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ON SOLUTION SETS OF NONCONVEX DARBOUX PROBLEMS
AND APPLICATIONS TO OPTIMAL CONTROL WITH ENDPOINT

CONSTRAINTS

H. D. TUAN12
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Abstract

We prove a continuous version of a relaxation theorem for the nonconvex Darboux problem
x,T e F(t, z, x, x,,xz). This result allows us to use Warga's open mapping theorem for
deriving necessary conditions in the form of a maximum principle for optimization problems
with endpoint constraints. Neither constraint qualification nor regularity assumption is
supposed.
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[2] Nonconvex Darboux problems 355

Here /„ : R" -> R, F : Yl x R" x R" x Rn - • 2R", Z(x)(t, r) := (x(t, r), x,(t, r),
xz(t,r))andfi : R" - • Rm~l.

Note that a constraint of the form x(T, &) e C, where C is a closed set, is a special
case of (4). In fact, by setting fi(x(T, &)) = dist(jt(7\ &), C)) then x(T, ST) e C
is made equivalent to f\ (x(T, 3?)) = 0, that is, (4) holds.

Optimal control problems for inclusion (2) have been extensively studied in the
literature (see, for example, [1, 6, 12, 13, 24, 25, 29, 30, 32, 35-39, 46, 52, 54]) but
so far only without the endpoint constraint. Most authors consider the case where
F has a parameterized form, so that inclusion (2) becomes a controlled hyperbolic
differential equation of the form

XIT(t,T)=<P(t,T,Z(x)(t,T),v), V€V, (5)

where v is the control function.
When (5) is linear, that is, the function (j> is linear in respect to Z(x)(t, r) and u,

for this class of problems, necessary optimality conditions (in the form of a maximum
principle) as well as computational algorithms have been discussed in [13, 23, 29,
37, 39, 40, 46, 52, 54]. In this case it is not difficult to show that the solution set of
the controlled system (5) is a compact set and consequently, an optimal solution of
problem (1), (3), (5) always exists.

When (5) is nonlinear, the first natural question that arises is whether there exists
an optimal solution, and that has been studied in [4, 30, 35, 36]. These authors show
conditions for function (f> such that the solution set of (5) is compact, and the existence
of an optimal solution follows immediately from this fact.

Necessary optimality conditions have also been developed in [6,11,12,23,26,38]
mainly under the assumption that the objective function / 0 is linear and that the map
<p is twice continuously differentiable. Then the adjoint equations in the maximum
principle involve the derivatives of second order of the map (f>. When the function
/o is nonlinear, these authors assume that it is twice continuously differentiable also,
since then (1), (3), (5) can be reduced to an optimization problem with a linear
objective function [6, 11, 12, 38]. Indeed, by introducing the additional variable
z('> *) = fo(*(t, *0), then z,T(t, r) = fo(Z(x)(t, T)) for some function f0 and (1) is
equivalent to z(T, &) —> minimum.

A necessary optimality condition involving only derivatives of first order of the
map <f> for the optimal control problem (1), (3), (5) has been derived by Suryanrayana
[38]. In that paper, (5) is reduced to an equivalent one of Dieudonne-Rashevsky form
[6] which is a partial differential equation of first order. Clearly this reduction is
possible only under the assumptions that the function <f> is continuous with respect
to all variables and that the derivatives df(t, r, x1, x2, x3)/dx', i = 1,2, 3 satisfy
Lipschitzian conditions with respect to (xl, x2, x3). Then a Pontryagin-type maximum
principle is obtained in [38], while the adjoint equation is more general than those of
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Cesari [6] and Egorov [11, 12] because it does not involve the derivatives of second
order of the map </>.

In a previous paper [43], we have derived a Pontryagin-type maximum principle
for (l)-(3) in the case when F has convex values. When (2) has the parameterized
form (5), it has been shown in [43] that this convexity assumption can be removed
and we obtain maximum conditions under much weaker assumptions than those of
Suryanryana. Namely, in (l)-(3), we assumed that the function <p is only measurable
in (t, T), differentiable (not necessary continuously differentiable) in (xl,x2,x3),
continuous in v and that the objective function f0 is only differentiable. Of course,
one can show that under Suryanryana's smoothness assumptions, our adjoint equations
and Suryanaryana's equations are identical [43].

The optimization problem (l)-(3), where F does not depend on (r, T), has also
been studied by Mahmudov in [24]. Using the discrete approach of Pchenichnyi
[28], this author obtains a Egorov-type necessary condition under the assumption that
F has convex values. As in [28] for differential inclusion problems, the convexity
assumption is crucial for the convergence of approximated solutions to an optimal one.
Moreover, the objective function is also assumed to have a convex approximation in
sense of [28] at an optimal solution. It is well known from nonsmooth analysis [8]
that Lipschitz nonsmooth functions may not satisfy that assumption.

From general optimal control theory, it is well known that optimization problems
with an endpoint constraint like (4) are much harder than those without it. As in
nonlinear mathematical programming, many results are often obtained under some
kind of constraint qualification (CQ) or regularity assumptions (RA). For example, in
optimization problems defined by ordinary differential equations, one has to assume
Clarke's calmness condition [8] on the endpoint constraint or Frankowska's surjectiv-
ity condition involving a linearized inclusion [14]. These conditions ensure that a
reference solution is not isolated, that is, in every neighborhood there is at least one
solution of the equation that also satisfies the end constraint. Obviously, because of
the very complicated structure of the solution set in an optimal control problem, it is
not clear how to check CQ or RA. An approach to these problems without CQ and
RA was proposed by Warga in [48, 49] and developed by him [50, 51] and other
authors [21, 18, 22, 44, 45, 56]. In this spirit, in [44] we also investigated (l)-(4)
when F has convex values and the functions f0, f\ are continuously differentiable.
First, by using a special open-mapping theorem for smooth functions and a continuous
approximation technique for convex hyperbolic inclusion [42], we derived a sufficient
condition for a given solution x(t, r) to satisfy

f(x(T, &)) e inlf(RF(T, &)), f := (/0, / , ) , (6)

where RF(T, 3?) is the reachable set at point (T, 3?) of inclusion (2). This condition
isO 6 intV/(i(7, 5T))RL(T, 3?), where RL(T, 5 ^ is the reachable set of a linearized
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[4] Nonconvex Darboux problems 357

inclusion of inclusion (2) at (T, 3?). Hence, if x(t, T) is an optimal solution of (l)-(4),
then f(x(T, &)) e df(RF(T, 2?)), which implies 0 £ intV/(;t(7\ &))RL(T, &).
Futhermore, applying a separation theorem (see, for example, [31, consequence
11.7.3]) yields the existence of 9 G Rm, \\6\\ = 1 such that

Vf(x(T, ST)Ye 6 RL(T, &)+. (7)

Since F has convex values, with a suitably chosen linearized inclusion [43], every
vector of cone RL(T, 3f)+ corresponds to a solution of adjoint inclusions satisfying
the maximum condition. A Pontryagin-type maximum principle for (2), (3), (4) was
obtained in [44] as a consequence of (7).

As in problems with ordinary differential equations [49,22,45], in order to be able
to apply an open-mapping theorem to derive sufficient conditions for (6), one has to use
a continuous approximation of solutions of inclusion (2) by solutions of a linearized
inclusion. If F has convex values as in [44, 42] the continuous approximation is
obtained automatically from a successive approximation process [42, Remark 3.1 and
Theorem 4.1]. Moreover, as mentioned above, the convexity of the values of F is also
crucial to ensure the existence of a linearized inclusion such that every vector of the
positive polar of its reachable set corresponds to a solution satisfying the maximum
condition.

As it is obvious from the former results, the following important questions related
to (l)-(4) are unanswered so far.

1. What is a maximum principle for (l)-(3) (or (1), (3), (5)) with end constraint
(4) when /0 and f\ are nonsmooth functions?

