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Dissipation and noise in mean field dynamics

In Chapter 6 we presented the main computational schemes to derive the dynam-
ical laws for the mean field, including the back-reaction from quantum fluctua-
tions. These equations may be derived from the variation of the CTPEA. The
result of this approach is a semiclassical theory of a c-number condensate inter-
acting with a quantized fluctuation field.

This approach developed at this level of sophistication is limited as it offers no
description of the fluctuations themselves. In most applications the magnitude
of the fluctuations can be comparable and at times dominates the effects of the
mean field in the semiclassical description. One possible way to incorporate fluc-
tuations is to use the 2PI formalism, where the propagators describing the fluctu-
ations are considered as dynamical variables evolving along with the mean fields.

In this chapter we shall explore a different strategy, which is to allow for a
stochastic component in the mean field. This component arises from both the
uncertainty of the initial configuration of the mean field, and from the fluc-
tuations in the back-reaction from the quantized excitations. Both sources of
randomness combine so that stochastic averages in the noisy theory reproduce
suitable quantum averages in the underlying quantum field theory.

Formally, this approach lifts the seemingly overladen CTPEA. So far in this
generally complex object, only the real part is enlisted in the derivation of the
relevant equations of motion of the mean field. By regarding the CTPEA as a
kind of influence functional, we shall see that the imaginary part contains the
information about the stochastic sources.

The material in this chapter also clarifies the relationship between the CTP
and the influence functional approaches. This issue has been addressed by Su et
al. [SCYC88] and the authors [CalHu94]. In Chapter 5, we derived a Langevin
equation for the long-wavelength modes of a quantum field, viewed as an open
system interacting with the environment made up of short-wavelength modes.
The system–environment divide we shall assume in this chapter is more elusive,
since it depends on the c vs. q-number nature rather than on the value of a
“hard” observable such as wavelength. In the end, as we shall discuss in detail,
the physics is very much the same in one or the other approach. The stochastic
mean field approach we shall discuss in this chapter has the redeeming feature
that it does not force us to choose an a priori separation between modes which
go into the system and which are relegated to the environment. In this sense,
it is more pliable to the demands of a particular application: for example, if
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232 Dissipation and noise in mean field dynamics

higher modes are generated through nonlinear effects, we run no risk of them
crossing into the environment. This versatility will allow the stochastic mean
field approach to retain full information about certain quantum correlations, as
opposed to only their long-wavelength components.

An equivalent approach is to write down a Fokker–Planck equation describing
the probability density function for the stochastic mean field. We will discuss
only the Langevin equation approach; the translation to other formalisms is
straightforward with the tools presented in the early chapters of this book.

Also, to facilitate comparison with the illustrated groundwork laid down in
Chapter 6, we shall continue with the example of a gΦ3 relativistic quantum
theory at zero temperature. The addition of statistical fluctuations over and
above the quantum ones, as well as applications to more realistic theories, will
be discussed in the forthcoming chapters.

The themes we shall develop in this chapter are:

(a) The complex terms in the retarded propagator in frequency domain Gret (ω)
imply dissipation.

(b) Underlying the dissipation of the mean field is the effect of particle cre-
ation arising from the amplification of quantum fluctuations by the time-
dependent mean field. Dissipation results from the back-reaction of particle
creation on the mean field. We shall see this to order g2 by a direct derivation
of the number of created particles.

(c) There are fluctuations in the number of created particles, which brings forth
fluctuations in the back-reaction effect. These fluctuations may be incorpo-
rated into the dynamics of the mean field or condensate by introducing a
stochastic source in the right-hand side of the equation of motion. We shall
show that the noise autocorrelation is given precisely by the noise kernel in
the 1PI CTPEA. The stochastic c-number field φ (t) does not represent the
expectation value of the Heisenberg field anymore; we shall refer to it as
the stochastic condensate. In the linearized theory, the stochastic average of
the condensate gives back the quantum average which is the mean field.

(d) The resulting stochastic theory is a nontrivial extension of mean field dynam-
ics, in the sense that, at least for linear theories, the stochastic formulation
reproduces some quantum correlation functions of the full theory. This result,
which is similar to one already proven for quantum open systems, shows that
the identification of the CTPEA as an influence functional – and therefore of
the condensate as an effectively open system – is not merely a formal device.

(e) It is clear from their perturbative expressions that the noise and dissipation
kernels are closely related to each other. We may now show that, if we allow
the condensate to equilibrate under the effect of the noise, then the rela-
tionship between the noise and dissipation kernels becomes the fluctuation–
dissipation theorem. Alternatively, one may use the fluctuation–dissipation
relation to find the noise kernel given the dissipation kernel, and vice versa.
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(f) While one can envisage many situations where a quantum field may be split
into a system field and an environment, it is not obvious that it is justified
to treat the former as classical. We will show that particle creation is also
central to this issue, by deriving an expression for the decoherence functional
between two system histories in terms of the Bogoliubov coefficients describ-
ing particle creation in the environment. In short, system and environment
get entangled through particle creation, and decoherence occurs when it is
efficient.

(g) From the linear theory results it may seem that these effects are restricted to
high frequencies ω > 2m. We shall see that this limitation is lifted by non-
linear effects. In particular, we shall show that a coherent condensate oscil-
lation will create particles even if the frequency is below threshold, through
the process of parametric amplification. The difference is that parametric
amplification is an essentially nonperturbative phenomenon, and it is expo-
nentially suppressed as we move away from the threshold. So dissipation and
fluctuation are generic properties of condensate dynamics.

Of course, a simple oscillation will not in general be a solution of the free equa-
tions of motion, precisely because it will dissipate through particle creation. The
problem of evolution under back-reaction from quantum fluctuations is rather
complex. It involves not only finding long-time solutions to the equations, but
also the harder problem of making sure that the equations contain the relevant
physics in the different time ranges. For example, fluctuation–fluctuation inter-
actions, which are totally ignored in the one-loop or leading order 1/N approx-
imations, are crucial on scales of the order of the thermalization time. We shall
discuss these issues in later chapters.

