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Solutions for Semilinear Elliptic Systems
with Critical Sobolev Exponent and
Hardy Potential

Mohammed Bouchekif and Yasmina Nasri

Abstract. In this paper we consider an elliptic system with an inverse square potential and critical

Sobolev exponent in a bounded domain of R
N . By variational methods we study the existence results.

1 Introduction

In this paper we study the existence of nontrivial solutions of the following system

(SA,µ)





−∆u − µ

|x|2 u = au + bv + (α + 1)u|u|α−1|v|β+1 in Ω,

−∆v − µ

|x|2 v = bu + cv + (β + 1)|u|α+1v|v|β−1 in Ω,

u = v = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
N (N ≥ 3) containing 0 in its interior;

a, b, c are real parameters; α, β > 0 such that α + β ≤ 4
N−2

; and 0 ≤ µ < µ :=

( N−2
2

)2.

We start by giving a brief history for the scalar case. The problem

(Pλ,µ)





Lµu := −△u − µ
u

|x|2 = u|u| 4
N−2 + λu in Ω,

u = 0 on ∂Ω

has been considered by many authors (see [6, 9, 11, 12] and the references cited

therein). The quasilinear case was treated for example by Ghoussoub and Yuan

in [10].

Problem (Pλ,0) has been the object of the famous paper of Brézis and Nirenberg

in [4]. Jannelli in [11] generalized the results of [4] to problem (Pλ,µ) for µ ≥ 0. He

proved the following:
• If 0 ≤ µ ≤ µ− 1, then problem (Pλ,µ) has at least one positive solution in H1

0 (Ω)

for all 0 < λ < µ1, where µ1 = µ1(µ) is the first eigenvalue of Lµ in H1
0(Ω).
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• If µ − 1 < µ < µ, then problem (Pλ,µ) has at least one positive solution for

λ∗(µ) < λ < µ1, where

λ∗(µ) = min
ϕ∈H1

0 (Ω)\{0}

∫
Ω

|∇ϕ(x)|2

|x|2σ dx
∫

Ω

ϕ2(x)
|x|2σ dx

,

with σ =
√
µ +

√
µ− µ.

• If µ− 1 < µ < µ and Ω = B(0,R) (i.e., the ball centred at 0 with radius R), then

problem (Pλ,µ) has no nontrivial solution for λ ≤ λ∗(µ).
• If λ ≤ 0 and Ω is a smooth starshaped domain, then by a Pohozaev type identity

problem (Pλ,µ) has no positive solution.
• The case λ ≥ µ1 has been discussed in several papers; we quote [5–7, 9].

Cappozi and Gazzola [5] proved the following results:
• If N = 4, λ > 0, and λ /∈ σ0, where σ0 denotes the spectrum of −△ with

zero Dirichlet boundary problem, then problem (Pλ,0) has at least one nontrivial

solution.
• If N ≥ 5, then problem (Pλ,0) has at least one nontrivial solution for all λ > 0.

Ferrero and Gazzola [9] developed some technical asymptotic estimates in their

proof forµ ≥ 0. Chen [7] gave a partial positive answer to an open problem proposed

in [9] by using the linking theorem and delicate energy estimates. Recently Cao and

Han [6] solved completely the open problem proposed in [9]; they proved that if

N ≥ 5 and 0 ≤ µ < µ − ( N+2
N

)2, then problem (Pλ,µ) admits a nontrivial solution

for all λ > 0. They established an asymptotic behavior of the eigenfunction, which

is crucial in their proof.

In this work we deal with the case of elliptic systems, we refer to de Figueiredo

(see [8]) for a general view about the theory of elliptic systems. The results of [4]

have been also generalized to system (SA,0) by Alves et al. [1].

Our system (SA,µ) can be written as follows:

{
−−→

∆U − µ U
|x|2 = AU + ∇H in Ω

U = 0 on ∂Ω,

where
→
△ :=

(△
△

)
, U =

(
u
v

)
, A =

(
a b
b c

)
and H(u, v) = |u|α+1|v|β+1.

Borrowing ideas of Alves et al. [1] and Cao and Han [6], we prove some existence

and nonexistence results for (SA,µ) with µ > 0. By establishing a Pohozaev type

identity adapted for systems, we give a nonexistence result. We distinguish three main

cases, depending on the position of the eigenvalues of the matrix A for the existence

results.