2. Is the convexity assumption for the values of the map F really needed for
deriving a maximum principle for (l)-(4)?

The purpose in the present paper is to answer the two questions above, that is, we
investigate (l)-(4), assuming only that F has compact (not necesssary convex) values,
while /o, /i are Lipschitzian (not necessary continuously differentiable) functions.
Here it worth noting that because of the nonconvexity of its values, the map F may
be nonparameterized and so it cannot be reduced to Dieudone-Rashevski form as in
[6, 38]. Hence, even without the endconstraint (4), problem (l)-(3) also becomes
much more complicated than those of [6, 38]. Since F has compact values only,
for obtaining a maximum principle for problem (1), (2), (4), we shall develop a
continuous approximation technique of solutions of inclusion (2) by solutions of a
linearized inclusion of the convexified inclusion

jc l r (r , r)ecoF(r,r ,Z(jc)0,r)) , {t,x)&U. (8)

The basic result we will obtain is a Pontryagin-type maximum principle for the problem
(1), (2), (4) with nonconvex-valued map F and nonsmooth (Lipschitzian) objective
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function /0, nonsmooth (Lipschitzian) endpoint constraint function / i , without CQ
and RA. Actually, we will even derive the maximum principle for (1), (2), (4) with
nonfixed boundary conditions of the form

x,{t, 0) e F,(f, x(f, 0)), / € n , := [0, r ] ,

jct(O, r) e F2(T, x(0, T)), T € n 2 := [0, ^ ] , JC(O, 0) e Fo, (9)

where F, : n , x R" -+ 2R\ F2 : T\2 x /?" -+ 2s", Fo C /?".
Applying this basic result to (5), we first derive a maximum principle for (1), (5),

(4) with nonsmooth data and without any convexity or linearity assumptions.
Our continuous approximation technique of solutions of inclusion (2) by solutions

of a linearized inclusion of inclusion (8) is based on a continuous version of a relax-
ation theorem for inclusion (2) to be proved in the paper. Using this theorem and
also Warga's open-mapping principle [48], we shall be able to derive that (6) holds
if 0 e intkRA(T, Sf) VX 6 dxf(ic(T, &)), where dxf(x(T, &)) denotes Clarke's
generalized Jacobian of / at x(T, &) and RA(T, £?) is the reachable set of a linear-
ized inclusion of inclusion (8). So if x{t, x) is an optimal solution of (1), (9), (4)
then 0 i intkRA(T, &) for some k e dxf(x(T, &)), which yields the existence of
0 € Rm, \\6\\ = 1 such that k*6 e RA(T, &)+. But in inclusion (8), coF already has
convex values and so as in [43], a maximum principle for (l)-(4) follows by choosing
a suitable linearized inclusion of inclusion (8) such that every vector of RA(T, 3?)+

corresponds to a solution of adjoint inclusions satisfying the maximum condition.
Aside from serving to derive a maximum principle for (l)-(4), the relaxation

theorem has an independent interest. Futhermore, it plays an important role in the
study of optimization problems involving (5) with relaxed controls, which will be
considered in a subsequent paper (see for example [39] for the definition of relaxed
controls of (5)). We mention also that even in its simplest form, our relaxation theorem
is a nontrivial extension of the Filippov-Wazewski relaxation theorem for differential
inclusions. Indeed, for differential inclusions, it is known (see for example [2,17,19])
that the Filippov-Wazewski relaxation theorem follows from a Filippov theorem and a
Lyapunov theorem for Auman integrals. For inclusion (2) we proved also a Filippov-
type theorem [44] and when the map F of inclusion (2) does not depend on partial
derivatives xt{t, T), xT{t, r) , the relaxation theorem for inclusion (2) can also be
proved simply by using Lyapunov theorem [41]. However, when F depends on
partial derivatives x,(t, r) , xr(t, x), it is not clear how we could derive the relaxation
theorem because, as will be seen later, in that case the traditional Lyapunov theorem
is no longer suitable. In order to obtain a relaxation theorem for inclusion (2) for the
latter case, we shall prove a stronger version of the Lyapunov theorem for Auman
integrals in the plane (Theorem 3.1).

The organization of the paper is as follows. Section 2 is the problem statement. In
Section 3 we prove a Lyapunov theorem for integrals in the plane and some auxiliary
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results. These results are used for the proof of a relaxation theorem stated in Section
4. Section 5 is devoted to the maximum principle for (1), (2), (4), (9) and (1), (4), (5).
Finally, in the Appendix, we prove a continuous version of a Filippov-type theorem
for inclusion (2).

2. Problem statement

In what follows we shall derive a necessary condition for an optimal solution of
(1), (2), (4), (9) in a form of the maximum principle. The following assumptions are
made.

A.I. The map F is S£ ^ SS{R?n')-measurable with compact values and there is a
constant M such that

haus(On,F(t,x,x\x2,x3))<M for a.e.(t,x) e n, for every A*2,*3 eR".

A.2. For every /, x the map F(t, T, •, •, •) is Lipschitzian with Lipschitz constant
k > 0, that is,

haus(F(t, x, u\ pl,qx), F(t, x, u\ p\ q2))

<k{\\ul-u>\\ + \\pl-p2\\ + I?1 -<72||), V f , T , « V , 9 ' (i = 1,2).

A.3. The function / := (f0, fx) is Lipschitzian with Lipschitz constant k. By
dxf(x(T, &)) denote its Clarke's generalized Jacobian at x(T, &).

A.4. For every u e R" the maps Fx(•,«), F2(-, u) are measurable with compact
values and there are functions fju fj2 integrable on Oi and U2 such that

F,(f, 0) c i?,(0Sn Vf e n , , F2(r, 0) c m(i)Sn VT e n2.

A.5. For every (t, x) e n , the maps Fx (t, •), F2(x, •) are Lipschitzian with Lipschitz
constant k.

Throughout the paper, by a solution to the inclusion (2), (9) we mean an absolutely
continuous function u(t, x) on FI with an integrable derivative u,r(t, x) satisfying
inclusion (2) almost everywhere (a.e.) on FI and satisfying the boundary conditions
(9) a.e. on ri] and U2.

We refer the reader to [33] for the definition and the main properties of abso-
lutely continuous functions of two variables. In particular, a function u is absolutely
continuous on FI if and only if it can be expressed in the form

u(t,x)= f [ f(i,x)dxdt+ f g(t)dt+ I hix)dx + u(0,
Jo Jo Jo Jo

0)
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360 H. D. Tuan [7]

with /(- , . ) g L ' (n) , g ( ) e L'Cn,), *(•) 6 L'(n2). Hence the space Q of
absolutely continuous functions u:T[ —*• R" becomes a Banach space when endowed
with the norm

Jo
t,O)\\dt

f ||«r(O,r)||rfr+ / f \\un(t,r)\\dxdt.
Jo Jo Jo

In the sequel, CompR" (ConvR" respectively) will denote the collection of all
nonempty compact (convex and compact, respectively) subsets of R" equipped with
the Hausdorff metric haus(-, •), K+ the positive polar of a set K in Banach space X,
that is,

K+ = {heX* : (h, a) > 0 Vae AT},

and Ll(D, RK)(L°°(D, RK), respectively) the space of integrable (measurable and
essentially bounded [55, page 34], respectively) functions from D to RK. When for
the sake of simplicity we take K = n, we write Lx (D) instead of L1 (D, R"). For any
set-valued map G, coG denotes the map u —> coG(u) (closed convex hull of G(u)).
Also the following notation will be used:

V̂ i and W2: Banach spaces of absolutely continuous functions u : nx —>• R", u :
n 2 —> R" endowed with the norms

=«(0)
Jn,

dt,
Jn2 dx

dx;

Z(u)(t, x) := (u(t, r ) , u,(t, r) , uT(t, r)) V« e Q;
mes(D): Lebesgue measure of subset D of R2 (or Rl, depending upon the context);
D\< = [x : (t, T) e D], D,r = [t : (t, x) e D] for every D c U. Obviously,

I!,, = n2, n,r = n, v(t, r) e n;
On: the null element of R" and Sn(D; a) = {x, dist(x, D) < a) for D C R". If

there is no confusion we also write0 instead of On and Sn instead of Sn(On; 1);
XD(-) '• characteristic function of D;

I m+l 1

Y = (yi, K2, • • •, y«+i) : yi > 0, i = 1, 2 , . . . , m + 1, 2 J tf < 1 | ;

A* : the adjoint map of a closed convex process A denned by

p € A*q -O- (-/?, ?) € (graph A)+.

Recall that a closed convex process A is a set-valued map, whose graph is a closed
convex cone.
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3. A Lyapunov theorem and auxiliary results

In this section we state preliminary results that are needed in the proof of the
relaxation theorem of the next section.

The following Lemma 3.1 can be proved simply as Lemma 2 [11].

LEMMA 3.1. Let J?be a positive integer, K be a compact set of a metric space and
Tj(x), j = 1,2,..., ^ , x e K be measurable subsets ofU satisfying

7},(x) n Th(x) = 0 V/, ? j 2 , Uff,Tj(x) = U,

0 = lim mes(Tj(x)ATj(x')) = lim mes(Tj(x),,ATj(x'),t) (10)
x-*x' JT->JT'

= lim mes(Tj(x)iTATj(x%) V; = 1, 2, . . . , J.
x-*x'

Letvji-,-) € L ' (n ) , j = 1 ,2, . . . , J, and let g be defined by

g(x)(t, T) = ^XTjwit, X)Vj(t, X).

Then g is a continuous map from K into L'(ri) .

Let D be a rectangle in n and let a = {/', I2, ..., IN) be a given finite covering
of D consisting of rectangles / ' , i = 1,2, ...,N, satisfying UjL,/" = D and
/"' n Z"2 = 0 for every v, ^ v2. Denote by y(D, a, R*?) the set of measurable
functions taking constant values of R<? in each I" € a.