Since dissipation and noise are central elements in nonequilibrium evolutions,
a complete set of references for this chapter would be coextensive with the lit-
erature on nonequilibrium field theory itself. Our discussion will loosely follow
[CalHu89, CalHu94, CalHu95, CalHu97]. See also [Hu89, HuSin95, CamVer96].
The latter two papers, when read as a sequel to [CalHu87] give a clear example
of how dissipation and noise can be identified from the CTPEA with the help
of the influence action, and Langevin equations (in that context, the Einstein–
Langevin equations) can be derived for the stochastic mean field (semiclassical)
dynamics. Stochastic equations for classical systems arising from the decoherence
functional formalism have been discussed by Gell-Mann and Hartle [HarGel93].
The formal analysis of the Einstein–Langevin equations developed by Hu and
Matacz [HuMat95], Lombardo and Mazzitelli [LomMaz97], Martin and Verda-
guer [MarVer99a, MarVer99b, MarVer99c, MarVer00] and Roura and Verdaguer
[RouVer99, Rou02] (see reviews [HuVer02, HuVer03, HuVer04]) could be adapted
(or rather, simplified) to provide a foundation for the stochastic equations of
scalar field theory below. The computation of full quantum correlations from
the stochastic formulation is elaborated by Calzetta et al. [CaRoVe03].
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234 Dissipation and noise in mean field dynamics

A partial list of references for further reading on this subject is [Law89, Law92,
Law99, LawKer00, BerRam01, RamNav00, BeGlRa98, HosSak84, MorSas84,
Mor86, Mor90, Paz90a, Paz90b, Bet01, GleRam94, GreMul97, ABBCFJ99,
LeeBoy93, Mos02]. See also those mentioned in the chapters on applications
to atom–optical physics (13), nuclear–particle physics (14) and gravitation–
cosmology (15).

8.1 Preliminaries

We return to the gϕ3 theory to illustrate the ideas highlighted above. The clas-
sical action with a cubic potential as in Chapter 6, equation (6.43) is

S [Φ] =
∫

d4x

{
−1

2
(∂Φ)2 − V [Φ (x)]

}
(8.1)

We shall begin by considering the regression of the mean field towards its equi-
librium value. To this end it is enough to consider the linearized equations of
motion. The quadratic effective action is given in Chapter 6; see Sections 6.3.1
and 6.4.3 there. We have already seen that, after ultraviolet singularities have
been disposed of, and assuming the initial conditions are laid out in the distant
past to avoid initial time singularities, the free linearized evolution of the mean
field is described by an equation of the form[

− d

dt2

2

−m2

]
φ (t) +

∫ t

ds− Σret (t− s)φ (s) = 0 (8.2)

where we are assuming a spatially homogeneous mean field, and

Σret (t) =
∫

d3x Σret (t,x) =
∫

dω

2π
e−iωtΣret (ω,p = 0) (8.3)

From now on, we shall omit writing the p argument when it is zero.
The fundamental solution of the equation of motion is the (space averaged)

retarded propagator

Gret (t) =
∫

dω

2π
e−iωtGret (ω) (8.4)

Gret (ω) = (−1)
[
(ω + iε)2 −m2 + −Σret (ω)

]−1

(8.5)

The physical mass M2 is defined by the requirement that the retarded propagator
has a simple pole at ω = ±M,

M2 −m2 +
1
π

∫ ∞

4m2

dσ2

σ2 −M2
Π
(
σ2
)

= 0 (8.6)

The function Π
(
σ2
)

was introduced in Chapter 6, equation (6.135). We shall
assume M2 is positive. The retarded propagator has a branch cut for ω2 > 4m2.
If M2 exists, it must be less than 4m2; otherwise the retarded propagator has
no first sheet poles.
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8.2 Dissipation in the mean field dynamics 235

8.2 Dissipation in the mean field dynamics

Let us begin by showing that the existence of an imaginary component in Gret (ω)
implies that the dynamics of mean fields is dissipative.

The simplest way to show this is by looking at the response of the mean field
to an impulse, that is, adding a source −δ (t) to the right-hand side of equation
(8.2). The solution is

φ (t) = Gret (t) =
∫

dω

2π
e−iωtGret (ω) (8.7)

As we know, the integrand has poles at ω = ±M and branch cuts for |ω| > 2m.
Separating these contributions, we get

φ (t) =
1

ZM
sinMt +

1
π

∫ ∞

4m2
dσ2 sinσt

σ
Π
(
σ2
)
|Gret (σ)|2 (8.8)

where Z comes from the residue at the pole. Since the integrand in the second
term is regular, this term goes to zero as t → ∞.

A less rigorous argument is based on a Breit–Wigner approximation for
Gret (ω) . We simply approximate ReG−1

ret (ω) ∼ ω2 −M2; for the imaginary part,
we write

ImG−1
ret (ω) = Π

(
ω2
)

sign (ω) ∼ 2γω (8.9)

γ ∼ g2
�

128πm
(8.10)

Therefore

φ (t) =
1
M

sinMt e−γt (8.11)

This approximation, which amounts to writing Π
(
ω2
)
∼ constant, sign (ω) ∼

ω/2m, cannot be valid at very short times t−1 � m, nor at very late times
t−1 ≤ m, but it does show that there is an approximately exponential decay in
between. The decay turns to a power law at later times.