The paper is organized as follows. In Section 2 we recall some preliminaries and

main results, Section 3 contains the case where the eigenvalues of the matrix A are

negative. Section 4 is devoted to the case where the eigenvalues of the matrix A are

between 0 and µ1. In Section 5, we consider the case where the eigenvalues belong to

[µ1,+∞[.
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2 Preliminaries and Main Results

Notations We make use of the following notation:
• Lp(Ω), 1 ≤ p ≤ ∞, denote Lebesgue spaces, the norm Lp is denoted by | · |p for

1 ≤ p ≤ ∞.
• E : = H1

0(Ω)×H1
0(Ω) endowed with the norm ‖(u, v)‖µ = (‖u‖2

µ+‖v‖2
µ)

1
2 , where

‖u‖µ = (

∫

Ω

|∇u|2 − µ
u2

|x|2 dx)
1
2 ;

this norm is equivalent to the standard norm in E by Hardy’s inequality.
• E ′ is the dual of E.
• 2∗ := 2N

N−2
is the critical Sobolev exponent.

• BR is the ball centered at 0 with radius R.
• supp ϕ denotes the support of the function ϕ.
• 〈 · 〉 denotes the usual inner product in R

N .
• ◦(1) denotes ◦n(1) → 0 as n → +∞.
• C1,C2,C3, . . . denote (possibly different) positive constants.

Let M =
{(

a b
b c

)
: a > 0, c > 0, b2 < ac

}
. If A ∈ M, then there exist two eigen-

values λ1, λ2 such that 0 < λ1 ≤ λ2.

We have

(2.1) λ1(|u|2 + |v|2) ≤ 〈AU ,U 〉 ≤ λ2(|u|2 + |v|2) for all (u, v) ∈ R
2.

As a consequence of the Hardy inequality, the operator Lµ with zero Dirichlet

boundary condition is positive and has a discrete spectrum σµ in H1
0(Ω) if 0 ≤ µ < µ.

The smallest eigenvalue µ1 is simple and µi → +∞ as i → +∞.

Moreover, each L2 normalized eigenfunction ei corresponding to µi ∈ σµ belongs

to the space H1
0 (Ω) and is not in L∞(Ω), however for the case when µ = 0, ei ∈

L∞(Ω).

Lemma 2.1 Let Ω be a domain (not necessarily bounded), 0 ≤ µ < µ and α + β ≤
4

N−2
. We define

(2.2) Sµ = Sµ(Ω) := inf
u∈H1

0 (Ω)\{0}

∫
Ω

(|∇u|2 − µ u2

|x|2 ) dx

(
∫

Ω
|u|α+β+2 dx)

2
α+β+2

and

(2.3) Sµ,α,β = Sµ,α,β(Ω) := inf
(u,v)∈E\{(0,0)}

∫
Ω

(|∇u|2 + |∇v|2 − µ u2+v2

|x|2 ) dx

(
∫

Ω
|u|α+1|v|β+1 dx)

2
α+β+2

.

Then we have

Sµ,α,β =

[( α + 1

β + 1

) β+1
α+β+2

+
( α + 1

β + 1

) −α−1
α+β+2

]
Sµ.

Moreover, if ω0 realizes Sµ, then (u0, v0) = (Bω0,Cω0) realizes Sµ,α,β for any positive

constants B and C such that B
C

= (α+1
β+1

)
1
2 .
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Proof The proof of the lemma is essentially given in [1] with minor modifications.

As in [11] we consider the family of functions

ω∗
ε (x) =

C
N−2

4
ε

(ε2|x|
σ ′√
µ + |x|

σ√
µ )

√
µ

for ε > 0

where Cε = 4ε2N(µ− µ)/(N − 2), σ =
√
µ +

√
µ− µ and σ ′

=
√
µ−√

µ− µ.

For ε > 0, the function ω∗
ε solves the equation

−△u − µ
u

|x|2 = u|u| 4
N−2 in R

N\{0}.

From Lemma 2.1 we conclude that the problem





−∆u − µ u
|x|2 = (α + 1)u|u|α−1|v|β+1 in R

N\{0},
−∆v − µ v

|x|2 = (β + 1)|u|α+1v|v|β−1 in R
N\{0},

u(x) = v(x) = 0 as |x| → ∞

has a solution in the form (Bω∗
ε ,Cω

∗
ε ), where B and C are positive constants satisfying

B

C
=

( α + 1

β + 1

) 1
2

.

Let 0 ≤ φ(x) ≤ 1 be a function in C∞
0 (Ω) defined as

φ(x) =

{
1 if |x| ≤ R,

0 if |x| ≥ 2R,

where B2R ⊂ Ω.

Taking

ω̃ε =
ωε

‖ωε‖2∗
with ωε = φ(x)ω∗

ε .

Let us introduce the corresponding functional energy of system (SA,µ)

Jµ(u, v) =
1

2
‖(u, v)‖2

µ −
1

2

∫

Ω

〈AU ,U 〉 dx −
∫

Ω

|u|α+1|v|β+1 dx.

