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WHITE NOISE DELTA FUNCTIONS AND
CONTINUOUS VERSION THEOREM

NOBUAKI OBATA

Introduction

The recently developed Hida calculus of white noise [5] is an infinite dimen-
sional analogue of Schwartz’ distribution theory besed on the Gelfand triple
(E) € L) = L*(E*, p) € (E)*, where (E¥, 1) is Gaussian space and (L) is
(a realization of) Fock space. It has been so far discussed aiming at an application
to quantum physics, for instance [1], [3], and infinite dimensional harmonic analy-
sis [7], [8), [13], [14], [15]. During the development an important milestone was
Kubo-Yokoi's continuous version theorem [11] which asserts that every test white
noise functional ¢ € (E) admits a unique continuous version and, therefore, the
test functionals constitute a space of continuous functions on E™. This theorem is
very fundamental and indispensable for many arguments. For example, it allows
us to introduce a delta function on Gaussian space, which is one of the most
important generalized functions. Furthermore, the continuous version theorem is
effectively applied to description of positive generalized white noise functionals
[19].

The motivation of this paper is to give an alternative proof of the continuous
version theorem by means of a direct use of defining Hilbertian seminorms of E*.
In fact, this approach yields a sharp estimate of white noise delta functions 0, €
(E)*, x € E*, from which the continuous version theorem follows. Moreover,
with this method we may prove the continuity of x = d, € (E)*, z € E¥, which
guarantees that the n-fold (topological) tensor product (E) & -+ @ (E) is again
a space of continuous functions on the product of the Gaussian space E® X «++ X
E* (n times).

Here we remark some closely related works. In [12] Lee proved that each test
functional ¢ € (E) admits an analytic version on each Hilbert space E_,, where
E* =ind lim,_., E_,. However, since the inductive system {E_,},, is not strict,
our continuous version theorem does not follow from his result. In [9] Kondrat'ev
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and Samoylenko studied smoothness of test functionals on R equipped with the
product Gaussian measure. Although based on a different framework, their discus-
sion can be translated into our language. However, it turns out that their results
have little in common with ours but some with Lee’s. Finally, within the
framework of Malliavin calculus the unique existence of quasi-continuous version
has been discussed in many contexts, see e.g., [17] and references cited therein.

The paper is organized as follows. In Section 1 we recapitulate a well known
construction of Gelfand triples under the name of standard construction. Section 2
is devoted to a brief review of test and generalized white noise functionals. In Sec-
tion 3 we formulate the main results. In Section 4 we introduce a set of defining
Hilbertian seminorms of E* and in Section 5 we prove the main results. Section 6
contains some results on a tensor product of white noise test functionals.

Noration. If X is a real vector space, we denote by X the complexification.
For two vector spaces X and 9 we denote by X ®,, 9 their algebraic tensor pro-
duct. If ¥ = H and 9 = K are Hilbert spaces, we denote by H & K the Hilbert
space tensor product. For nuclear spaces ¥ and 9, we denote simply by £ & 9) the
completion of X ®a,g2) with respect to the m-topology, i.e., the strongest locally
convex topology on X &® .9 such that the canonical map X X 9= XX, Y is
continuous. Although the m-tensor product of Hilbert spaces is different frOIp the
Hilbert space tensor product, there will be no confusion. We denote by x°"c
x°” the closed subspace of symmetric tensor products. We also use (£®"):ym for
the same meaning in case of the strong dual spaces.

1. Standard construction of Gelfand triples

Motivated by the works of Berezansky-Kondrat'ev [2] and Gelfand-Vilenkin
[4], we reformulate a useful method of constructing a nuclear Fréchet space or
equivalently a Gelfand triple.

Let H be a real separable Hilbert space with norm | - |0 and inner product
{-,*>. Assume we are given a pair ({¢;};_,, {2;}]_)) of a complete orthonormal
basis of H and a sequence of positive numbers with 2‘;0 ];27 < oo for some

r > 0. We then put
oo 2 21/2
M) eh=(Sa7 < ) . ecHpeR,

though | &|, = o can happen. For p > 0 let E, denote the subspace of § € H
with | €|, < . Obviously, E, becomes a Hilbert space with norm | - |,. Again for
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p =0 let E_, denote the completion of H with respect to the Hilbertian norm
| - |_, on H. We have thus obtained a chain of Hilbert spaces:

'CEqC"'CEpC"‘CEOZHC"'CE_I,C"'CE_qC"'
g=p=0,

where every canonical injection E,— E,, ¢ = p, is continuous and has dense
image. As is easily seen, the inner product <-,*> of H is naturally extended to the
canonical bilinear form on E_, X E,, p = 0, through which E_, is identified with
the strong dual of E,.