Let {<Pi(x), i = 1,2, . . . , J/\ be a family of continuous functions from K to R+

satisfying J^i <PiW = l and / ' - « = 1, 2 , . . . , ^ , be functions of y(U, a, R
Define a function / : K -> L\U, R<?) by setting f(x) = J^Zi ViWf' v ^ e K.

LEMMA 3.2 For every continuous partition of unity {pj(x)}f=x in the compact set
K there exist sets Tj(x) C n , j = 1,2,...,^, satisfying (10) and such that the

following relations hold for every j = 1,2,..., of, and x € K.

[ f(x)(t, r) dxdt = Pj{x) I fj(x)(t, x) dxdt, (11)
JTj(x) Jn

[ /(*)(*, x)dx = Pj(x) I fj(x)(t, x)dx Vr e n,, (12)

f(x)(t, x)dt = pj(x) [ fj{x)«, x)dt Vr e n2. (13)
Jn,
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D

D, D,

F I G U R E 1. T h e s e t / : = D i £ > 2 £ > 3 0 4 is d i v i d e d i n t o s u b s e t s I,(x), I2(x), . . . , I j (x).

PROOF. The proof consists of two steps.
Step 1. Let / = DiD2D3D4 be a arbitrary rectangle from II. Divide segment

D\D2 (D4D3, respectively) by points f0, h,... ,tj %,t[ t'j, respectively) satis-
fying f0 = A (*J = £>4), tjf = D2 (t'j = D3), \tj-tM\ = pJ(x)\DlD2\ (\tj-tj_J =
Pj(.x)\DAD3\), j = h2,...,J? (seeFigure 1).

We also divide segment D4D1 (D3D2, respectively) by points T0, t\,..., zj (TQ, X[,
..., T'J, respectively) satisfying r0 = D4 (T^ = D3), Tj? = Dx (x'j = D2), |T, -
Xj.x\ = Pj{x)\D,Dx\ (|T; - T;_,| = Pj(x)\D3D2\).

Set

x) = U t'f

where by tjtj+ix'j+ixj (tjtj+lT;+1 T;, respectively) we denote the trapezium with vertices
tj, tj+i, x'j+v x'jit'j, t'J+x, xj+i, xj, respectively), j = 0, 1, 2 , . . . , / - 1.

It is easy to prove that for every j = 1, 2 JF, (t, r) 6 / ,

mes(Ij) = pj(x)mes(I), mes(In,) = pj(x)mesU\,),

We shall prove that limmes(Ij(x)AIj{x')) = 0, j = 1, 2 , . . . , ^ . Indeed, for every
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[10] Nonconvex Darboux problems 363

I < </ we have

lim mes ((u}=I/y(*)) A (U<=1/,(*'))) = Urn -/>,(*')) mes(/) = 0,

so

lim mes (/,•(*) A/,-(*')) = lim mes ((uj,=1/y(jc) \ UJ^/yOOJ A

< lim mes ((u/.= I / ,(*)) A (uj,=1/,,(*'

+ Jim I»M ((u/,11,/,.(*)) A (u/i1,/;.

= 0.

Analogously, for every (/, T) e /, ,/ = 1, 2 , . . . , ^ ,

Jim me* (/;(JC),, A/;(jc')|,) = 0, lim mes (/,(*),, A/y(jc')|r) = 0.

Step 2. Let a = {/', / 2 , . . . , /w} be a covering of Fl consisting of rectangles
V, j = 1,2,..., N such that f(t, T) = / ' " V(r, r) e /", i = 1,2,.. . , Jf, v =
1,2,..., N. Then from the definition of / we have also f(x)(t, r) = fv(x) = const
for (?, T) G /". For every /", x € K, as shown in Step 1, we can construct IJ{x)
satisfying

mes(I](x)v) = Pj(

mes{I?(x){t) = ft

Set 7}(jt) = U*=I//(JC). Then for every ; = 1, 2 /,((,t)en,

mes(Tj(x)) = Pj(x)mes(U),

mes(Tj(x)u) = Pj(x)mes(n2), (14)

and

Jim m« (ry(*)Ar7(je')) = Jim mes ((UJL,/;(JC)) A (UJL,//(*')))J
lim

< lim
~ x'-*x .

= 0.
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Analogously,

lim mes (Tj(x)uATj(x%) = lim mes (TJ(X){TATJ(X%) = 0.

Thus the sets /,•(*) satisfy (10).
Furthermore,

f(x)dxdt = y v w

[11]

i = l p = i

AT

, = 1 u = l

D = l 1 = 1

f f{t,x)dxdt,
Jn

and analogously, for (t, r) 6 n ,

f f{x)dx,
Jn2

I f{x)dt=Pj{x) I f(x)dt.

This completes the proof of Lemma 3.2.

The following modification of a Lyapunov theorem for integrals in the plane plays
a key role for the proof of the relaxation Theorem.

THEOREM 3.1 Let G : n ->• CompR" be a measurable map satisfying the condition
haus(On, G(t, r)) < M < +oofora.e. (t, r) € n .

Then for every e > 0 and for every measurable function v : FT —• R" satisfying

v(t, T) € coG(f, T) for almost all (t, r) € n ,

there exists a measurable function v : Fl -> R" satisfying

v(t, r) e G(t, r) for almost all (t, z) e n ,

and such that

max
«,r)en

/ f (v(t,r)-v(t,r))drdi
\Jo Jo

+ max < ess sup
'£"2 I / e n ,

+ max sup

f (V(t,r)-V(t,r))d
Jo

i)(i, T) - V(J, T)) rf
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PROOF. Divide Ux (U2, respectively) into N equal subintervals by the points /, (r,-,
respectively), i = 0, 1, 2 , . . . , N, t0 = x0 = 0, tN = T, xN = &. The natural
number N will be chosen later.

Let h = max{T/N, 3T/N} and Ylit = {(/, r ) : t,f < t < ti+uxt < x < xe+l],
i,Z = 0,l,2,...,N—l. From Lusin's Theorem there exist functions ex (h), €2 (h), e 3 (h)
and an at most countable system of rectangles {n,} C Fl satisfying

limmax

mes

,€2(h),e3(h)} = 0,

intn,,, n intn,2 = 0 V/j, ^ rj2,

mes (U^n^) > mes(Jl) — h,

n \ U^n,)|r n n 2 ] < €3(h) for almost all ? e n , ,

(15)

(16)

mes ((Tl \ U, ,n,) | r fl n , ) < e3(h) for almost all x € n 2 , (17)

and such that for /x = (i, I, rf), I1M = Tlu n n^, and

v{t,x)dxdt, {t,x)eT\ll

vl(t) =

r7
, ) " ' / v(t,

•'n(,|,

v nM|r

T)rfr, (r, r) e nM,

(?, r) e nM,

(18)

the following relations hold, whenever (t, x), (t, r ') € FIM with 0.

k -
(19)

(20)

By Caratheodory's Theorem, for every (t,x) e n,, there exist otj(t, r ) > 0,

E"=i «;( ' . T) = 1 and Uj(t, x) e G(f, T) such that

n+l

;=•

By virtue of (19), this implies that for (rM, rM) e nM, there exists w,(f, r ) €
satisfying

n+\

that is, u(/, r ) e Sn{coG{t^, TM); /I + e,(/j)). By [7, page 288] this yields

IV € S, (coG(fM, TM); /i + c,(A)) .
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Therefore, again by applying Caratheodory's Theorem, we can find aw > 0,
= 1 and MW e G(^, rM) satisfying

n+l

Taking account of (20), we obtain also

n + l

n+l

(21)

(22)

(23)

fo

ft

fi

fn

f n+l

FIGURE 2. The set

to, K+\ = '"+1, To = t

:= totn+it'n+xt'o is divided into subsets n w , j = 1, 2 , . . . , n + 1 with xn+t =

By the method used in Step 1 of the proof of Lemma 3.2 (see Figure 2), for every
n^ we can find a covering {n w , j — 1, 2 , . . . , n + 1} and function MM(/, r) taking
the constant value MW on every n w such that for every (t, r) € FIM,

n+l

«M(r, x)dxdt (24)
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= mes(UllU) ' / ull(t,x)d
JnM,

= mes(n^r)~
l / ull(t,

Define the measurable function uN(t, x) by setting

x)dt.

367

(25)

(26)

u (t r\ = 1 ""('' T) f0r (t' T) € n"NK ' ' \ u(t,x) for {t, x) ^ UMnM> where w(f, r) e G(t, r).

Set Ai5(/, r) = v(t, r)-uN(t, r). From(22),(16),(18),(25),for£ = 1, 2 , . . . , N, t g
n l t we have

< 2Me3(h) +

= 2M€3(h) +

= 2Me3(h) +

dt

(V(t,x)-U^t,t))dx

mes (nM,,) v^it) - mes (U
n+l

< e4(A) := 2Me3(/i)

Consequently

max {ess sup

and analogously, from (23), (17), (26),

2A).