It is well known that a weak solution (u, v) ∈ E (in our case u 6= 0 and v 6= 0) of

(SA,µ) is precisely a critical point of Jµ. That is,

∫

Ω

(
∇u∇ϕ + ∇v∇ψ − µ

|x|2 (uϕ + vψ) − (auϕ + bvϕ + buψ + cvψ)
)

dx

−
∫

Ω

(
(α + 1)u|u|α−1|v|β+1ϕ + (β + 1)|u|α+1v|v|β−1ψ

)
dx = 0

for all (ϕ, ψ) ∈ E.
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Definition 2.2 Let c ∈ R, E be a Banach space and I ∈ C1(E,R),

(i) (un, vn) is a (PS)c sequence in E for I at level c if I(un, vn) → c and I ′(un, vn) → 0

strongly in E ′ as n → +∞.

(ii) We say that I satisfies the (PS)c condition if any (PS)c sequence in E for I has a

convergent subsequence.

In this paper we obtain the following results.

Theorem 2.3 Let A ∈ M2×2 symmetric matrix such that λ1 ≤ λ2 ≤ 0 and α + β =
4

N−2
. If Ω is a smooth starshaped domain with respect to the origin then system (SA,µ)

has no nontrivial solution.

Theorem 2.4 Suppose α + β =
4

N−2
and A ∈ M. If 0 ≤ µ ≤ µ − 1, then system

(SA,µ) has a solution for all λ2 < µ1. If µ − 1 < µ < µ, then system (SA,µ) has a

solution for all µ∗ < λ1 ≤ λ2 < µ1 where

µ∗
= min

ϕ∈H1
0 (Ω)\{0}

∫
Ω

|∇ϕ(x)|2

|x|2σ dx
∫

Ω

ϕ2(x)
|x|2σ dx

and σ =
√
µ +

√
µ− µ.

Corollary 2.5 Suppose 0 ≤ µ < µ, α + β < 4
N−2

, and A ∈ M. Then system (SA,µ)

has a solution for all λ2 < µ1.

Theorem 2.6 Suppose N ≥ 5, α + β =
4

N−2
, 0 ≤ µ < µ − ( N+2

N
)2, and A ∈ M.

Assume one of the following conditions holds:

• There exists k ∈ N
∗ such that µk ≤ λ1 ≤ λ2 < µk+1.

• There exist k, k′ ∈ N
∗, k 6= k′ such that

µk ≤ a − |b| ≤ λ1 ≤ a + |b| < µk+1 ≤ µk ′ ≤ c − |b| ≤ λ2 ≤ c + |b| < µk ′+1.

Then system (SA,µ) has at least one solution.

3 Eigenvalues of A are Nonpositive

In this section, we give an nonexistence result which is based on a Pohozaev type

identity adapted for systems.

Proof of Theorem 2.3 We will use a Pohozaev type identity. The idea consists of

multiplying each equation by 〈x,∇u〉 and 〈x,∇v〉, respectively, and integrating by

parts. We obtain

(3.1)

∫

∂Ω

(|∇u|2 + |∇v|2)〈x, ν〉 dσ +
( N − 2

2

) ∫

Ω

(|∇u|2 + |∇v|2) dx

= µ
( N − 2

2

) ∫

Ω

u2 + v2

|x|2 dx +
N

2

∫

Ω

〈AU ,U 〉 dx + N

∫

Ω

|u|α+1|v|β+1 dx,
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where ν is the outwards normal to ∂Ω. On the other hand, multiplying each equation

by u, v respectively and integrating over Ω we obtain

∫

Ω

(
|∇u|2 − µ

|x|2 u2
)

dx =

∫

Ω

(
a|u|2 + bvu + (α + 1)|u|α+1 |v|β+1

)
dx(3.2)

∫

Ω

(
|∇v|2 − µ

|x|2 v2
)

dx =

∫

Ω

(
buv + c|v|2 + (β + 1)|u|α+1 |v|β+1

)
dx.(3.3)

Replacing (3.2) and (3.3) in (3.1), we obtain

∫

∂Ω

(|∇u|2 + |∇v|2)〈x, ν〉 dσ =

∫

Ω

〈AU ,U 〉 dx.

Using (2.1) with λ2 ≤ 0, we get

∫

∂Ω

(|∇u|2 + |∇v|2)〈x, ν〉 dσ ≤ 0,

which is in contradiction with the fact that Ω is starshaped, i.e., 〈x, ν〉 > 0 a.e. on

∂Ω.

4 Eigenvalues of A Belong to [0, µ1[

For proving Theorem 2.4, we need some auxiliary results.