TueoreM 1.1.  Equipped with the Hilbertian norms | - |,, p 20, E = N ,5,E,
becomes a muclear Fréchet space, which 1is isomorphic to the projective limit
proj lim,_., E,. Moreover, the strong dual E * s isomorphic to the inductive limit
indlim,_., E_, and is identified with U ,-o E_, as vector space.

The proof is straightforward, see [4: Chap. I | and [16: Chap. IV]. We have
thus obtained a Gelfand triple E € H < E™ from the pair (e} o, {2}y This
construction will be called standard.

While, it is sometimes more convenient to start with a densely defined oper-
ator on H instead of a pair ({¢}};_,, {2}/_)). A linear operator A with dense
domain Dom (A) C H is called standard if there is a complete orthonormal basis
{e;};_, for H contained in Dom(A) such that

(S1) Ae; = Aje; with 4; > 0;

(S2) X A;” < oo for some 7 > 0.
j=0

The relation between a standard operator A and a pair ({e};_,, {A;};-) is de-
scribed as

Ag = > A; <&, ey e, &€ Dom(4).
i=0

Given a standard operator A, we construct a Gelfand triple in the standard
manner.

LemMa 1.2, If A is a standard operator on H, so is A° for any s > 0 and the
resultant Gelfand triples arve isomorphic.
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The proof is straightforward. By virtue of Lemma 1.2 we may assume without
loss of generality that # = 1 in (S2), when we discuss standard construction of
Gelfand triples.

Let £ be a topological space equipped with a Borel measure v. If A is a stan-
dard operator on H = L* (2, v;R), the Gelfand triple constructed from A is
explicitly written as

B, c (2, v;R) € S5 ().

By construction each element of S, (£2) is a function on £ which is determined up

to v-null functions. For many practical reasons it is desired that J, (£2) can be

identified with a space of continuous functions on £. In this connection we prop-

ose the following hypothesis:

(H1) For each function & € J,(R) there exists a unique continuous function & on
Q such that £(w) = E(w) for v-ae. w € L.

Once this condition is satisfied, we always regard «,(£2) as a space of continuous

functions on £ and we do not use the symbol €. Under (H1) we consider two more

hypotheses:

(H2) For each w € Q the evaluation map 6,:&E~ & (w ), E € S,(2), is a
continuous linear functional, i.e., §, € S} (2).

(H3) The map w g, € 13:(9), w € Q, is continuous with respect to the strong
dual topology of 13:(.9).

The above hypotheses are motivated by the work of Kubo and Takenaka [10].

While, in [4: Chap. 1] the evaluation map J, is discussed without topological

structure of £2. A sufficient condition for (H1)-(H3) is presented in Appendix.

2. Generalized white noise functionals

We keep to the same notation as in §1. Let A be a standard operator on a real
Hilbert space H satisfying

(A1) Ae; = Aje; with 4; € R;
(A2) 2% < oo

j=0
(A3) 1< 2, <A < -+ —> o0,

The last condition is indispensable to our white noise calculus setup. Let
E C HC E™ be the Gelfand triple constructed from A in the standard manner.
The Gaussian measure g on E™ is defined by
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|2

(2) exp <-— ILZQ) = j;* ¢ ™ u(dx), E€E.

We consider the Hilbert space L*(E™, 2; R) and its complexification (L*). Their
norms are denoted by || . ||0

In order to introduce a standard operator on LZ(E*, tt; R) we need a variant
of Wiener-Itd decomposition. For x € E* and n = 0,1,2,... we define 2% e
(Em):ym inductively as follows:

. ®0. _

‘o =1,

.81 _

o i=o,

. _®n, > ®(n—-1) o ® (n—-2)
=@ == D ®: ", =2,

where 7 € (EQ E):ym is the trace uniquely determined by
(3) (r, §@m =X, ), §,nE€E.