V(f ,T)en,

max \ ess sup

for e5(h) := 2Mf3(/i) +

, x)dt

+ c2(A) +.2A), and from (21), (24), (15),

(27)

(28)

max Iff
\Jo Jo

Av(t, x)dx dt < max / / Av(t,x)dxdt
'••' I J o Jo

2h(T

(29)

:= 2M/J

Now, by choosing the measurable function vh(t, x) 6 G(t, x) for almost every
(t, r) e n such that

vh(t,x) = uN(t,x) for (f, T) $ U^nM,

|nw(/, T) - »*(/, r ) | = dist(«w(r, T), G{t, x)) for (r, r) € UMnM,
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we easily obtain that whenever (/, r) e UMFIM,

\\uN(t, x) - vh(t, x)\\ < haus (G(?M, T,

and consequently, for every (t, x) e FI,

(uN(t, x)-vh(t, f)) «

[15]

ir/ /
o Jo

On the basis of these relations and (27)-{29), we can take a function i(h) satisfying
lim e(h) = 0 and such that
h-*0

I f f (v(t, f) - vh(i, f)) dfdF
I Jo Jo

max j ess sup / (v(t, r ) — vh(t,
ren2 I /en, Jo

ess sup / (w(F, T) — vh(t, r))
ren2 I Jo

Now the statement of the theorem follows by choosing N so large that e(h) < e and
v{t, x) = vh{t, x) . This completes the proof of Theorem 3.1.

4. A relaxation theorem for hyperbolic inclusions

Denote by _S? the cr-algebra of the Lebesgue measurable subsets of FI, and £8(V)
the family of all Borel subsets of a separable Banach space F. Recall that a map
FM x F ->• 2R" is called ^f (g) ^(r)-measurable if for any closed subset C of fl"
one has that {(f,T,z) e F I x F : F t ( ( , r , z )nC ^ 0 } e J5f(g)^(F).

First, we assume that G : FI x Rn x R" x R" x F -»• Comp/?" and consider the
hyperbolic inclusion depending on a parameter

0, y) (30)

(31)

with the boundary condition

ii(r,0)=ii(0,T) = 0, ( r , r ) e n .

Suppose that the map G satisfies the following conditions.
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B.I. G is Jzf <g)@(R3n x D-measurable.
B.2. For every (t, x) € n , y € T the map G(f, r, •, •, •, y) is Lipschitzian with

Lipschitz constant k.
B.3. There exists a continuous map S : T -» L ' (n , /?) such that haus(On, G(t, x,

On, On, On, y)) < S(y)(t, x) a.e. in n .
B.4. For every (t, r) e n , (x1, x2, X3) € /?3" the map G(f, x, x\x2, x3, •) is con-

tinuous.

Now, let y -*• y(-, y) be a given continuous map from f into Q satisfying

Let
Z(y(yMt, x) := (y(t, x, y), y,(t, x, y), yT(t, x, y))

and
yS(f, x, y) = Aist(ytx(t, x, y), G(t, x, Z(y(y))(t, x), y)). (32)

For the proof of the main result in this section, we need the following theorem,
whose proof will be given in the appendix.

THEOREM 4.1 For every e > 0, there exists a function u : Y\ x T -+ R" such that

(a) for every y e T the function (t,x) —> u(t, x, y) is a solution of inclusion
(30), (31);

(b) the map y —> u(-, •, y) is continuous from T into Q;
(c) for every y eV, (t, x) G II,

/ / \\uIT(t,x,y) - yn(t,x,y)\\dxdt
Jo Jo

< I I 2(k + l)exp(kg(t,x,t,x))iro(y)(i,x)dxdi + e, (33)
Jo Jo

where

to<,YW, x) = dist(ylz(t, x, y), F(t, x, Z{y(y))(t, x), y),

g(J, x, t, x) = 6((r - F)(r - f) + (/ - t) + (r - f)). (34)

With the choices T = £>andy(/,r, «) = u(t, x)-u(t, 0)-w(0, r)+«(0,0) V(t, x) e
n,M(-, •) 6 Q and G(t, x, xl, x2, x3, u) = F(t, x, x1, x2, x3) VM e Q, Theorem 4.1
yields

COROLLARY 4.1. For every e > 0 there exists a continuous map r from Q to the
solution set &(F) of inclusion (2), (31) such that

f \\u,T(t, x) - r{u)n(t, r)|| dxdt < a$(u)
Jn

+ e VM(-, •) e Q,
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a = 2(k + \)exp(6(T P + T + &)), (35)

= a [ [dist(un(t, r ) , G(f, x, Z(«)(f, T)) + *||u(f, 0) + «(0, r) - n(0, 0)||

Now, we return to inclusion (2), (31) and its convexined inclusion (8), (31).
and &(coF) denote the solution sets of inclusions (2), (31) and (8), (31), respectively.

The main result in this section is the following relaxation theorem for inclusion (2),
(31).

THEOREM 4.2. Let there be given a compact subset K C @(coF) C Q. Then for
every e > 0 there exists a continuous map r( : K -*• 8$(F) such that \\re(x)(t, r) —
x(t,T)\\ <eVx e K, (t,r) e H

PROOF. Define

a := min{e

with a defined from (35) and

IT + 13?)T3T), e/32},

S = a/M.

(36)

(37)

Divide 11] (n2) into J/ equal subintervals by the points r, (T,, respectively) i =
0, 1, 2 , . . . , J/t t0 = T0 = 0, tjf = T, TJS = ST such that (/, - /0) < &/T and
(Ti - T0) < 8/&, that is,

(38)

mes{[0, t] x [T,_,, T,]} < S, mes{[t^u t,] x [0, T]} < 8

Let {Uoi^ix')}^ be a finite covering of K consisting of balls Uo/^(xJ) of radius
o/jY2 around xj e K and let {p(x)}f=\ be its corresponding continuous partition of
unity.

By Theorem 3.1 we can choose Vj(t, x) € F(t, r, Z(xj)(t, T)) satisfying

I f f (xjT(f,T)-Vj(t,T))dTdt

(xjT(f,r)-Vj(t,x))dt\+ess sup

+ess sup / (xjr(t, T) - vj(t, T)) dx (39)
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Take a finite covering {/"} =̂i °f H consisting of rectangles /" and function ij e V (TV)
taking constant values in each /" such that

J, j = l,2,...,i/. (40)

Write /»" := /» n ([*,_,,/,] x [t>_,, T<]).
From Lemmas 3.2 and 3.1, for the continuous partition of unity {p(x)}yl, and

for every IvU there are sets / / " C /"", j = 1, 2 , . . . , J, satisfying the following
conditions.

2. FarTjt(x):=uHlI?
u(x),

f vj(t, x)dxdt = pj(x) I" [' Vj{t, x)dxdt, (41)

I vj(t, x)dx = pj(x) I vj(t, x)dx V/ € [t,-u ti], (42)

/" Vjit, x) dt = Pj(x) [ ' Vj(t, x) dt VT G [xt-u xi\. (43)

3. For 2}(JC) := U^, U^, r/'(jc), the map g : / : - • Ll(U) defined by

g(x)(r, T) = Yf=\ XT,M(t, x)vj(t, T) VX e A", (r, r) e n is continuous.

Consider the map y : K ^>- Q such that

y(x)(t, x) = f [ g(xKt, x)dxdi Vx € K, (t, x) € n.
Jo Jo

From (39-41) for i = 1, 2 , . . . , jV, 1 = \,2,...,JV,

g(x)(t, x)dxdt = J2 f [' XTJMU, x)vj(t, x)dxdt[ [
s r

= T Vj(t,
x)dxdt

J^ f f= J^ Pfc) f f Vj«, x) dxdt + o/jY2.Sn

f f ' (ZjO. r) - vj{f, x)) dxdt
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y=i

/ f'{vj(t,r)- xjT(t,r))dxdt

f f' */>-

y=i

Since

we have

(44)

I / ' f'{g(x)(t,t)-xn(t,T))drdt

^ p;(jc) / " ' / " ' (4(f , r) - jc/r(r, T)) dzdt
j=\ J'i-i JTI-I

+ 3a/js2

(45)

Analogously, from (39), (42), (43), for t e (/,_i, ?,], T e (rr_,, T^],

/

'r/

i-i

, r) -*„ ( / , V / («,(/, r) - u;-(r, T)) dx

£ > , « f'{vj(t,T)-Vj(t,r))dt

(W;a, T) - X'n{t, T)) rf

(x/T(r, r) - xlt(t, x)) dx
i=\

•'•• II

(g{x)(t, r) - xn(t, r))dt\\ < a/^T2 + r,2(x),
.-i II

(46)

(47)

where, in view of (40), (39) and (44),

r'lpi
/ r)2(x)dx < (48)
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From (45), (37), (38), for (t, x) e (/,_,, f,] x (r*_,, x(], we conclude