As a final argument, let us regard the nonlocal term in the equation of motion
as a friction force acting on the mean field. Suppose we act on the mean field with
an external source j (t) such that it follows a given trajectory φ (t) vanishing both
in the distant past and future. Therefore the total energy exchanged with the
mean field vanishes. The instantaneous power is of course (minus) the product
of force times velocity. The total power extracted from the mean field is

0 =
∫ ∞

−∞
dt

{
m2φ (t) −

∫ t

ds− Σret (t− s)φ (s) − j (t)
}

dφ

dt
(8.12)

so we must have

Q = −
∫ ∞

−∞
dt

∫ t

ds− Σret (t− s)φ (s)
dφ

dt
(8.13)

where Q is the work extracted from the source. In terms of Fourier transforms

Q =
∫

dω

2π
− Σret (ω) (−iω)φ (ω)φ (−ω) (8.14)
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236 Dissipation and noise in mean field dynamics

It is clear that φ (ω)φ (−ω) = |φ (ω)|2 is an even function of ω, so only the odd
part of Σret (ω) may contribute to Q. Since the real part of Σret is even, we are
left with

Q =
1
π

∫ ∞

2m

ωdω Π
(
ω2
)
|φ (ω)|2 (8.15)

which is clearly positive. We may think of this as work which is transferred from
the external source to the mean field and then transformed into “heat,” since it
is not returned to the source nor stored in the mean field. We shall show in the
next section that this work was transferred to the quantum fluctuations above
the condensate.

8.3 Dissipation and particle creation

We have seen in the last section that along its evolution the mean field dissipates
an amount of heat Q given by equation (8.15). We shall now show that this energy
is actually spent in creating particles in the quantum field above the condensate.

Let us consider the Heisenberg equation of motion as given in Section 4.1.2
of Chapter 4. Split the quantum field Φ into a (c-number) mean field φ and a
quantum fluctuation field ϕ

Φ = φ + ϕ (8.16)

where

〈ϕ〉 = 0 (8.17)

The expectation value of the Heisenberg equation yields

∂2φ−m2φ +
1
2
gφ2 +

1
2
g
[〈
ϕ2
〉
φ
−
〈
ϕ2
〉
φ=0

]
= 0 (8.18)

where
〈
ϕ2
〉
φ

denotes the expectation value computed in the presence of the
mean field. A linear expansion of (8.18) around φ = 0 takes us back to (8.2).
Subtracting (8.18) from the Heisenberg equation we find the equation for the
fluctuations

∂2ϕ−m2ϕ + gφϕ +
1
2
g
[
ϕ2 −

〈
ϕ2
〉
φ

]
= 0 (8.19)

The one-loop approximation amounts to leaving out the last term

∂2ϕ−m2ϕ + gφϕ = 0 (8.20)

We see that, in this model, the one-loop approximation reduces to the Hartree
approximation. If the mean field is spatially independent, we may expand the
fluctuation field in modes as in Chapter 4

ϕ (t,x) =
∫

d3k

(2π)3/2
eikxϕk (t) (8.21)

Each mode is a harmonic oscillator with a time-dependent natural frequency
d2ϕk

dt2
+ ω2

kϕk − gφ (t)ϕk = 0; ω2
k = k2 + m2 (8.22)
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8.3 Dissipation and particle creation 237

Given two complex independent solutions fk, f∗
k of equation (8.22), we may write

ϕk (t) = fk (t) ak + f∗
k (t) a†−k (8.23)

where ak is the usual destruction operator. Let us solve for the modes in powers
of g. To zeroth order in g the Minkowski modes fk (t) introduced in Chapter 4
are the single global positive frequency solution. To first order in g we have a
choice: either the in positive frequency solution

f in
k (t) = fk (t) + g

∫ t

−∞
ds

sinωk (t− s)
ωk

φ (s) fk (s) (8.24)

or the out positive frequency wave

fout
k (t) = fk (t) + g

∫ ∞

t

ds
sinωk (s− t)

ωk
φ (s) fk (s) (8.25)

If the mean field is well behaved, then at very late times we have fout
k (t) ∼

fk (t) whereas f in
k (t) is obtained through a Bogoliubov transformation

f in
k (t) = αkf

out
k (t) + βk

[
fout
k (t)

]∗ (8.26)

Conversely, the destruction operators in the distant past and future are related
through

aoutk = αka
in
k + β∗

ka
in†
−k (8.27)

As we saw in Chapter 4, if the initial state is the in vacuum, at late times we
find a nonzero population density of created particles |βk|2. From the explicit
expression, we find

βk =
(−ig)
2ωk

∫ ∞

−∞
ds φ (s) e−2iωks =

(−ig)
2ωk

[φ (2ωk)]
∗ (8.28)

Since each particle carries an energy �ωk, the total energy density in the fluctu-
ations is

ρ =
∫

d3k

(2π)3
g2

�

4ωk
|φ (2ωk)|2

=
g2

�

4π

∫ ∞

2m

ωdω ν (ω) |φ (ω)|2

= Q (8.29)

where

ν (ω) =
1
8π

√
1 − 4m2

ω2
θ
(
ω2 − 4m2

)
(8.30)

was already introduced in Chapter 5. We see that the energy extracted from the
source is being transferred to the fluctuations. For completeness, we observe that
the kernel ν in (8.30) is related to the kernel Π in (8.6) through

Π
(
ω2
)

=
g2

�

4
ν (ω) (8.31)
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238 Dissipation and noise in mean field dynamics

8.4 Particle creation and noise

We have seen in the last section that the mean field loses energy which is spent
in exciting the quantum fluctuations of the vacuum into particles. The back-
reaction from this process is experienced by the mean field as dissipation. We
now observe that particle creation from the vacuum has an intrinsic stochastic
character: there are always fluctuations in the number of created particles. These
fluctuations affect the mean field through its back-reaction. The dynamics of the
mean field thus acquires a stochastic element. Of course, at this point it ceases
to be the “mean” field: it is a c-number field which represents the evolution of
the condensate component of the full Heisenberg field.