Let f, € Eg". Then ¢, (x) = ¢:x®":, £,> becomes a continuous function on E*
which satisfies [ ¢, I2=n!lf,12 Using this isometry, we may define :x®":, £,
for f, € Hg" in L’-sense. With these notations we have the following

_ ProposiTion 2.1, For each ¢ € (L?) there exists a unique sequence (f,) o, fo €
n
H:", such that

(4) ¢x) = > ¢z, £, z€E,
n=0
where the right hand side is an orthogonal divect sum in (Lz). In that case it holds
that
(5) l¢lo= 2 all £l
n=

We now define a second quantized operator I'(4). Let Dom (I'(A)) be the
space of functions ¢ of the form (4) such that f, € E®" and f, = 0 except finitely
many #. For ¢ € Dom(I"(A)) put

(6) rA¢@ = 2 ¢a®: A% ).
n=0

Then, I'(A) becomes a standard operator on L*(E™, 1; R), see [15]. Employing
the standard construction, we obtain a new Gelfand triple:

Sray(E®) C L(EY, 13 R) C Spy(E),
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of which complexification is denoted by
(E) (L) € (B)".

Elements ¢ € (E) and @ € (E)™ are called a test (white noise) functional and a

genevalized (white noise) functional, respectively. The canonical bilinear form on
(E)* X (E) is denoted by «-,*Y.
It follows from (5), (6) and the definition of norms that

) lol;=1rWw’s k= = all 4 ;= Zntl 4.
We then obtain

PrOPOSITION 2.2. Let ¢ € (L?) be expressed as in (4). Then, ¢ € (E) if and
only if f, € Egm foralln=0,1,2,... and 2, _,n!| f, [,2, < o forallp = 0.

3. Continuous version theorem
In this section we formulate the main assertions. Recall that by construction

each ¢ € (E) is determined only up to #-null functions.

THEOREM 3.1. For each ¢ € (E) there exists a unique continuous function ¢ on
E* such that ¢(x) = §(x) for p-a.e. T € E*. Moreover, $(x) is given by the abso-
lutely convergent series:

dx) =X 2%, £y, z€E,
n=0
where (f,),_, corresponds to the given ¢ as in Proposition 2.1.
The above assertion should be carefully compared with Proposition 2.2 which
asserts that the series converges with respect to the norms ” . ||p, p = 0. By virtue

of Theorem 3.1 we always understand (E) to be the space of continuous functions
¢ on E™ of the form:

p@ = 2 ¢ g,

where R
(i) f,€ Eg" forn=0,1,2,...;
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o0

(ii) Zallf|2<coforallp>0;
0

n=
(i11) the series is absolutely convergent at every x € E*
For £ € E™ a linear function 0, on (E) is defined by

0,: 9~ ¢x), ¢ < (E).

This is called a white noise delta function.

TuroreM 3.2. 0, € (E)™ for all x € E™. Moveover,
(8) 1o, <=l + 1zl )37,

whenever | Tll_/pz +lzl_, <1
THEOREM 3.3 The map x> 0, € (E)*, x € E¥, is continuous.

In short, Theorems 3.1-3.3 say that the space of test functionals (E) satisfies
the hypotheses (H1)-(H3) introduced in §1, The proof of Theorem 3.1 being some-
how long, it is devided into three steps (Propositions 3.4-3.6) and will be com-
pleted in §5. The estimate (8) in Theorem 3.2 will be sharpened in (33) in §5.

PROPOSITION 3.4. Let ¢ be a continuous function on E*. If (x) = 0 for p-a.e.
€ E* then$(@) =0 forallx € E™.

Proof. Note first that u(E_,) =1 for p = 1. In fact, this follows from (A2)
and a general result (e.g., [18: Chap. 3]). We prove the assertion by contradiction.
Suppose that ¢ (z,) > 0 for some point 2, € E*. Take p = 1 such that z, € E_,
and consider the restriction of g5 to E_, which is denoted by the same symbol.
Obviously, ¢ is a continuous function on E_, with é(xo) > 0. It then follows from
the assumption that there exists a non-empty open subset U C E_, such that
(1) = 0. We now take a countable subset {§,};_;, € H such that

E,= U (U+&).

k=1

But since the Gaussian measure g is quasi-invariant under translations by H, we
have (U + &) = 0 and therefore #(E_,) = 0. This is contradiction. Q.E.D.

