Then J_{μ} has a critical point whose critical value belongs to $\left(0, \frac{2}{N-2} \left(\frac{S_{\mu\alpha,\beta}}{2^*}\right)^{\frac{N}{2}}\right)$.

Acknowledgement The authors thank the anonymous referee for carefully reading this paper and suggesting many useful comments.

Systems with critical Sobolev exponent and Hardy potential

References

- C. O. Alves, D. C. de Morais Filho and M. A. S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Anal. 42(2000), 771–787. doi:10.1016/S0362-546X(99)00121-2
- [2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(1973), 349–381. doi:10.1016/0022-1236(73)90051-7
- [3] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88(1983), 486–490. doi:10.2307/2044999
- H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36(1983), 437–477. doi:10.1002/cpa.3160360405
- [5] A. Cappozi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(1985), 463–470.
- [6] D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differential Equations 205(2004), 521–537. doi:10.1016/j.jde.2004.03.005
- J. Chen, Existence of solutions for a nonlinear PDE with an inverse square potential. J. Differential Equations 195(2003), 497–519. doi:10.1016/S0022-0396(03)00093-7
- [8] D. G. de Figueiredo, Semilinear elliptic systems. In: Lecture Notes at the Second School on Nonlinear Functional Analysis and Applications to Differential Equations at ICTP of Trieste (April 21–May 9, 1997).
- [9] A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations. J. Differential Equations 177(2001), 494–522. doi:10.1006/jdeq.2000.3999
- [10] N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc. 352(2000), 5703–5743. doi:10.1090/S0002-9947-00-02560-5
- [11] E. Jannelli, *The role played by space dimension in elliptic critical problems*. J. Differential Equations 156(1999), 407–426. doi:10.1006/jdeq.1998.3589
- [12] S. Terracini, On positive solutions to a class equations with singular coefficient and critical exponent. Adv. Differential Equations 1(1996), 241–264.

Université de Tlemcen, Faculté des sciences, Département de mathématiques, BP 119 Tlemcen 13000, Algérie e-mail: m_bouchekif@mail.univ-tlemcen.dz

y_nasri@mail.univ-tlemcen.dz