To obtain a measure of the fluctuations in particle creation, let us consider
the correlations between particles created in different modes

〈NpNq〉 =
〈
0in
∣∣aout†p aoutp aout†q aoutq

∣∣ 0in〉
= V 2 |βp|2 |βq|2 + V |βp|2 |αp|2 [δ (p − q) + δ (p + q)] (8.32)

It follows that the fluctuations in the energy density are〈
δρ2
〉

=
〈
ρ2
〉
− 〈ρ〉2

=
2�

2

V

∫
d3p

(2π)3
ω2
p |βp|2 |αp|2 (8.33)

To lowest order we may approximate |αp|2 = 1. Using the explicit expression for
the Bogoliubov coefficients, we get,〈

δρ2
〉

=
g2

�
2

2V

∫
d3k

(2π)3
|φ (2ωk)|2

=
g2

�
2

4πV

∫ ∞

2m

ω2dω ν (ω) |φ (ω)|2

= δQ2 (8.34)

We may account for these fluctuations by adding a stochastic term ζ (t,x) to
the right-hand side of the mean field equations of motion. For a homogeneous
condensate, they reduce to[

− d

dt2

2

−m2

]
φ (t) +

∫ t

ds− Σret (t− s)φ (s) = −g

2
Ξ (t) (8.35)

where

φ (t) =
1
V

∫
d3x φ (t,x) (8.36)

Ξ (t) =
1
V

∫
d3x ζ (t,x) (8.37)

We assume ζ is a Gaussian noise with zero average 〈ζ (t,x)〉s = 0, where,
hereafter, the subscript s will denote stochastic averages over the noise
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8.4 Particle creation and noise 239

distribution function, and (possibly colored) autocorrelation 〈ζ (t,x) ζ (s,y)〉s =
νs (t− s,x − y) . For a prescribed trajectory φ (t) , the work done by the random
source is

Qs =
g

2

∫
dt Ξ (t)

d

dt
φ (t) (8.38)

Assuming independence of φ (t) and Ξ (t), 〈Qs〉s = 0 and〈
Q2

s

〉
s

=
g2

4V

∫
dtds

d

dt
φ (t)

d

ds
φ (s)

∫
d3x νs (t− s,x) (8.39)

Introducing the Fourier transform

νs (t,x) =
∫

d4k

(2π)4
eikxνs (k) (8.40)

〈
Q2

s

〉
s

=
g2

4V

∫ ∞

−∞

dω

2π
ω2 |φ (ω)|2 νs (ω) =

g2

4V

∫ ∞

0

dω

π
ω2 |φ (ω)|2 νs (ω) (8.41)

where as usual we write νs (ω) = νs (ω,p = 0) and we have used the obvious
symmetry condition that νs is even. If we request that

〈
Q2

s

〉
s

accounts for the
fluctuations δQ2, equation (8.34), then νs = �

2ν.
Since we are discussing a Lorentz invariant theory, this result determines ν (k)

everywhere. We of course recognize the noise kernel introduced in Chapters 5 and
6. In other words, we could arrive at the same Langevin type equation for the
mean field simply by arguing that the CTPEA may be regarded as a Feynman–
Vernon influence functional for an open system (the condensate) interacting with
an environment (the quantum fluctuations) and adopting the usual interpretation
that the imaginary part of the influence action (IA) describes noise.

This point of view is validated by the fact that the stochastic formulation
allows us to compute certain quantum expectation values in the original theory.
Before developing this point further, let us show briefly yet another way to arrive
at the same stochastic equation. If we consider the full Heisenberg equation and
subtract the equation for the fluctuations we see that the Langevin equation
(8.35) amounts to the replacement[

ϕ2 −
〈
ϕ2
〉
φ

]
↔ ζ (8.42)

Of course we cannot simply interpose an identity, because we have on the left a
Heisenberg quantum operator, and on the right a c-number stochastic field. To
give meaning to the connection between the two, we adopt the Landau prescrip-
tion that the symmetric quantum expectation value of the left-hand side equals
(twice) the stochastic expectation value of the right-hand side, or

νs (t− s,x − y) =
1
2

[〈{
ϕ2 (t,x) , ϕ2 (s,y)

}〉
φ
− 2
〈
ϕ2 (t,x)

〉
φ

〈
ϕ2 (s,y)

〉
φ

]
(8.43)

An explicit evaluation at φ = 0 gives again the noise kernel from the CTPEA,
as we have seen in Chapter 6. We see how this approach leading to a Langevin
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240 Dissipation and noise in mean field dynamics

equation is an improvement over the usual mean field theory, which simply dis-
regards ϕ2 −

〈
ϕ2
〉
φ

entirely.

8.5 Full quantum correlations from the Langevin approach

As a simple application of the Langevin approach, we shall show how it may be
used to compute the Hadamard propagator for the underlying field theory. This
is the field theory counterpart of a method applicable more generally to quantum
open systems, and therefore reinforces the view of the CTPEA as the IA for the
mean field.

Let us begin by connecting the propagators of the theory to the CTPEA. In
the condensed notation from Chapter 6, the full propagators GAB =

〈
ϕAϕB

〉
in

the equilibrium state are given by

GAB = −i�
δ2W

δJAδJB

∣∣∣∣
J=0

(8.44)

where W is the CTP generating functional. As usual we identify G11 = GF,

G12 = G−, G21 = G+ and G22 = GD. On the other hand, W ,AB = δφA/δJB =
− (Γ,AB)−1, so we obtain an equation relating the propagators to the second
variation of the CTPEA

Γ,ABG
BC = i�δCA (8.45)

Observe that if the field theory is defined only for t > t0, rather than on the
whole Minkowski space, then the intermediate integral is equally restricted:

φBψ
B ≡

∫
d3x
∫ ∞

t0

dt φb (t,x)ψb (t,x) (8.46)

We have seen in Chapter 6 that the quadratic part of the CTPEA must have
the structure of equation (6.97), where the kernels Dfull and N are real, and
Dfull is causal. We may further split Dfull into its symmetric and antisymmetric
parts, Dfull = Dfull

s + Γ, respectively. The Hessian Γ,AB becomes

Γ,AB =
(
Dfull

s + iN Γ − iN
−Γ − iN −Dfull

s + iN

)
(8.47)

Since the equilibrium state is translation invariant, the propagators (as well as
the Dfull

s , Γ and N kernels) are functions of the difference variable x− x′ alone,
and equations (8.45) are algebraic equations for their Fourier transforms. Setting
a = 1 in equations (8.45) and using the matrix form (8.47), we obtain(

Dfull
s + iN

)
G11 + (Γ − iN)G21 = i� (8.48)(

Dfull
s + iN

)
G12 + (Γ − iN)G22 = 0 (8.49)

Subtracting these two equations, and writing the fundamental propagators in
terms of Gret, Gadv and G1, we get DfullGret = −1. This is just the statement that
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8.5 Full quantum correlations from the Langevin approach 241

the retarded propagator is the fundamental solution to the linearized equations
of motion for the mean field, Dfullφ = −J .