373

\\y(x)(t,r)-x(t,T)\\ <

+ (

(g(x)(t,x)-xn(t,r))dxdt

' j\g{x){f,x)-xti{f,T))drdt

f f\g(x)(t,i)-x7T(i,x))dxdt
ti Jo

4cr = (49)

Analogously, from and (46),(47),

\\yl(x)(t,x)-xl(t,x)\\ < (s(xKt,x)-xIT(t,r))dx

\f (g(x)(t,T)-xlf(t,f))di

\\yr(x)(t, T) - xT(t, T)||

where, in view of (48), (37), (38),

(50)

(51)

r)i(t)dt + I
Jo Jzt

vt € n,,

/ r)2(x)df:= I m(r)dx+ I f \\g(x)(t, x) - xn(J, f))|| dxdt < 5a
^o Jo Jti Jo

VT 6 n2 . (53)

Now, for every fixed x € K, {t, x) e n , there exists j e { 1 , 2 , . . . , J?) such that
(t, x) 6 Tj(x) and mes(Tj(x)) > 0. Thus \\xJ -x\\Q < O/JY2 and furthermore, from
(49), (50), (51),

(r, T), F(t, x, Z(y(xMt, r)))
<dist(vj(t,x),F(t,x,Z(xj)(t,x)))

+ k (\\Z(x - xJ)(f, r)|| + \\Z(x - y(x))(t, r) |)

t, x) (54)

But it is easily seen that, whenever ||JCJ — x\\Q < a/^V2 < a,

\\Z(x-xj)(t,x)\\ dxdt <(T? + 2T + 23T)o.
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Hence, together with (52-54), this implies

/ dist(g(x)(t, T), F(t, x, Z(y(x))(t, r))) dxdt < ko(\0T5T + 7T + 1ST).
Jn

Consequently, by Corollary 4.1 there exists a continuous map r : Q —> 3%(F) such
that

\\x(t, T) - r(x)(t, r)|| < ad{\0T2r + 1T + 1 ?)T& + e/2 Vx e y(K). (55)

Define r( : K -s- ^ ( F ) by setting re(;c) = /-(^U)). From (55), (49), (36)) we obtain
for every {t, r) e n and x e K,

\\rt(x)(t, T) - x(t, r ) | < |r(y(jc))a, r) - y(x)(t, r)|| + |y(jc)(r, T) - *(r, T) |
< €,

completing the proof of Theorem 4.1.

Before closing this section, let us state the following consequence of Theorem 4.2
and Corollary 4.1.

COROLLARY 4.2. For every e > 0 and for every compact subset K of the solution set
TR(coF) of inclusion (8), (9), there exists a continuous map refrom K to the solution
set TR(F) of inclusion (2), (9) such that \\re(x)(t, x)-x{t, x)\\ < e Vx € K, (t, x) €

n.

5. Controllability and extremality for nonconvex Darboux problems

We begin this section with the following definition on controllability and extremal-
ity in inclusion (2), (9).

DEFINITION 5.1. The inclusion (2), (9) is called f-locally controllable around the
solution x(t, x) at point (7\ &) if (6) holds. When (6) does not hold then the solution
x(t, x) is called an f-extremal solution of inclusion (2), (9).

Obviously every optimal solution of problem (1), (2), (4), (9) is also a /-extremal
solution of inclusion (2), (9). So necessary conditions for /-extremal solutions are
also necessary conditions for optimal solutions.

Let us recall some definitions from [3, 27].

DEFINITION 5.2. Let X be a Banach space and K c X. The intermediate tangent
cone to K at a € K is the cone

I(K;a) = {v e X : V/i, - » 0 + , 3v, ->• v such that a + h,:V, € K).
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DEFINITION 5.3. Let G : /?* - • CompR" be a set-valued map which is locally
Lipschitzian at a e DomG and let b e G(a). The derivative of G at (a, b) is the
set-valued map dG(a, b) : Rm -*• 2R" such that

v e dG{a, b)(u) & («, u) e /(graphG; (a, 6)),

or equivalently

v 6 dG(a, &)(«) <3> lim dist ( v, G ( ° + , ~ ) = 0.
*->o+ \ h )

We refer to [3] for general properties of / (K; a) and dG(a, b).

DEFINITION 5.4. Let K c R" and a e K. A closed convex cone JZ is said to be a
regular tangent cone to K at a if there exist continuous functions (JO, : M D Sn -»•
RnVh >0 satisfying

lim max ||o^(u)||//i = 0

and a + Au + qh{v) e AT VA > 0, u € ^ D Sn.

This cone is not uniquely defined and when K is convex then the cone I(K;a) is
also a regular tangent cone to K at a [27].

Now, let {A(t, T), (/, T) G n} ({/4j(O, f € 111}, {A2(r), T G n 2 ) , respectively)
be a family of closed convex processes from R" x R" x R" (R", R", respectively) to
R" satisfying the following assumptions.

C.I. For all (u,p,q) e R" x R" x R" (u e /?", u e R", respectively) the
map (t, T) ->• A(t, T)(U, p, q) (t -> A](O«, r ->• A2{x)u, respectively) is
measurable on n (FT], U2, respectively).

C.2. For all (t, r) € Fl (t e 111, x e FI2, respectively) the map (u,p,q) -»
/4(r, T ) ( M , / J , ^ ) (M ->• y4i(O«. u -*• A2(r)u, respectively) is Lipschitzian
with Lipschitz constant kt > 0.

C.3. graphA(t,r)CgraphdcoF(t,T,Z(x)(t,T),xn(t,T))) for almost all (t,r) e FI,
graph/4i(O C graphdFi(/, x(f, 0), x,(t, 0)) for amost all t € FI,,
graphy42(r) C graphrfF2(T, Jc(O, r) , Jcr(O, r)) for almost all z € FI2,
where dcoF(t, x, Z{x){t, x),xtT{t, r)) (dFt(t,x(t, 0), Jc,(r, 0)), rfF2(r,i(0,
r) , i r (0, r)),respectively)isthederivativeofcoF(/, r, •, •, )(Fi(f, •), F2(T, •)»
respectively) at (Z(x){t, x),xtT(t, T))G graphcoF(t, x, -, •, )((i(r,0),x,(r,0))
6 graphF^, •), (x(0, T), xt(0, x)) e graphF2(r, •), respectively).

Let ^ be a regular tangent cone to Fo at Jc(O, 0). To the inclusion (2), (9) let us
associate the inclusion

wn(t, x) e A{t, x)(Z(w)(t, x)), (t, x) e Fi, (56)

w,(t,0) € Ai(t)w(t,0), teUi,

wT(0, x) e A2(x)w(0, r ) , r € U2, w(0,0) e Jt. (57)
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Let &(A) denote the solution set of the inclusion (56), (57) and as before TR(F) and
TR(coF) the solution sets of inclusions (2), (9) and (8), (9) respectively. It is obvious
that 3%(A) is a convex cone in Q, and moreover

LEMMA 5.1 [42, Theorem 3.1]. Let there be given functions w' e &(A), i =
1, 2,...,(. + 1 and let functions w(y) € B$(A) be defined by w(y) = £f*| YiW1

for y £ Sl. Then for every 8 > 0 one can find a €0 > 0 such that there exist
xeo(-, •, y) e TR(coF) satisfying

xeo(t, T, y) = x(t, T) + eow(y)(t, r) + o(€0, y, t, z), (t, r) e U,

0, Y, •,-)llG/eo < S,

and the map y —>• o(e0, y, •, -)from &l into Q is continuous.

The following result of Warga on an open mapping theorem plays an important
role in deriving our main results.

LEMMA 5.2 [48, Theorem 2.3]. Let 8 < 1, g( ) be a map from R" to Rm which is C1

in a neighborhood of zero containing 8Sn. Assume that for some 0 > 0 and every
6 eSi""

psm c
Then for every continuous map ty : 8Sn -> Rm such that

sup \\g(9)-if{9)\\<SP/32t

we have
t{On) + (5/9/16)5,, C

Now we can state the first result of this section.

THEOREM 5.1. Inclusion (2), (9) is f-locally controllable around x(t, r) at point
(T, S?) if for every X € dxf(x(T, 9")) inclusion (56), (57) is X-locally controllable
around the null solution at the point (T, &), that is, if

Om e in\X(RA(T, ?)) VX € dxf(x(T, &)), (58)

where RA(T, &) is the reachable set of the inclusions (56), (57) at the point (T, S?).

PROOF. The proof proceeds in two steps.
Step 1. First we notice that since X(RA(T, 87"j) is a convex cone, the relation (58)

implies Rm = X(RA(T, 3T)) VX € dxf(x(T, &)). Hence we can show that for every
/3 > 0 there exist n\ and M; e RA(T, &), j = 1, 2 , . . . , nu such that

e dxf(x(T, P)), (59)
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where «(<£"') = j « ( y ) = £ yjUj : y = (y, , y 2 , . . . , - , y».) e <T") .