We now introduce two basic constant numbers in white noise calculus:
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— -1 — S+ 4-2 b _ —1j _ 5-1
6_”A ”HS— ]E)xj ’ p—"A "_/{()’

where |A™ lys and | A7'| stand for the Hilbert-Schmidt norm and the operator
norm of A_l, respectively. These are frequently used together with the obvious
inequalities:

9 0<p<1, p<3j,

which follow from (A3).
Again by |'|,, we denote the norm of the Hilbert space Ef", p € R. Then, in
view of (1) we obtain

10) lwl,=1A°"wl,

© 1/2
=< SO w6, ® ®e,.”>2)  weE™

Frrrig=0
Note also that
(11) lol, <o"|lwl,,,, w€E", peR,
and therefore
(12) lim|F|_,=0, Fe(E®)"
p—oo
ProposITION 3.5. For n=10,1,2,... let ES" and assume >_on! | f, |5 < o

for all p 2 0. Then the series

converges absolutely at each x € E *

Proof. By definition (3) we have 7= X.,¢®e and |7[,=
o 7% < oo whenever p > 1/2. We next note the inequality:
7 b
(13) x® |, <vm! (2|27 +1x].)",
which follows from the well-known identity:

k ~
®n 2l (—1)"n! LS ® -2k

(14) =Y T Qx ,
k=0 (n — 2k)1Kk!2
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and an obvious inequality:

1 yn! n
K12k = 2! 0<k=< [2]

Now let x € E™ be fixed. It follows from (13) that

(15) §|<;x®":,f,,>|s§0|;x®":1_,1f,,|p
vl 1+ 1z )" £,
@nvlf,,) (Z del+1alp™)

In view of (12) we choose p > 1/2 such that | Tlm + |x|_,, < 1. Then (15) be-
comes

16 Slca™ < (Enlgl) Q- (el 42l )8 <,
n=0 n=0
as desired. QED.

We now go back to the proof of Theorem 3.1. According to Proposition 2.2 a
given ¢ € (E) admits an expression:

¢(x) = :? GCx® fy, € EY,

where f, € Egm for n=0,1,2,... and Z,on!|f, li < o for all p = 0. The
series converges in [’-sense. On the other hand, it follows from Proposition 3.5
that

(17) pla) = X Cx®" e, fp

n=0

converges at every point x € E™. Therefore, ¢ (x) = ¢ (x) for p-ae. z € E™.
Since the uniqueness of a continuous version follows from Proposition 3.4, the
proof of Theorem 3.1 is completed by the following
ProposiTioN 3.6, For n=0,1,2, ... let f, € Eg" and assume Z%)n!|fn|f,
~ n=
< o forallp = 0. Then, ¢ defined in (17) is a continuous function on E™*.

It is much simpler to show that the restriction of (1~5 to E_, is continuous with
respect to the norm H_i,. However, this is not enough to assert the continuity of ¢
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with respect to the strong dual topology of E *, because the inductive system
{E_,};>, is not strict.

Proposition 3.6 will be shown in Proposition 5.4 together with a precise
estimate of | ¢ (x) — @ (y) |. While, the proof of Theorem 3.2 has been already
established during the proof of Proposition 3.5. The estimate (8) follows im-
mediately from (16).

4. Defining seminorms for the strong dual £ *

Following [18: Chap. 3] we introduce a set of defining Hilbertian seminorms
of E¥. Let € be the set of sequences C = (C,);_, such that C, = C; = -+ - > 0.
For C € € we put

(18) Dsni=§0cj|sli, ECE,

though possibly [ £l = o. Then E(C) = {£ € E; [] £l . < o} becomes a
Hilbert space with norm [J - [] .. We put
(19) |zlo=sup {[Kz, &|; 0 0. <1, E€E}, z€E"

Obviously, | * |c is a Hilbertian seminorm on E™ though it is not necessarily a
norm. Note also that for any C € ¢

(20) <z, & |<|zl. 060, x€E* EE€E,

though [J & I = 0 can happen.
LemMa 4.1, {| * |} ceq 35 @ set of defining Hilbertian seminorms of E *

Proof. The strong dual topology of E™ is defined by the seminorms
zesup{l{z, &|;6€ B, z€E”,
where B runs over all bounded subsets of E. It is therefore sufficient to show that
for any bounded subset B C E there is C € € such that BC {E€ E; [ &,
< 1}. But this is easily verified. QED.
Lemma 4.2. For C = (Cp);-, € € it holds that

o oo o0 -1
lelt= 3¢z, )" 0 0= ¢, ) (S C22%) . zeE™.
j=0 7=0 =0
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Proof. Recall that {¢;}_, is an orthogonal basis for all E,, p = 0. In view of
(18) we see that {[] ¢, ¢ e;}; is an orthonormal basis for E (C) and also for
E(C)¥, where we understand [] e D;l ¢, = 0if [] ¢ [ = o0. Then the assertion
follows from Fourier expansion £ = 2., <z, ¢, ¢, which converges in E™.