Lemma 4.1 Let 0 < λ1 ≤ λ2 < µ1, 0 ≤ µ < µ, and α + β ≤ 4
N−2

.

(i) There exist ρ > 0 and R > 0 such that Jµ(u, v) ≥ ρ for all (u, v) ∈ E with

‖(u, v)‖µ = R.

(ii) There exists (u0, v0) ∈ E with ‖(u0, v0)‖µ > R such that Jµ(u0, v0) ≤ 0.

Proof From (2.1) and (2.3) we get

Jµ(u, v) ≥ 1

2

(
1 − λ2

µ1

)
‖(u, v)‖2

µ −C ‖(u, v)‖α+β+2
µ ≥ ρ

for ‖(u, v)‖µ = R small enough.

We have

Jµ(tu, tv) =
t2

2
‖(u, v)‖2

µ −
t2

2

∫

Ω

〈AU ,U 〉 dx − tα+β+2

∫

Ω

|u|α+1 |v|β+1 dx → +∞

as t → +∞, thus there exists (u0, v0) with ‖(u0, v0)‖ > R such that Jµ(u0, v0) ≤ 0.

Let

c := inf
g∈Γ

( max
t∈[0,1]

Jµ[g(t)]),

where

Γ :=
{

g ∈ C([0, 1], E) : g(0) = (0, 0), g(1) = (u0, v0)
}
.

Now we will prove that Jµ satisfies (PS)c below some critical threshold.
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Lemma 4.2 If c < 2
N−2

( 1
2∗

Sµ,α,β)
N
2 , then Jµ satisfies (PS)c.

Proof Let (un, vn) be a (PS)c sequence in E. We obtain, for large n,

(4.1) 2 Jµ(un, vn)−
〈

J ′µ(un, vn), (un, vn)
〉

= (α+β)

∫

Ω

|un|α+1 |vn|β+1 dx ≤ 2c+o(1).

On the other hand, there exists Cλ := C(N, α, β, λ) > 0 such that

(4.2) |u|α+1 |v|β+1 − λ(|u|2 + |v|2) ≥ −Cλ

for all (u, v) ∈ R × R\{R × {0} ∪ {0} × R}, where λ is a positive constant.

Indeed, consider the function

Hλ(u, v) = |u|α+1 |v|β+1 − λ(|u|2 + |v|2).

Then (u, v) is an extremum point of Hλ if

(4.3) (α + 1)u|u|α−1 |v|β+1 − 2λu = 0

and

(4.4) (β + 1)|u|α+1 v|v|β−1 − 2λv = 0.

Multiplying (4.3) and (4.4) by (β + 1)u and (α + 1)v respectively and subtracting

them, we get

∣∣∣
u

v

∣∣∣ =

( α + 1

β + 1

) 1/2

i.e., |v| = k|u| with k :=
( α + 1

β + 1

)−1/2

.

Put

g(u) := Hλ(|u|, k|u|) = kβ+1|u|2∗ − λ(1 + k2)|u|2,
g(u) attains its minimum at

u0 =

( 2λ(1 + k2)

2∗kβ+1

) 1
α+β

, with g(u0) = −Cλ := − 1

N

(
2λ(1 + k2)

) 2∗

α+β

(2∗kβ+1)
2

α+β

.

Thus, we have Hλ(u, v) ≥ −Cλ for all (u, v) ∈ R × R\{R ×{0}∪ {0}× R}. Finally,

(4.1), and (4.2), with λ := λ2, yield

‖(un, vn)‖2
µ = 2 Jµ(un, vn) +

∫

Ω

〈AUn,Un〉 dx + 2

∫

Ω

|un|α+1 |vn|β+1 dx

≤ 2 Jµ(un, vn) + λ2

∫

Ω

(|un|2 + |vn|2) dx + 2

∫

Ω

|un|α+1 |vn|β+1 dx

≤ C
(

1 + ‖(un, vn)‖µ
)

;
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consequently (un, vn) is bounded in E.

Thus there exists a subsequence, again denoted by (un, vn), such that

(4.5)

(un, vn) → (u, v) weakly in E,
( un

x
,

vn

x

)
→

( u

x
,

v

x

)
weakly in [L2(Ω)]2,

(un, vn) → (u, v) strongly in Lr × Ls for all 1 ≤ r, s < 2∗,

(un, vn) → (u, v) a.e. on Ω,

it follows that (u, v) is a weak solution of system (SA,µ), i.e.,

(4.6) 〈 J ′µ(u, v), (ϕ, ψ)〉 = 0 for all (ϕ, ψ) ∈ E.