Indeed, let b}; e Rm, j = 1, 2 , . . . , m + 1 be such that 2psm c 6(<£""+1), where
m+l

= ^yyft,-, y = (yi, y 2 , . . . , ym+i) e S""+1. Clearly there exists e > 0

such that psm c b'(£""+i), whenever ||fy - ^.|| < e, 7 = 1, 2 , . . . ,m + 1 andm+l

For every A. e dxf(x(T, &)) there exist «{ e RA(T, 3?) satisfying k(u{) =
j , j = 1, 2 , . . . , m + 1. Set €X = e/ max \\u{\\ and ^ ( A ) = {X' e 3 , / ( i ( r ,

y=l,2,...,/n+l
: ||A.' - A|| < ek}. Obviously {jY(k), A e dxf(x(T, &))} is a covering of

and because the latest is a compact set there exists a finite subcovering
,), i = 1, 2, . . . , € } .

For every A e dxf(x(T, £?)), there exists i such that A e ^K(A,) and so ||A(M(.) -
h{u{.)\\ < HA-A.-IMIuijI < e J K j l < 6.Hence)35m C A(<(^m + 1)) with«(,(y) :=
m+l

(.. If we set nx = Z(m + 1) and us = u[x, j = 1, 2 , . . . , m + 1, um+i+j =

«{2, 7 = 1, 2 , . . . , m + 1, , Mn, = M™£
+1, the desired relation (59) follows.

Now from the separation theorem, it is easily seen that there exist fi > 0, p > 0
such that for every A € Rnxm satisfying dist(A, dxf{x{T, &))) < p we have

/35m C A(M(<?"')). (60)

Let Wj{t, T), 7 = 1, 2 , . . . , ri\ be solutions of inclusion (56), (57) such that Wj(T, 3?)
= Uj,j = 1,2, . . . ,r t i .

Set iy(r, r, y) = X!;li )0'u';(r' T) v / G R"1 • Obviously w(t, x, y) is also a
solution of inclusion (56), (57) for every y e <£"".

For every e > 0 define

<4 = sup{dist(V/(x), dxf(x(T, &))): |JC - x(T, &)\\<e,xeRn, V/(JC) exists}.

By the upper semicontinuity of Clarke's generalized Jacobian we have lime^.0+ de = 0.
In view of Lemma 5.1 and the last written relation we can choose e0, 60, so small that
de0 < P,

\\eow(T, p, y)\\ < eo/2 Vy € <f\ (61)

and there are solutions x(t, T, y) of inclusion (8), (9) such that the map y —> x(-, •, y)
is continuous and satisfies

VyeT, (62)
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where
y(t, x, y) := x{t, x) + eow(t, x, y).

From Corollary 4.2 there exists x{t, x, y), y e <?"' such that the map y -+ x{-, •, y)
is continuous from S"x to TR(F) and satisfies

\\x(.T,£r,y)-x(T,?,y)\\ < eoj8/128jt Vy e S"\

Combining this with (62) yields

||y(7\ &, y)-x(T, ST, y)\\ < €0P/64k Wy 6 g*\ (63)

Step 2. Choose a mollifier *(•) : R" -*• [0, 1], that is, a function x(•) of the class
C°° with support in Sn satisfying fRH x(x)dx = 1. For every x € R" define

Mx)= f f(x-vy)X(y)dy,

where
v = min{eo/2, e0P/64k}. (64)

The function f0 is of the class C°° and satisfies

(65)

V/oW= [ Vf(x-vy)X(y)dy.
J

Hence
V/O(JC) 6 clco{Vf(z) : \\z-x\\ < v, V/(z) exists}.

Define also 0(y) = fo(x(T, &) + eow(T, <7', y)). Then for every fj, € S"x one has

( T) + eow(T,

Because for every y e <§"",

e cl {V/(z) : \\z - (x(T, 3T) + eow(T, ST, y))\\ < eo/2, V/(z) exists},

it follows that

dist(V/0(Jc(7\ 9) + eow(T, 9, y)), 3,/(i(7\

< sup{dist(V/(z), dxf(x(T, 3T)))) : ||z-Jc(T,

< ||z - (x(T, ST) + eow(T, 9, y))\ + \e9w{J, 9, y)

< e0, V/(z) exists}

< dea < p.
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On combining this with (60) we have eopSm C V0(yKn i Vy e <£"". Define the
function i/r by setting

This function is continuous as the composition of the continuous functions /(•) and
x(T, &, •). Moreover, by virture of (63), (64), and (66) for every y e <£"" we have

\\t(Y) - <KY)\\ = ||/(*(7\ ST, y)) - fo(y(T, P, y))\\
s\\f(x(T,?,y))-f(y(T,£r,y))\\

< k\\x(T, 3T, y) - y(J,

Therefore by Lemma 5.2,

f(x(T, ST, Oni)) + (€0P/l6)Sm C

= [f(x(T, &, y)):ye <£""•} c f(RF(T,

Since by (63), ||/(Jc(r, 3?)) - f(x(T, 3', 0n,))|| < eo/3/64, from the above relation
we also have f(x(T, &)) e xntf(RF{T, &)), completing the proof of Theorem 5.1.

REMARK 5.1. The analogous result to Theorem 5.1 when F has convex values and
/ = Id or / is continuously differentiate, was given in [42,44].

Before going on to the main result let us state the following lemma, which is a
direct consequence of Theorem 4, Proposition 2 and Lemma 2 in [43].

LEMMA 5.3. For b e RA(T, 3?)+ there exist functions p' e Q, i = 1,2,3 and
absolutely continuous functions qx,q2 on Fl] and Fl2 respectively satisfying the
following inclusions.

{p)x{t, T), p)x{t, T), fr(t, T)) e A*(t, x){p\t, T) - p]{t, r) - p\(t, r))a.e. on n ,

q-\t)eA*}(t)(-q\t) - tf(t,0) + p\t,O)) a.e. on n , ,

q-\z) e A*2(T){-q\x) - p3
r(0, r) + p'(0, r)) a.e. on U2, (66)

with boundary conditions

p\T,t) = p\t,y) = b V(r,r)en,

p'(t, &) = p'(T, T) = 0, i = 2, 3 V(r , r )en ,

(67)
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We are now in a position to prove the main result of this section.

THEOREM 5.2. Ifx(t, x) is an f-extremal solution then there exist 9 e Rm, \\6\\ = 1
and functions p'eQ, i = 1,2,3, q\ q2 satisfying (66), (67) with bedxf(x(T, &))*9
and such that the following maximum condition holds.

(p(t,x),xn{t,T)) = max{(p(f,r),#) : 0 € F(t, x, Z(x)(t, r))} a.e. onFI, (68)

for p(t, r) := -pl(t, x) + p2(t, x) + p3(t, x).

PROOF. Let [A(t, x), (t, x) e n} be a family of convex processes defined by

A(t, x)(u, p, q) = A(t, x)(u, p, q) + l(coF(t, x, Z{x){t, r)); xn(t, r)). (69)

By [43, Proposition 3], {A(t, x), (t, x) e n} possess the analogous conditions to
{A(t, r), (t, x) e FT} (see conditions D.1-D.3) and moreover

A{t, r)(u, p, q) C A(t, x)(u, p, q) V(M, p, q) e R3", (t, x) 6 n,

7*(t ^ - I A*('-T)" ifu€(F(t,x,Z(x)(t,x))-xlt(t,T))+

A (f, T)H - j 0 otherwise. ( 7 0 )

Now consider the inclusion (56), (57) with A(t, x) replaced by A(t, T) and denote
by Rz(T, &) its reachable set at the point (T, 2?). From Theorem 5.1 there exists
k € dxf(x(T, &)) such that 0 $ vaOXR^T, &) and from the well-known separation
theorem (see for example [31, consequence 11.7.3]) this implies the existence of
9 € Rm, \\e\\ = 1 satisfying (0,Xv) > 0 Vu e R%{T, &), or, equivalently, X*9 G

Now from Lemma 5.3 and (70) we obtain (66), (67). The maximum condition (68)
follows from (70), (66). The proof of Theorem 5.2 is complete.

On applying the result of Theorem 5.2, we can obtain the maximum condition for
problem (1), (3), (4), (5).

Assume that the function <j> : FT x R" x R" x R" x V -> R", where V is a compact
metric space, satisfies the following conditions.

D.I. The function 4> is measurable in (t, r), Lipschitzian in (x\x2,x3) with
Lipschitz constant and continuous in v.

D.2. There exists a constant M such that \\<f>(t,x, x\x2,x3, v)\\ < MVt,x,xl,x2,
x\

D.3. For a given solution x{t,x) and its corresponding control v{t, x), the function
f(t, x, •, •, •, v(t, T)) is differentiable at Z(x){t, x).
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Under condition E.I, for F defined by

F{t, x, x\x2, x3) = </>(', x, x\x2, x\ V), (71)

from Filippov-Castaing Theorem [47, Theorem 1.7.10, page 153], the solution sets of
the inclusion (2), (3) and the system (5) do coincide.