Q.E.D.

It is noted that

E® = n E> =projlim E;", (E®)*= U E% = indlim EZ}".

>0 P =0 p—oo

Therefore the topology of (E®™M™ is defined in a similar way. Namely, for C € €

put
(21) lolt= , Zp . ¢ Clol.,, weE®,
where
(22) ol =1A"® - @AM wl;
= 3 B, e @ e,
Jraig=0

see also (10). Then for F € (E®)™ we put
|Fl.=sup{|<F, ;0w l,<1, w € E®.

It is proved in a similar way to Lemma 4.1 that {| * |-} ceq is a set of defining Hil-
bertian seminorms of (E")*. We next note the following

Lemva 4.3. Let C = (C,)y- € €. Then
IFlcécp_anl—py FE(E®n)*y
though l F l—p = 00 may happen. Moreover, l . Ic 1S @ cross norm, i.e.,

Il’1®"’®xnlc=|xllc“'|xn|0y xn'“axneE*'

Proof. A similar argument as in Lemma 4.1 yields

23  |FE= 5 (F,e,® - ®e> Ne, 05 Do, 074

jp"‘,jn=0

It is then obvious that | * |, is a cross norm. Since
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© -1
De D= <Eo ca) < ¢

for any p = 0, it follows from (23) and (10) that

IFle<C™ 3 K237 <F, ¢,® Qe =C,"|F,

Frrmig=0

as desired. Q.E.D.

5. Proof of the main results

For any C = (C,);-, € € we put
(24) 0¢0:=3Clok, ¢< @,
though [ ¢ J. = © may happen.
Lemva 5.1. Let C = (C,);_o € €. Then for any ¢ € (E) it holds that

nznf,,niscfwné(;%)",

where (f,),_, is given as in Proposition 2.1.
Proof. Recall the definition (21) to obtain
(25) 040c= Z G Cplhilyn,
e

In view of (10) and (22) we obtain

2 2 2 200=1) 2 2(p—p)++2(p—by) 2
Cpl T Cp,, | f lpl.-n,p,, <G Cp 0 ' g l A

where p = max{p,,*,p,}. We then see that

P n
2 2 2 2(n-1) 2 2 2(p—9q)
Cp,' . Cl,n l fn lﬂv"'ri’" < Co " Cl, ,fn lﬂ (Z 0 )

max{py,,py}=p q=0

<creE L a—oe)

Thereby (25) becomes

040:=% S CLoClhE.,

p=0 max{p,,,put=p
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_ Cz n o
< COZ( 0 2) Sl Ll
— p=0
Finally with an obvious inequality: #!| f, ,2, <| ¢H2, which follows from (7), we
obtain
_ Cz n oo B C2 n
DA 00< G (=) S ctlol =00 (—)"
1= »=0 1—0p

This completes the proof. Q.E.D.

LemMa 5.2. Fork = 0,1,2,... it holds that

kad !
b ——("n’fnf“)' "< (t+ b, t=o0.
n=0 M
Proof. We put
S B!
Py = oS U

As is easily shown, P,(f) is a polynomial of degree k. Actually, it is related to the
Laguerre polynomial (e.g. [6: Appendix]) as P,(#) = k!L,(— #). We thus put P,(¢)
=X}, a,t". Then, by induction we may prove

0<a,<(¥) K, o<i<u,

from which the assertion follows immediately. QE.D.

LEMMA 5.3, Put
Py k+l1 Kk
Az w) =3 (z+—llg_w

k=0

Then the series converges in C X {|w| < e™") and A (z, w) becomes a holomorphic

Sfunction in two variables.
Proof. We only need to apply Cauchy-Hadamard formula. QE.D.