We put ϕn = un − u and ψn = vn − v. From the Brézis–Lieb Lemma [3], we obtain

the following relations

|∇un|22 = |∇u|22 + |∇ϕn|22 + o(1),(4.7)

∣∣∣
un

x

∣∣∣
2

2
=

∣∣∣
u

x

∣∣∣
2

2
+

∣∣∣
ϕn

x

∣∣∣
2

2
+ o(1),(4.8)

|∇vn|22 = |∇v|22 + |∇ψn|22 + o(1),(4.9)

∣∣∣
vn

x

∣∣∣
2

2
=

∣∣∣
v

x

∣∣∣
2

2
+

∣∣∣
ψn

x

∣∣∣
2

2
+ o(1),(4.10)

and

(4.11)

∫

Ω

|un|α+1 |vn|β+1 dx =

∫

Ω

|u|α+1 |v|β+1 dx +

∫

Ω

|ϕn|α+1 |ψn|β+1 dx + o(1).

Using (4.5) to (4.11) we get

(4.12) Jµ(u, v) +
1

2
‖(ϕn, ψn)‖2

µ −
∫

Ω

|ϕn|α+1 |ψn|β+1 dx = c + o(1)

and

‖(u, v)‖2
µ + ‖(ϕn, ψn)‖2

µ =

∫

Ω

〈AU ,U 〉 dx

+ 2∗
∫

Ω

(|u|α+1 |v|β+1 + |ϕn|α+1 |ψn|β+1) dx + o(1).

Since 〈 J ′(u, v), (u, v)〉 = 0,

‖(ϕn, ψn)‖2
µ = 2∗

∫

Ω

|ϕn|α+1 |ψn|β+1 dx + o(1).
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Therefore, along a subsequence we may assume that, as n → +∞,

‖(ϕn, ψn)‖2
µ → k and 2∗

∫

Ω

|ϕn|α+1 |ψn|β+1 dx → k.

By (2.3) we get

‖(ϕn, ψn)‖2
µ ≥ Sµ,α,β

(∫

Ω

|ϕn|α+1 |ψn|β+1 dx
) 2/2∗

.

At the limit we have k ≥ Sµ,α,β( k
2∗

)
2

2∗ . It follows that either k = 0 or k ≥
2∗(

Sµ,α,β
2∗

)
N
2 .

The case k = 0 is trivial.

If k > 0, then k ≥ 2∗(Sµ,α,β/2∗)N/2. Passing to the limit in (4.12), we obtain

Jµ(u, v) +
k

N
= c <

2

N − 2

( 1

2∗
Sµ,α,β

) N/2

.

From this, we conclude that Jµ(u, v) < 0 for all (u, v) ∈ E.

Taking (φ, ψ) = (u, v) in (4.6) we have

Jµ(u, v) =

( 2∗

2
− 1

) ∫

Ω

|u|α+1 |v|β+1 dx ≥ 0;

thus we get a contradiction. Hence (un, vn) converges strongly to (u, v) in E.

Remark Lemma 4.2 is true for λ2 ≥ µ1.

Lemma 4.3 Suppose that 0 ≤ µ < µ and 0 < λ1 ≤ λ2 < µ1 then we have

sup
t≥0

Jµ(tBω̃ε, tCω̃ε) <
2

N − 2

( 1

2∗
Sµ,α,β

) N/2

for ε > 0 small.

Proof Let B, C > 0 such that B
C

= (α+1
β+1

)
1
2 . We have

Jµ(tBω̃ε, tCω̃ε) ≤ t2
( B2 + C2

2

)
Qλ1

(ω̃ε) − t2∗Bα+1Cβ+1 := g(t),

where Qλ1
(ω̃ε) := ‖ω̃ε‖2

µ−λ1|ω̃ε|22. Observe that the function g attains its maximum

at (t0, g(t0)), where

t0 =

( B2 + C2

2∗Bα+1Cβ+1
Qλ1

(ω̃ε)
) 1

α+β

and

g(t0) =
2

N − 2

( B2 + C2

2∗Bα+1Cβ+1
Qλ1

(ω̃ε)
) N

2

.
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Thanks to Jannelli [11] we have

Qλ1
(ω̃ε) < Sµ if µ ≤ µ− 1, for all 0 < λ1 ≤ λ2 < µ1,

Qλ1
(ω̃ε) < Sµ if µ− 1 < µ < µ, for all µ∗ < λ1 ≤ λ2 < µ1,

with ε sufficiently small.

By Lemma 2.1 we deduce that

sup
t≥0

Jµ(tBω̃ε, tCω̃ε) <
2

N − 2

( 1

2∗
Sµ,α,β(Ω)

) N
2

for ε > 0 small.

Proof of Theorem 2.4 From Lemmas 4.1, 4.2, and 4.3, Jµ satisfies the conditions of

the mountain pass theorem [2]. Then there exists (u, v) ∈ E such that J ′µ(u, v) = 0

and Jµ(u, v) = c > 0.