Set

C.Oc, y) = 30(Z(Jc)(*, y), v(x, y))/dx\

C2(x, y) = d<P(Z(x)(x, y), v(x,

C3(x, y) = d<P(Z(x)(x, y), v(x,

A(x, y) = (C,(JC, y), C2(x, y), C3(x, y)). (72)

Then ||C,(f, r)| | < k, i = 1, 2, 3. Hence A(x, y) satisfies conditions D.1-D.3 and
inclusion (66) becomes an equation.

Define
pit, p) := -p\t, T) + p2it, r) + p\it, T),

where p\t, r), p2(r, r), pit, r) are solutions of (66), (67).
It is easily seen that pit,x) satisfies the integral equation of Volterra type [34]

, r ,<?
pit,x) = -b-j I C*it,T)pit,z)dxdt

- j C*2it,T)pit,x)dz- j C*3it,x)pit,x)dt. (73)

So as a consequence of Theorem 5.2 we have the following.

COROLLARY 5.1. Ifxit, T) is an optimal solution of(l), (3), (4), (5), then there exist
6 e Rm, \\6\\ = 1 and a solution pit, r) of (73) with b e dxfixiT, &))*6 such that
the following maximum condition holds for a.e. it, x) € FI:

(pit,x),<Pit,x,Zix)it,x),vit,x))

= max{(pit, x), 4>(t, x, Zix)it, r)(f, x), *)) : § € V). (74)

Note that an analogous result to Corollary 5.1 has been proved by Suryanaryana in
[38] for (1), (3), (5) (without endpoint constrain (4)) under the stronger assumptions
that the function <p is continuous with respect to all variables, for every it, x) the
functions ixl,x2,x3) -* 3/0 , x, xl, x2, x3)/dx', i = 1, 2, 3 satisfy Lipschitzian
condition, and that the objective function f0 is either linear or twice contiunuously
differentiable.

Actually we can also prove the following result.
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THEOREM 5.3. Suppose that the function f is continuously differentiable at x(T, &)
and that ~4C\ is some regular tangent cone to F3 c CompR" at x{T, &) e F3. If
f(x(T,&))edf(RF(T, &)nF3), then there exist bl e-<#+, & e R", \\{bx,b2)\\ =
1, functions p' e Q, i = 1, 2, 3, and absolutely continuous functions q1, q1 on T\\
and n 2 respectively, satisfying (66)-(68)for b = bx + V/( i (7 \

PROOF. Define

F0 = F0xF3, u = (u\u2)eR2n, p = (p\ p1) € R2", q = (q\q2) € R1",
^#0 = J£ x ^ i ,

Fit, x, u, p, q) = {(v, 0), v e F(t, r, u\ p\qx)) Vu, p, q, (t, r) 6 n,
Fl(t,u) = {(v,0),ve F^t,^)} VM, t e n,,
F2(r, u) = {(w, 0), v e F2(T, M1)} Vfi, T 6 n2 . (75)

It is obvious that the maps F(FU F2, respectively) possess analogous conditions to
F(FU F2, respectively). Consider the inclusion

x,x{t, r) € F{t, r, Z(x)(t, r)), (t, r) e n ,
x,(f,0) € F,(f,jc(/,O)), JEr(O,r) e F2(r, jE(O, T)),

Jc(O, 0) e ^ o - (76)

Clearly the function y{t, r) := {x(t, r ) , x(T, &)) is a solution of this inclusion.
Define also the families of convex processes {A (t, r), (t, r) € n} , {A{(t), t e FIi},

{A2(r), x e n2} as follows.

A(t, xKu,p,q) = (A(t,x)(u1,p\qi),0) V(u,p,q), (f, x) € FT,
0 ) V«, r e n , ,

0) Wu, r e n 2 ,

where ^4(r, T) is defined by (69).
With the inclusion (76) let us associate the inclusion

wn € A(f, r)(Z(S;)(r, r)), {f, x) e n

u5,(/,0) e J4,(Ou5(r,0), r € n,, u;r(0, r) e A2(x)w(0, x), xeU2,

25(0,0) e Jk. (77)

Denote by &(F) and ^(/4) the solution sets of the inclusions (76), (77) respectively
and by Rp(t, r), R^(t, x) their reachable sets at the point (t, x).

Define a linear operator A : R2" -+ Rn+m by setting

A(K\ U2) = (M1 - u2, Vf(x(T, W)
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From Theorem 5.1 we claim that

Om i intARz(T, &). (78)

Indeed, if Om e intARz(T, 3T), then by Theorem 5. l , (0m, f(x(T, &)))€ int{(x'(r,
ST) - x2(T, ST), f(xl(T, &))) : *(-, •) = (*'(•, -),*2(-, •)) e @(F)}. Therefore
there exists a > 0 such that f{x(T, 3?)) + oSm C {/(JC'(7\ ^ ) ) : jc(-, •) =
(*'(•, -),JC2(-, •)) e &(F),xl(T, ST)-x2{T, &) = 0} = /(/?F(7\ ^ ) n F3), con-
flicting wi th / ( i ( r , ^ ) ) € df(RF(T, &) n F3).

Because A /?^(7, 5 )̂ is a cone in /?"+m, again using [31, consequence 11.7.3], from
(78) there exist bx e R",b2 e Rm, \\{b\ b2)\\ = 1 satisfying

A*(bl,b2) = (bl + X*b2, -bl) g Rx(T, &)+. (79)

It is easily seen that

A*(t, r)(«, p, q) = {(v, 0)eR2n: ve A*(t, x)(u\ p^q1)},

A*l(t)u = {(v,0)eR2n: v € A^u1},

A*2(T)U = {(v,0) <= R2" : ve A*2(t)u
1}.

So (79) yields b1 + Vf(x(T, &))*b2 e Rz(T, 2T), -bx e ^ + . Theorem 5.3
follows from Lemma 5.3 and (70).

We close the paper by considering the following time optimal problem for the
inclusion (2), (9):

x(t, f) € F3, P + x2 -» inf, (80)

where F3 e CompR", x{t, r) is a solution of the inclusion (2), (9).

THEOREM 5.4. If x(t, r) is an optimal solution and (T, &) the corresponding optimal
time of the problem (80), then for every regular tangent cone J$\ of F3 at x(T, 0?)
there exist functions p' € Q, i = 1,2,3 and absolutely continuous functions <jl,q2

on FIi and T\2 respectively satisfying (66), (67) with some b € —ufl*.

PROOF. AS in the proof of Theorem 5.3, for AM = M1 - u2 VM e R2", the optimality
of x(t, r) and T, 2T implies that

Om i ARp(t, r) V(/, r) e U/(T, T). (81)

We then see that
Om£ intARz(T,&). (82)

Indeed, assume the contrary, that Om e intA/?^(r, &). Then applying a separation
theorem yields the existence of e0 > 0 such that Om € AR%(T - e, & — e) whenever
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0 < e < e0. Hence by Theorem 5.1, Om e intARp(T — e, S? — e) which contradicts
(81) and so gives (82).

Because AR%(T, S?) is a cone in R", from (82) and the separation theorem [31,
consequence 11.7.3], there exists a b e R", \\b\\ = 1 satisfying

(b, v)>0 Vv€ ARz(T, &),

or, equivalently,

A*b = (b, -b) 6 RtfJ, &)+, (83)

which gives b e /?j(T, ST), —b e ^T*. Theorem 5.3 now follows from Lemma 5.3
and (70). The proof is complete.

REMARK 5.2. When F,(r, u) e ConvR", F2(t, u) e ConvR" VM G R\ {t, x) e n
then we can easily prove (see [43, Remark 1]) that in the statements of Theorems
5.2-5.3, the functions x{t, 0), x(0, r) also satisfy the maximum conditions

(xt(t,0),ql(t))=max{(v\gi(.t)) : v1 e f,(/,jc(r, 0))} a.e. on n,,
<ir(0,T),$2(r)) =max{{v2,q2(r)) : v2 e F2(r, i(0, T))} a.e. on n2,

where qx{t) := q\t) + pj(t, 0) - pl(t, 0), q2{x) := q2{x) + p3
T(0, x) - p»(0, r).

6. Appendix

We now shall prove Theorem 4.1 by using a method developed in [42] and results
of [5] on the existence of continuous selections of set-valued maps.

As before, let F be a separable Banach space. Recall the following definition.

DEFINITION 6.1. Let X be a Banach space. A set-valued map <I> : T ->• 2X is said
to be lower semicontinuous (l.s.c.) at y0 e F if for every open set £1 c X satisfying
Q D O(y0) # 0 there exists a neighborhood f/(y0) of (y0) such that f2 n 4>(y) ^
0Vy e U(yo).