Let us go back to equation (8.48) to get

DfullG1 + 2�NGadv = 0 (8.50)

Since the equation Dfullφ = 0 admits plane waves of momentum p as homoge-
neous solutions, provided

(
−p2
)

= M2, the solution to this equation reads

G1 = Cδ
(
−p2 −M2

)
+ 2�GretNGadv (8.51)

We are using the fact that G1 must be Lorentz invariant, so C must be a simple
constant.

In the Langevin approach we postulate an equation for the stochastic conden-
sate (absorbing coupling constants into the stochastic source, i.e. ξ = gζ/2)

Dfullφ = −ξ (8.52)

where

〈ξ (x) ξ (y)〉s = �N (x, y) (8.53)

Suppose we set the initial conditions for this equation at some time t0. Then

φ (x) = φhom (x) +
∫
y0>t0

d4y Gret (x, y) ξ (y) (8.54)

where φhom (x) is determined by the Cauchy data at t0

φhom (t,x) =
∫

d3y
{
Gret (t− t0,x − y)

d

dt0
φ (t0,y)

+
d

dt
Gret (t− t0,x − y)φ (t0,y)

}
(8.55)

The stochastic average, assuming independence between the initial conditions
and the noise sources, becomes

〈φ (x)φ (y)〉s = 〈φhom (x)φhom (y)〉s
+ �

∫
z0,z′0>t0,

d4zd4z′ Gret (x, z)N (z, z′)Gadv (z′, y) (8.56)

Twice this is a solution of equation (8.50), and therefore if the Cauchy data for
2 〈φ (x)φ (y)〉s and G1 (x, y) are chosen to be the same, they will remain equal
everywhere.

This shows that the stochastic approach may reproduce the Hadamard prop-
agator of the underlying quantum theory. Observe that both random initial
conditions and noise sources are required.
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242 Dissipation and noise in mean field dynamics

8.6 The fluctuation–dissipation theorem

Before we show how the above analysis may be generalized to the nonlinear
regime, it is interesting to pause for the following observation. We have just shown
that the Hadamard propagator for quantum fluctuations may be obtained as a
stochastic average over a random c-number field. This field may be decomposed
into a homogeneous solution of the linearized mean field equations of motion
plus an extra term, induced by the effect of a particular Gaussian noise.

We have seen at the beginning of this chapter that solutions of the mean field
equations are partially dissipated away as they evolve. But the Hadamard prop-
agator is time-translation invariant. So the noise sources must be injecting the
precise amount of fluctuations necessary to compensate for the dissipation of the
free part. The quantitative statement of this observation is the (zero tempera-
ture) fluctuation dissipation relation [CalWel51, LaLiPi80a, Ma76, BooYip91].
This is a simple application of a deeper, generic relationship between noise and
dissipation in the CTPEA, whose origin is that both arise from particle creation
in the fluctuation field. Here we are using the term “particle creation” also to
denote such phenomena as the transfer of atoms from a condensate to higher
modes, as in the Bose–Nova experiment [Don01].

To quantify this statement, let us return to the expression for the heat dissi-
pated during the whole evolution of the field

Q =
∫

d4x

{[
−∇2 + m2

]
φ (x) −

∫
y0<x0

d4y − Σret (x, y)φ (y) − ξ (x)
}

dφ

dt
(x)

(8.57)

Since the spectrum of fluctuations is stationary, we must have 〈Q〉s = 0. The
first terms have been analyzed in the beginning of this chapter, with the only
difference that now we do not assume a homogeneous condensate. Using the
results of the last section to replace field averages by the Hadamard propagator,
we get∫

d4x

〈
ξ (x)

dφ

dt
(x)
〉

s

= V T

∫
d4k

(2π)4
k0Π

(
−k2

)
G1 (k) θ

(
k0
)

(8.58)

where V T is the 4-volume of spacetime. Since we are assuming a Gaussian noise
and a linearized equation of motion,∫

d4x

〈
ξ (x)

dφ

dt
(x)
〉

s

=
∫

d4xd4y 〈ξ (x) ξ (y)〉s
d

dt

δφ (x)
δj (y)

= −iV T�

∫
d4k

(2π)4
k0N (k)Gret (k) (8.59)

Since N (k) is even, this becomes

−i
V T�

2

∫
d4k

(2π)4
∣∣k0
∣∣N (k) [Gret (k) −Gret (−k)] θ

(
k0
)

(8.60)

https://doi.org/10.1017/9781009290036.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.012


8.7 Particle creation and decoherence 243

But Gret (k) −Gret (−k) = iG (k) , where G is the Jordan propagator. Therefore,
defining

G1 (k) = ρ (k)G (k) sign
(
k0
)

(8.61)

then

�N (k) = 2Π
(
−k2

)
ρ (k) (8.62)

This is the fluctuation–dissipation theorem at zero temperature (cf. Einstein’s
relation from Chapter 2). By the way, for free fields ρ = 1, as we saw in Chapter 6.

8.7 Particle creation and decoherence

At this point it is interesting to go back to the beginning and question whether
it is consistent to treat the system field φ as classical. One possible answer is
to consider two different histories for the φ field, leaving the environment field
ϕ unspecified, and to compute their decoherence functional D (introduced in
Chapter 3). If |D| � 1, the classical approximation is warranted.