5 Eigenvalues of A Are Higher Than or Equal to µ1

In this section, we consider two subcases:

(a) There exists k ∈ N
∗ such that µk ≤ λ1 ≤ λ2 < µk+1.

(b) There exist k, k′ ∈ N
∗, k 6= k′ such that µk ≤ λ1 < µk+1 ≤ µk ′ ≤ λ2 < µk ′+1.

Consider the technique introduced by Ferrero and Gazzola in [9]. Fix k ∈ N
∗,

and for each i ∈ N
∗ denote by ei an L2 normalized eigenfunction relative to µi ∈ σµ.

Let Xk denote the space spanned by the eigenfunctions corresponding to the eigen-

values µ1, µ2, . . . , µk, Yk = (Xk)⊥ and let Pk : H1
0(Ω) → Xk denote the orthogonal

projection.

Always take m ∈ N large enough so that B1/m ⊂ Ω, and consider the function

ζm : Ω → R defined by

ζm(x) =






0 if x ∈ B 1
m
,

m|x| − 1 if x ∈ B 2
m
\B 1

m
,

1 if x ∈ Ω\B 2
m

,

the approximate eigenfunctions em
i := eiζm, and the space Xm

k := span{em
i : i =

1, . . . , k}. For all ε > 0, consider the shifted functions

ωm
ε (x) =

{
ω∗
ε (x) − ω∗

ε

(
1
m

)
if x ∈ B 1

m
\{0}

0 if x ∈ Ω\B 1
m
.

We shall need the following lemma.

Lemma 5.1 [6]

(i) ‖em
i − ei‖µ → 0 as m → ∞.

(ii) max{u∈Xm
k
,|u|2=1} ‖u‖2

µ ≤ µk + C1m−2
√
µ−µ.
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From [9] with ε = m−( N+2
N−2

)
√
µ−µ, we obtain the estimates

(5.1)

‖ωm
ε ‖2

µ ≤ S
N
2
µ + C1m−N

√
µ−µ,

|ωm
ε |2

∗

2∗ ≥ S
N
2
µ −C2m− 2N

N−2

√
µ−µ,

|ωm
ε |22 ≥ C3m−(N+2).

5.1 Eigenvalues of A belong to [µk, µk+1[ with k ∈ N
∗

Now we verify that the functional Jµ has linking geometry conditions.

Proposition 5.2 Assume that λ1, λ2 ∈ [µk, µk+1[ for some k ∈ N
∗.

(i) There exist ρ, δ > 0 such that Jµ(u, v) ≥ δ for all (u, v) ∈ (∂Bρ ∩ Yk)2.

(ii) There exists R > ρ such that Jµ|∂Qm
ε
≤ p(m) with p(m) → 0 as m → +∞, where

Qm
ε =

(
(BR ∩ Xm

k ) ⊕ {Br ωm
ε /0 ≤ r < R}

)
×

(
(BR ∩ Xm

k ) ⊕ {Cr ωm
ε /0 ≤ r < R}

)
.

Proof For any (u, v) ∈ (Yk)2, we have

(5.2) ‖(u, v)‖2
µ ≥ µk+1

∫

Ω

(|u|2 + |v|2) dx.

Using (5.2) and (2.3), we get

Jµ(u, v) ≥ 1

2

(
1 − λ2

µk+1

)
‖(u, v)‖2

µ −C1‖(u, v)‖2∗

µ .

Thus we can choose ρ = ‖(u, v)‖µ sufficiently small enough and δ > 0 such that

Jµ|(∂Bρ∩Yk)2 ≥ δ. For (u, v) ∈ (Xm
k )2, we have

Jµ(u, v) ≤ 1

2
‖(u, v)‖2

µ −
λ1

2

∫

Ω

(|u|2 + |v|2) dx −
∫

Ω

|u|α+1 |v|β+1 dx.

From (4.2) and Lemma 5.1, we obtain

Jµ(u, v) ≤ 1

2
(µk − λ1 + C2m−2

√
µ−µ)

∫

Ω

(|u|2 + |v|2) dx −
∫

Ω

|u|α+1 |v|β+1 dx

≤ −Hλ(u, v) with λ := C2m−2
√
µ−µ.

Then

Jµ(u, v) ≤ C3m−N
√
µ−µ where C3 :=

1

N

(
2C2(1 + k2)

) 2∗

α+β

(2∗kβ+1)
2

α+β

.