A set-valued map 0 is called lower semicontiuous (l.s.c.) if it is l.s.c. at every

PROPOSITION 6.1 ([5, Propositions 2.1,2.2]). Suppose that a map F, : FI x F ->
Comp/?" is ^? (££) ^(F)-measurable, l.s.c. with respect to y G F and there is a
continuous map a : F -> £'(11, 7?) such that dist(0n, F»(f, T, y)) < o(y){t, x) a.e.
inFl.
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Suppose that there are continuous maps 0 : F -»• L'(n), V : F -> L'CFl) such
that for every y e F the set

H(y) = cl{v e L ' (n) : u(f, r) e F,(r, r, y) a.e. in n ,

r, r) a.e. i nn}

is nonempty.
Then the map // : F -> 2L'm admits a continuous selection.

LEMMA 6.1. The function y —>• /?(-, •, y) definedfrom (32) is continuous from F into

PROOF. For every fixed y0 e F it suffices to show that the function y —> yS(-, •, y) is
continuous at y0.

For every y e F, one has

n
< / \\y,r(t, T,y0) - yn(t, r, y)\\dzdt

Jn

+ f haus(G(t, x, Z{y{yo)){t, r) , yQ), G(t, z, Z(y(y))(t, x), y))
Jn

< [ (\\yn(t, x, y0) - yn(t, x, y)\\ + \\Z(y(yo)Kt, T) - Z(y(y))(r, x)\)dxdt
Jn

+ I haus(G(t, x, Z(j(yo))(f, r), y0), G(t, x, Z(y(yo)){t, x), y)dxdt.
Jn

Because in Q the function y(-, •, y) is continuous at y0, for every rj/2 > 0 one can
find €\ > 0 such that

, r) - Z(y(y))(t, x)\\)dxdt < r,/2

whenever ||y-y01| <e, /2. Clearly,for0,(>, T, y) :=haus(G(t, r, Z(y(yo))(/, r), y0),
G(f, T, Z(>>(yo))(/, T), y), the function )3i(r, T, •) is continuous in y for a.e. (r, T) G
Fl. Since the map y -»• 5(y)(-, •) is continuous from F into L'CFI) and fi\{t, x, y) <
2*||ZO>(y0))(r, T)||+5(yo)(r, x)+8{y){t, x), there exists a function /?(-, - ) eL ' (n , R)
such that /Ji(f, r, y) < )3(f, r) for a.e. (t, t ) G Fl whenever y -> y0. Hence, by
the Lebesgue dominated theorem, in Q for f}2 := / n )3i(?, x, y)dxdt the function
y —*• Pi(y) is continuous at y0. Therefore, there exists e2 > 0 such that Pi{y) =
Jnf}\(t, x, y)dxdt < r]/2 whenever \\y — yo\\ < e2. So for every r) > 0, there
exists € = min{e,,e2} such that/n \fi(t, x, y0) - P(t, x, y)\dxdt < J7V||y-yo|| < e,
proving the continuity of function y -> ^(-, •, y) at y0 and thereby Lemma 6.1.
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The following lemma can be proved easily.

LEMMA 6.2. Let G0(t, x, y) := G(t, x, Z(y(y))(f, r) , y). Then for a.e. (t, x) € n
the map Go(t, x, •) is lower semicontinuous (l.s.c).

PROOF. Fix y0 G T. It suffices to show that if a consequence y, —> YQ and A,-(f, x) :=

haus(G(t, x, Z(y(yo))O, r) , y0), G(f, r, Z(y&,))(?, T), yd), then

lim hi(t, x) = 0 for a.e. (t, r) e IL (84)
i-»oo

For this, we note first that for a.e. (t, x) e n ,

lim haus(G(f, x, Z(y(yo))(t, x), y0), G(f, t, Z{y(yo))(t, x), /,)) = 0.

On the other hand, since the map y —> y(-, y) is continuous, it is easy to see that

lim JjZ(y(yo)Xt, x) - Z(y(y,))(f, T) | dxdt = 0,

showing lim ||Z(;y(/<,))(/, x) - Z(y(yt))(t, T)|| = 0 for a.e. (t, x) e n . Hence (84)
i-yoo

follows from the fact that

lim hi(t, x) < lim k\\Z(y(yo))(t, x) - Z(y(y;))(r, T ) |

+ lim haus{G{t, x, Z{y{yo)){t, x), y0), G(Z(y(y0Mt, x), y,),

completing the proof of Lemma 6.2.

PROOF OF THEOREM 4.1. We shall construct the function u by using a successive ap-
proximation process. By applying Proposition 6.1 at every step of the approximation,
the proof is analogous to that of Theorem 2.1 in [42].

Indeed, set

"o(y)('> T) = y(t, x, y), po(y){t, x) = y,(t, x, y), qo(y){t, x) = yT(t, x, y),

G0(t, x, y) = G(f, x, Z(y(y))(r, r), y), a, = e/QlT&a), i = 0, 1, 2 , . . . ,

where a is defined by (35).
From Lemma 6.2, G0(t, x, •) is l.s.c. for a.e. (t, x) e FI and from Lemma 6.1, \j/0

is a continuous map from T into ^ ' (n ) .
For the map y —> Goiy) given by

G0(y) = ( v e L ' (n) : v(t, x) e G0(t, x, y) a.e. in n } , ye T,
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by Proposition 6.2 there is a continuous selection v0 of Go satisfying

. r) - y.rtt, z, y)\\ < r/fO(Y)(.t, T) + a0.

Sequences of successive approximations «,, p,, <?,, u, are defined by setting, for every

' > 1,

Ui(.Y){t,T)= [ I v^(y)(J,x)dfdt,
Jo Jo

Pi(y)(f,r)= / »,_,()>)(/, f)df,
Jo

<7;(y)(', T, y) = / w,-_,()/)(/", r)df,
Jo

G,(f, T, y) = G(t, r, «,(y)a, r), Pi(y)(t, r), q,(y)(t, T)),

G,(y) = ( » e L ' ( n ) : UC- *) € G,-(r, T, y)},
MYW, T) = dist(u,_,(y)(r, T), G,(t, r, y)),

and v,(y) is a continuous selection of Gj(y) satisfying

From Lemma 6.2, G,(f, r, •) is l.s.c. From Lemma 6.1 the map y
continuous. Hence the existence of u,(y) follows from Proposition 6.2.

Note that

MY)<J, T) < /iau5(G,_,(/, r, y), G,(/, r, y))

< k(\\Ui(y)(t, r) - «,_,(/, r ) | + \p,{y)(f, x) - p,_,

The latter implies

r, r)|| < k(\\Ui(y)(t, r) - «,-_,

l k ) | ) + a , , (85)
Obviously,

\\ui+l(yKt,r)-ui(y)(t,T)\\< [ [ ||w,(y)(F, f) - w,-_,(F, f)|| rffdF, (86)
Jo Jo

| | /" |v,(y)(r, f) - «,_,(r, f ) | df, (87)
Jo

r, T) - <7,(y)«, r ) | < / |w,(y)(F, r) - w,.,^)!! dr. (88)
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Set

.T) :=2 /" f \k'-l

Jo Jo |

, T) := z/_,(y)(r, T)

Repeating for every y the calculations provided in [42, Theorem 2.1, (2.9M3.12)],
from (85M88), for g denned from (34) and / > 2, we deduce

| || , r), (89)

\\pi(Y)(t, r) - A-.(K)(f, T ) | < zf_,(y)(?, r), (90)

lk | f ), (91)

| | , T) - v,(y)(t, T)|| < ^^z /_ , (y ) ( r , r) +a , , (92)

Furthermore, the sequence {M,(y)}~0 uniformly converges on n to some function
M(-, •, y) the sequences {/?,-(y)}~0' {^(y)}£o converge to some functions /?(-, •, y),
^(•, •, y) respectively, for almost all t, r respectively. Also the sequence {u,(y)}~0 is
a Cauchy sequence in Lx(Yl) and hence converges to some function u(y) e L'(ri)
almost everywhere on fl. From Lebesgues' dominated convergence theorem, one
has u(t, r, y) = /„' /Q

r v(y)(t, x)dxdt, p(t, x, y) = /Q
r v(y)(t, x)dx, q(t, x, y) =

Jo v(y)(J, x) dt. Moreover, it is easily seen that for a.e. it, x) e Fl,

v(y)(t, T) e F(t, x, «(r, x,), p(y)(t, T), <7(y)(/, r)).

Therefore «(r, T, y) is a solution of inclusion (30), (31). Moreover the map y ->
M(-, •, y) is continuous in 2 because every successive approximation M, is continuous
ing .

On the other hand,

f f
Jo Jo

r oo

v(Y)(f, x) - yii(t, x, y)\\ dxdt < ^zjO, x)
/=i
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nt /»r

;=o

Finally the desired estimate (33) follows by noting that for every (/, T) € FI,
oo

dxdt

dxdt

i=0

oo

2(k + l)exp(kg(t, x, t, r)) ][]a,

= 6.

The proof of Theorem 4.1 is complete.
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