The basic observation is that to compute the decoherence functional we must
perform a CTP path integral over all histories of the field ϕa, adding in each
branch an external source to enforce the constraint that 〈ϕa〉 = 0. The result is
that the path integral defining D is identical to the one defining the CTPEA,
and we find the relationship

D
[
φ1, φ2

]
= exp

{
iΓ
[
φ1, φ2

]
�

}
(8.63)

It is clear that the classical part of the CTPEA does not contribute to decoher-
ence. Let us consider the one-loop term Γ1 (cf. Chapter 6). In canonical terms, Γ1

measures the overlap between the state which evolves from the in vacuum under
the influence of the external field φ1 (x) and the state which evolves under φ2(x),
as measured in the far future. For simplicity, let us assume that the background
fields are homogeneous, in which case we may decompose the fluctuation fields
in plane waves, to find

Γ1

[
φA
]

=
∑
k0>0

Γ1k

[
φA
]

Γ1k

[
φA
]

= −i� ln
∫

Dϕa
kDϕa

−k

× exp
{
− i

�

∫
dt ϕa

−k

[
cab

(
d2

dt2
+ ω2

k

)
+ g cabcφ

c

]
ϕb
k

}
(8.64)

Interposing a complete set of out modes, we may write

Γ1k

[
φA
]

= −i� ln
∑
n

〈
0in
∣∣nk, n−k, out

〉
φ2

〈
nk, n−k, out

∣∣ 0in〉
φ1 (8.65)
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where we are using the fact that particles may be created in pairs only; the
subscript φ indicates the external field under which the quantum field evolves.
Since the quantum field on each branch is a free Klein–Gordon field with a time-
dependent frequency, the in and out destruction operators are related through
a Bogoliubov transform. The relevant brackets are given in Chapter 4, and after
a simple summation, we arrive at

Γ1k

[
φA
]

= i� ln
[
α2
kα

1∗
k − β2

kβ
1∗
k

]
(8.66)

where αi
k, β

i
k denote the Bogoliubov coefficients for the corresponding branch.

One can check that this expression complies with the basic expectations
regarding the CTPEA. It is clear that Γ1k vanishes if φ1 = φ2. If the two fields
are exchanged, the real part changes sign, while the imaginary part is unchanged.

To clarify the meaning of equation (8.66) let us observe that it is invariant if
we subject both pairs of Bogoliubov coefficients to the same Bogoliubov trans-
formation. In other words, the effective action is independent of the choice of
out particle model in equation (8.65). Therefore we may assume without loss of
generality that β2

k = 0. This implies
∣∣α2

k

∣∣ = 1, and so, in this representation,

|D| =
1

|α1
k|

=
1√

1 + |β1
k|

2
(8.67)

As expected, particle creation is necessary to suppress coherence. Of course, the
physical mechanism behind this result is the entanglement of the system and
environment fields through the particle creation process.

The relation between particle creation and decoherence was given in
[CalMaz90]. The expression of the CTP effective action or the influence func-
tional in terms of the Bogoliubov coefficients was given in [CalHu94, HKMP96,
RaStHu98].

8.8 The nonlinear regime

So far we have demonstrated the presence of noise and dissipation for far off-shell
modes (−p2 > 4M2). We shall now see that particle creation, and therefore dissi-
pation and noise, is restricted by a lower threshold only in the linearized theory.
In the nonlinear regime, the possibilities are much richer: Schwinger proved the
existence of particle creation from static electric fields, shown as an example in
Chapter 4. So dissipation and noise in particle creation are the rule rather than
the exception.

Let us attempt a nonperturbative evaluation of the one-loop effective action
as given in Chapter 6, equation (6.120). Observe that

φ1
(
ϕ1
)2 − φ2

(
ϕ2
)2

= φ+

((
ϕ1
)2 − (ϕ2

)2)
+

φ−
2

((
ϕ1
)2

+
(
ϕ2
)2)

(8.68)

This suggests expanding

Γ1 =
(
−g

2

)∫
d4x〈ϕ2〉φ+(x)φ− + ΔS [φ+, φ−] (8.69)
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where ΔS [φ+, φ−] ∼ O
(
φ2
−
)
. To compute 〈ϕ2〉φ+(x) we consider the fluctuation

field ϕ as a free quantum field with the equation of motion[
∂2 −m2 − gφ+

]
ϕ = 0 (8.70)

In other words, ϕ is a quantum field propagating on the dynamic background
φ+, a situation we have already analyzed in Chapter 4.

To see the effect of ΔS on the equation of motion for φ, we perform a functional
Fourier transform

exp {iΔS [φ+, φ−] /�} =
∫

Dξ ei�
−1 ∫ ξφ−P [ξ, φ+] (8.71)

Calling 〈. . .〉s =
∫
Dξ . . . P [ξ, φ+], we find

〈ξ(x)〉s =
δΔS

δφ−

∣∣∣∣
φ−=0

= 0 (8.72)

〈ξ(x)ξ(x′)〉s ≡ �N(x, x′)

=
(
g2

8

)[〈{
ϕ2(x), ϕ2(x′)

}〉
φ+

− 2〈ϕ2〉φ+(x)〈ϕ2〉φ+(x′)
]

(8.73)

This is to be contrasted with the result in the perturbative treatment.
The functional P [ξ, φ+] must be real (as follows from ΔS [φ+,−φ−] =

−ΔS [φ+, φ−]∗) and it is nonnegative to the one-loop approximation. We may
think of it as a functional Wigner transform of the effective action [Hab92], and
thereby as a probability density “for all practical purposes.” Observe that P will
not be Gaussian in general.