Consequently, we have

lim
m→∞

max
(u,v)∈(Xm

k
)2

Jµ(u, v) = 0.
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On the other hand, we have

Jµ(Br ωm
ε ,Cr ωm

ε ) ≤ r2
( B2 + C2

2

)
‖ωm

ε ‖2
µ − r2∗Bα+1Cβ+1|ωm

ε |2
∗

2∗ ,

so Jµ(Br ωm
ε ,Cr ωm

ε ) becomes negative if r = R with R large enough. Therefore,

Jµ(u, v) ≤ C3m−N
√
µ−µ

for all (u, v) ∈
(

Xm
k ∪ (Xm

k ⊕ R{Bωm
ε })

)
×

(
Xm

k ∪ (Xm
k ⊕ R{Cωm

ε })
)
.

Since

max
0≤r≤R

Jµ(Br ωm
ε ,Cr ωm

ε ) < +∞

for (u, v) ∈
(

(BR ∩ Xm
k ) ⊕ R{Bωm

ε }
)
×

(
(BR ∩ Xm

k ) ⊕ R{Cωm
ε }

)
,

as (u, v) ∈ (Xm
k ⊕ R

+{Bωm
ε })× (Xm

k ⊕ R
+{Cωm

ε }), we may write u = w1 + tBωm
ε and

v = w2 + tCωm
ε . Hence meas(supp(ωm

ε ) ∩ supp(wi)) = 0. Then Jµ |∂Qm
ε
≤ 0 for R

large enough with

Qm
ε =

(
(BR∩Xm

k )⊕{Brωm
ε /0 ≤ r < R}

)
×

(
(BR∩Xm

k )⊕{Cr ωm
ε /0 ≤ r < R}

)
.

5.2 Eigenvalues of A Belong to [µk, µk+1[ × [µk ′ , µk ′+1[ with k < k′, k, k′ ∈ N
∗

Proposition 5.3 Suppose A ∈ M and

µk ≤ a − |b| ≤ λ1 ≤ a + |b| < µk+1 ≤ µk ′ ≤ c − |b| ≤ λ2 ≤ c + |b| < µk ′+1

for some k, k′ ∈ N
∗.

(i) There exist ρ, δ > 0 such that Jµ(u, v) ≥ δ for all (u, v) ∈ (∂Bρ∩Yk)×(∂Bρ∩Yk ′).

(ii) There exists R > ρ such that Jµ |∂Qm
ε
≤ p(m), with p(m) → 0 as m → +∞ and

Qm
ε =

(
(BR ∩ Xm

k ) ⊕ {Br ωm
ε /0 ≤ r < R}

)
×

(
(BR ∩ Xm

k ′) ⊕ {Cr ωm
ε /0 ≤ r < R}

)
.

Proof For any (u, v) ∈ Yk × Yk ′ , we have

(5.3) ‖u‖2
µ ≥ µk+1

∫

Ω

|u|2 dx and ‖v‖2
µ ≥ µk ′+1

∫

Ω

|v|2 dx.

Then (2.3), (5.3) and Young’s inequality imply that

Jµ(u, v) ≥ 1

2

(
1 − a + |b|

µk+1

)
‖u‖2

µ − C1‖u‖2∗

µ +
1

2

(
1 − c + |b|

µk ′+1

)
‖v‖2

µ −C2‖v‖2∗

µ ≥ δ

for ρ = ‖(u, v)‖µ sufficiently small.
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For any (u, v) ∈ Xm
k × Xm

k ′ , we obtain from (2.1), (4.2) and Lemma 5.1 that

Jµ(u, v) ≤ 1

2

∫

Ω

[(
µk − (a − |b|)

)
|u|2 +

(
µk ′ − (c − |b|)

)
|v|2

+ C3m−2
√
µ−µ(|u|2 + |v|2)

]
dx −

∫

Ω

|u|α+1|v|β+1 dx

≤ −Hλ(u, v) with λ := C3m−2
√
µ−µ,

so Jµ(u, v) ≤ C4m−N
√
µ−µ. Then limm→∞ max(u,v)∈Xm

k
×Xm

k ′
Jµ(u, v) = 0. With simi-

lar arguments as in Proposition 5.2, we get Jµ|∂Qm
ε
≤ 0, where

Qm
ε =

(
(BR ∩ Xm

k ) ⊕ {Br ωm
ε /0 ≤ r < R}

)
×

(
(BR ∩ Xm

k ′) ⊕ {Cr ωm
ε /0 ≤ r < R}

)
.

Set cε = infh∈Γε,m
maxU∈Qm

ε
Jµ(h(U )) with

Γε,m = {h ∈ C(Qm
ε , E)/h(U ) = U , ∀U ∈ Qm

ε }

and

Qm
ε =

(
(BR ∩ Xm

k ) ⊕ {Br ωm
ε /0 ≤ r < R}

)

×
(

(BR ∩ Xm
k ) ⊕ {Cr ωm

ε /0 ≤ r < R}
)

if µk ≤ λ1 ≤ λ2 < µk+1

or

Qm
ε =

(
(BR ∩Xm

k )⊕{Br ωm
ε /0 ≤ r < R}

)
×

(
(BR ∩Xm

k ′ )⊕{Cr ωm
ε /0 ≤ r < R}

)

if µk ≤ λ1 < µk+1 ≤ µk ′ ≤ λ2 < µk ′+1.

Lemma 5.4 Let µ ∈
[

0, µ − ( N+2
N

)2
)

and A ∈ M. Assume one of the following

conditions holds:

(i) There exists k ∈ N
∗ such that µk ≤ λ1 ≤ λ2 < µk+1.

(ii) There exist k, k′ ∈ N
∗, k 6= k′ such that µk ≤ a − |b| ≤ λ1 ≤ a + |b| < µk+1 ≤

µk ′ ≤ c − |b| ≤ λ2 ≤ c + |b| < µk ′+1.

Then

cε <
2

N − 2

( Sµ,α,β

2∗

) N
2

.

Proof Let

max
(u,v)∈Qm

ε

Jµ(u, v) = Jµ(ym + tm
ε Bωm

ε , zm + tm
ε Cωm

ε )

where B,C > 0 such that B
C

= (α+1
β+1

)
1
2 and

(ym, zm) ∈
{

(Xm
k )2 if µk ≤ λ1 ≤ λ2 < µk+1,

Xm
k × Xm

k ′ if µk ≤ λ1 < µk+1 ≤ µk ′ ≤ λ2 < µk ′+1.
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From Propositions 5.2 and 5.3 we have

Jµ(ym, zm) ≤ C1m−N
√
µ−µ.

Since meas(supp(ωm
ε ) ∩ supp(ym)) = 0 and meas(supp(ωm

ε ) ∩ supp(zm)) = 0, we

conclude that

cε ≤ max
(u,v)∈Qm

ε

Jµ(u, v) = Jµ(ym, zm) + Jµ(tm
ε Bωm

ε , t
m
ε Cωm

ε )

≤ C1m−N
√
µ−µ + (tm

ε )2 (B2 + C2)

2
(‖ωm

ε ‖2
µ − λ1|ωm

ε |22)

− Bα+1Cβ+1(tm
ε )2∗ |ωm

ε |2
∗

2∗ .

Using (5.1), we obtain

cε ≤ C1m−N
√
µ−µ + (tm

ε )2 (B2 + C2)

2
(S

N
2
µ + C2m−N

√
µ−µ − λ1C3m−(N+2))

− Bα+1Cβ+1(tm
ε )2∗(S

N
2
µ −C4m− 2N

N−2

√
µ−µ).

Put

h(tm
ε ) :=

(tm
ε )2

2
(B2 + C2)(S

N
2
µ + C2m−N

√
µ−µ − λ1C3m−(N+2))

− Bα+1Cβ+1(tm
ε )2∗(S

N
2
µ −C4m− 2N

N−2

√
µ−µ).

Then

max
tm
ε >0

h(tm
ε ) ≤ 2

N − 2

( Sµ,α,β

2∗

) N
2

+ C5m−N
√
µ−µ − λ1C6m−(N+2).

Thus

cε ≤ max
(u,v)∈Qm

ε

Jµ(u, v)

≤ C1m−N
√
µ−µ +

2

N − 2

( Sµ,α,β

2∗

) N
2

+ C5m−N
√
µ−µ − λ1C6m−(N+2).

Then we have

cε <
2

N − 2

( Sµ,α,β

2∗

) N
2

for µ ∈
[

0, µ−
( N + 2

N

) 2)
and m large enough.

Proof of Theorem 2.6 From Lemma 4.2 and Propositions 5.2 and 5.3, Jµ satisfies all

assumptions of the linking theorem [2]. Then Jµ has a critical point whose critical

value belongs to
(

0, 2
N−2

(
Sµ,α,β

2∗
)

N
2

)
.

Acknowledgement The authors thank the anonymous referee for carefully reading

this paper and suggesting many useful comments.

https://doi.org/10.4153/CJM-2010-002-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-002-9


Systems with critical Sobolev exponent and Hardy potential 33

References

[1] C. O. Alves, D. C. de Morais Filho and M. A. S. Souto, On systems of elliptic equations involving
subcritical or critical Sobolev exponents. Nonlinear Anal. 42(2000), 771–787.
doi:10.1016/S0362-546X(99)00121-2

[2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and
applications. J. Funct. Anal. 14(1973), 349–381. doi:10.1016/0022-1236(73)90051-7
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