In the limit φ− → 0, φ+ → φ, we obtain the equation of motion for the
mean field(

−∂2 + m2
)
φ(x) +

1
2
gφ2 +

(g
2

) [
〈ϕ2〉φ − 〈ϕ2〉0

]
(x) = ξ(x) (8.74)

A linear expansion of (8.74) around φ = 0 and the assumption of a homogeneous
condensate give back (8.35). Our goal is to show that the noise ξ(x) is not
restricted to modes above threshold. To this end, we shall assume a simple mean
field configuration, homogeneous in space and harmonic in time, i.e.

φ(t) = φ0 cos γt (8.75)

where γ ≤ 2M , so we are below threshold. We shall see that in spite of this the
noise is nonzero. Moreover, the noise itself is not restricted to the high-frequency
domain, but it has low-frequency components as well.

To compute the nonperturbative noise kernel, we expand the quantum field
ϕ in normal modes. The amplitude functions of the normal modes are complex,
with

ϕ−k = ϕ†
k (8.76)

They obey a mode equation where the time-dependent natural frequency of the
kth mode is

ω2
k = k2 + m2 − gφ(t) (8.77)
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Here we shall disregard the possibility of ω becoming imaginary through a large
negative light field, i.e. we assume gφ0 ≤ m2. We assume the fluctuation field is
in the vacuum state at some initial time t = 0 (we assume the coupling constant
g is switched on adiabatically, so initial time singularities do not arise). Since ϕ

is a free field, Wick’s theorem holds, and our problem is to relate the field at
arbitrary times to the initial creation and destruction operators.

The general relationship we seek is

ϕk(t) = fk(t)ak(0) + f∗
k (t)a†−k(0) (8.78)

where fk is the positive frequency mode associated with the in particle model.
For the given mean field evolution (8.75) the mode equation is in the form of
Mathieu’s equation, with a periodically driven field in the narrow resonance
regime. The results of Chapter 4 will apply here if we identify ω2

k0 = k2 + m2 −
gφ0, ω2

1 = gφ0. The mode function fk may be written as a linear combination of
WKB solutions.

fk(t) = αk (t) f+
k (t) + βk (t) f−

k (t) (8.79)

Let us consider the case where we are in the neighborhood of the �th resonance
band, namely ωk0 = γ (� + δk) (remember in Chapter 4 we set γ = 1, so now we
must re-insert γ in all the equations). Then

αk (t) =
[
α

(+)
k0 eμkγt + α

(−)
k0 e−μkγt

]
eiσkγt

βk (t) =
[
β

(+)
k0 eμkγt + β

(−)
k0 e−μkγt

]
e−iσkγt (8.80)

where

σk =
ω2

1

2γω0k
+ δk

κk ∼ 1
(2�− 1)!

γ

4ωk0

(
ω2

1

2γω0k

)2�

μk =
√
κ2
k − σ2

k

β
(±)
k0 =

1
κk

[σk ∓ iμk]α
(±)
k0 (8.81)

We are particularly interested in the case where μk is real. Let us write
σk + iμk

κk
= eiϑk (8.82)

(outside of the resonant region, ϑk becomes imaginary). Imposing the boundary
conditions αk (0) = 1, βk (0) = 0, we find

αk (t) =
sinh [μkγt + iϑk]

i sinϑk
eiσkγt

βk (t) =
sinh [μkγt]
i sinϑk

e−iσkγt (8.83)
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Finally, let us define

f+
k (t)eiσkγt = �

1/2 e
−i�γt

√
2�γ

gk (t) (8.84)

where gk (t) ∼ 1 with great accuracy. We can now write the mode functions as

fk(t) = �
1/2

{
sinh [μkγt + iϑk]

i sinϑk

e−i�γt

√
2�γ

gk (t) +
sinh [μkγt]
i sinϑk

ei�γt√
2�γ

g∗k (t)
}

(8.85)

Three features stand out, namely (1) the generation of the negative frequency
components, which is the physical basis for vacuum particle creation; (2) the
exponential amplification due to ongoing particle creation; and (3) the phase-
locking of a whole range of wavelengths at the resonance frequency �γ. As we
shall now see, phase locking allows the generation of a low-frequency, inhomo-
geneus stochastic field. This is the main physical indication of the new features
of dissipation and fluctuation below threshold we want to highlight.

In order to find the noise kernel, let us decompose the Heisenberg operator ϕ2

into a c-number, a diagonal (D) and a nondiagonal (ND) (in the particle number
basis) part

ϕ2 =
〈
ϕ2
〉
φ

+ ϕ2
D + ϕ2

ND (8.86)

where

〈
ϕ2
〉
φ

=
∫

d3k

(2π)3
|fk(t)|2 (8.87)

and the (D) and (ND) components are

ϕ2
D =

∫
d3k

(2π)3
d3k′

(2π)3
ei(k+k′)x

{
fk(t)f∗

k′(t)a†−k′ak + f∗
k (t)fk′(t)a†−kak′

}
(8.88)

ϕ2
ND =

∫
d3k

(2π)3
d3k′

(2π)3
ei(k+k′)x

{
fk(t)fk′(t)akak′ + f∗

k (t)f∗
k′(t)a†−ka

†
−k′

}
(8.89)

Observe that, assuming vacuum initial conditions,〈
ϕ2

D

〉
φ

=
〈
ϕ2

ND

〉
φ

=
〈
ϕ2

Dϕ
2
ND

〉
φ

=
〈
ϕ2

NDϕ
2
D

〉
φ

=
〈
ϕ2

Dϕ
2
D

〉
φ
≡ 0 (8.90)

Therefore

�N(x, x′) =
(
g2

8

)〈{
ϕ2

ND(x), ϕ2
ND(x′)

}〉
φ+

=
(
g2

2

)∫
d3k

(2π)3
d3k′

(2π)3
ei(k+k′)(x−x′)Re {fk(t)fk′(t)f∗

k (t′)f∗
k′(t′)}

(8.91)

If no particle creation occurred, the noise kernel would contain frequencies above
threshold only. However, in the presence of frequency-locking and a negative

https://doi.org/10.1017/9781009290036.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.012


248 Dissipation and noise in mean field dynamics

frequency part of the mode functions f , the noise kernel also contains a steady
component

�NS(x, x′) =
(

g2
�

2

8�2γ2

)∫ ′ d3k

(2π)3
d3k′

(2π)3
ei(k+k′)(x−x′)Fkk′(t, t′) (8.92)

where the integral is restricted to those modes where μk is real, and

Fkk′(t, t′) = Re {Fkk′ (t)F ∗
kk′ (t′)} (8.93)

Fkk′ (t) =
1

sinϑk sinϑk′
[sinh [μkγt + iϑk] sinh [μk′γt] gk (t) g∗k′ (t) + (k ↔ k′)]

(8.94)

It is important to notice that F is slowly varying not only with respect to
the frequency �γ, but also with respect to the background frequency γ itself. Of
course we do not observe the noise kernel directly, but only through its effect on
the mean field. However, since the steady part of the stochastic source is slowly
varying in space and time, to a first approximation it induces a stochastic mean
field φS which is simply proportional to it:

φS ∼
(

1
m2

)
ξS; 〈φSφS〉 ∼

(
1
m2

)2

�NS (8.95)

One can deduce the noise and its auto-correlation in this way.
Since κk decays exponentially with l, it is clear that only the lowest possible

resonance band makes a meaningful contribution. So we may assume that k2 �
m2 and approximate ωk0 = ω00 +

(
k2/2ω00

)
, where ω2

00 = m2 − gφ0. Therefore

δk = δ0 +
k2

2γω00

σk ∼ σ0 +
k2

2γω00

κk ∼ κ0e
−�k2/γω00 (8.96)

The limit of the resonance band is reached at some wavenumber k0, and we
may approximate

μk = μ0

(
1 − k2

k2
0

)
(8.97)

If �κ2
0 � 1, k2

0 ∼ 2γω00κ0 � 2γ2. At short times, we may approximate

sinh [μkγt]
sinϑk

∼ μkγt

sinϑk
= κkγt (8.98)

Fkk′ (t) = γt [κk + κk′ ] (8.99)

Initially the stochastic source grows linearly in time and is coherent over distances
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of order k−1
0 . At late times

Fkk′ (t) =
e(μk+μk′ )γt

2 sinϑk sinϑk′

(
eiϑk + eiϑk′

)
∼ F00e

2μ0γt exp
[
−μ0γt

k2
0

(
k2 + k′2)]

(8.100)

so not only the strength of the stochastic source grows exponentially, with a
time constant defined by the Floquet exponent, but also the size of the coherent
domains grows as a power of time (in this simple model, t1/2).

8.9 Final remarks

In this chapter, we have analyzed dissipation and fluctuations in the mean field
by viewing it as an effectively open system, interacting with the environment
provided by the quantum fluctuations of the same fundamental field. We shall
conclude by mentioning some concrete problems where this way of thinking is
fruitful in understanding their behaviors.

Physically, a quantum field develops a nontrivial expectation value through
the process of condensation. By including fluctuations in its dynamics, we see
the distinction between a condensate field and a mean field. The condensate is
now regarded as a classical subsystem, interacting with a quantum environment
and acquiring a stochastic component as a consequence.

Since in practice only long-wavelength–low-frequency modes condensate, one
may attempt to draw a sharp distinction between condensate and fluctuations
by defining an a priori separation between a long-wavelength condensate band,
and a short-wavelength fluctuation band. Then the former may be described
as a quantum open system. Eventually, if it actually condensates, the quantum
fluctuations in the condensate band may be neglected. This kind of approach to
condensate dynamics has been proposed by Gardiner and Anglin [GaAnFu01],
Gardiner and Davis [GarDav03], and by Stoof [Sto99] in the context of Bose–
Einstein condensates (BEC) (Chapter 13). Another example is in nuclear-particle
physics. The effect of high-frequency modes in the quark–gluon plasma (QGP)
on the (soft) gluon dynamics can be described by a Langevin equation, the so-
called “Boedeker equation” of a similar construct (Chapter 10). Both the BEC
and the QGP problems can be described by the coarse-grained effective action
(or its equivalent) discussed in Chapter 5, with better built-in self-consistency.

In a truly dynamical setting, any a priori separation between a condensate
and a fluctuations band may turn out to be artificial. Nonlinear effects in the
condensate will tend to create short-wavelength features even out of smooth ini-
tial conditions, as shown dramatically in the phenomena of condensate collapse.
Therefore it is better to avoid such a rigid distinction, but stress instead the
difference between a c-number (albeit stochastic) component and the environ-
ment provided by the remnant q-number fluctuations. This is the approach taken
in this chapter. An example we mentioned at the beginning of this chapter is
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stochastic semiclassical gravity [HuVer03, HuVer04] the arena where many of
these ideas were developed and advanced. There, the Einstein–Langevin equa-
tion arises from incorporating the fluctuations of the quantum field as a noise
term in the semiclassical Einstein equation. By implication this views Einstein’s
theory as a mean-field theory, a novel conception which can shed some new light
on a radically different approach towards quantum gravity, via kinetic theory
and stochastic dynamics. For further exposition of these ideas, see [Hu99, Hu02,
Hu05].

Although the c-number part is not quite an open system – since no a priori
criteria for separation between system and environment have been established –
in practice it amounts to very much the same thing. Formally this is reflected by
the close analogy between the CTPEA and an influence functional. We therefore
say that, by adopting a description based on the fluctuating condensate, we turn
the original problem into an effectively open system.

More generally, the fact that the Langevin approach allows us to reproduce
the correct quantum Hadamard propagator makes this kind of approach useful in
any situation where the amplitudes of fluctuations, rather than their coherence
properties, are the main concern. In this light, the decoherence of the mean field
is both a subject of theoretical and practical interest – theoretical for reasons
stated above, practical because many physical phenomena originate from such
processes. Examples are cosmological structure formation and quantum phase
transitions. These topics will be treated in later chapters.
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