Assuming that C = (C,);_, € € satisfies the condition C; < 1 —p’, we put
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2 2 Czw
Az, w) = —i—-zexp (%) A (% +1, %)
y1—p0 —C, 1—p

Obviously, A.(z, ) is holomorphic in C X {|w| < e C.;2 (1 — p)}. With these

-1

notations we have

ProposITION 5.4. For n=0,1,2,. .. let f, € E¢" and assume X on!l f,|;
< o forallp = 0. Put

$(2) = i; Ga® ), x€EY
If C = (Cpj-y € € satisfies
(26) Ci<1—9p" and c§|r|C<l;e‘i,
then
(27) 6@ — ¢ | <lx—ylc0d0cAlzlc+lyle, 17l

forallx,y € E * In particular, </; is a continuous function on E *

Proof. Let z,y € E™ and suppose C = (C,);- € € satisfies (26). Then,
in view of (14), (20) and Lemma 4.3 we obhserve
28) 1™ — 1 y®":, £
[n/2] ! S — _
5 n! . R (2 — y®(n Zk)),];)
k=0 (g — 2k)'k!2

tn/21 ! —2k) ® (n—24)
<5 n! LE ] 227 .
k=0 (n—2k)!k!2"l ! Y 040

IN

Using an obvious inequality:
® g -1
2" = y™" o <lz—yldzl + 1y, m=1,
and summing up both sides of (28) with #, we obtain

P koo
(29) 1@ — g | <lz—yl. 5 Lle & (n 2k )

k=0 k!2k n=0

X (lec + Iylc)n 0 fn+2k+1 I:IC'

Applying the Schwarz inequality, we have
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(30) i::o—(———i)'— dzl.+1y Ic)n 0 furzrer U

(i:: A+ 26+ DD fornens DZ)U2

°  (n+ 2k + 1! o
X (Z;;) wF DIt T dzle Hlylo )

We now estimate the last two series. By Lemma 5.1 we have

I o 2 n+2k+1
B) X 42k + D! 0 frpn 1< G anz(lc )
n=0 n=0 ._p
__0¢D0% ( G )Z"
11— —C:\1—p/

where we used the assumption C(f <1l-— pz. On the other hand, application of
Lemma 5.2 yields

had ! 2n
62 S b Gl + 1yl

< i‘ (n + 2k + 2)!
<{(zl.+1ylp® + 2k + 2 Pexpli zl. + 1yl
Therefore (30) is estimated by (31) and (32) as

ng)(n(nz+1)'1)(lxlc +1ylo)" O frornr Oc

8 12_[];525923 (12_Ci2>ke"p (d_xkaiﬂcﬁ)

(zl. + 1yl Frt
A B (ORI I - 45 (oY
x{ 5 +k+1} .

Consequently, (29) becomes

20 (5Dclx_ylcexp((lxlc;|ylc)2>

| @) — g | < e
yl1—po — C,

2 @illpla)k (delet ol 4y o)™
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_2040lz=yle  (dzl+lyl’
_ /1_;Z_C:cexp< e+ Lyl

2 2
X/z<(|x|c"2_|ylc) +1, C0|T|Zc>
1-0»

=|x—y|cDéDcAc(lec"'lylc,ITlc)-

This completes the proof of (27). Take C = (C,),_, € € with the properties (26)
(such a C exists certainly). Since z~ A (z, | 7:|c ) is continuous (in fact,
analytic), we conclude from (27) that ¢ is continuous on E*. QE.D.

As was already explained in §3, Proposition 5.4 completes the proof of the
continuous version theorem (Theorem 3.1). Theorem 3.2 was proved at the end of
§3. We now give

Proof of Theorem 3.3. Since (E)* is constructed in a similar way to E* by
the standard construction, the topology of (E)™ is defined by the Hilbertian semi-
norms:

O sup (|0, ¢»; 090, <1}, O (B,

where [] ¢ [] o is defined as in (24) and C runs over . While, it follows from
Proposition 5.4 that

lim sup { |43, — d,, o>|; 0 p 0 <1} =0,

Yy—x
for all C = (C,,);;O € @ satisfying the conditions in (26). It is therefore sufficient
to show that all C € € with (26) constitute a set of defining seminorms of E*
Note that | 2|, < lec for any x € E*if ¢’ < C, namely, if C, < C, for all p =
0,1,2,. ... Thus it is sufficient to show that for a given C € € there is C' € €
with (26) such that C” < C. Choose ¢ = 0 such that | ‘r|_p <el(l - pz). Define
C' = (C);-, €E 6 by

[o <Ci=-=C,<min{lz|_, C,V1—0"},
C,=min {C;_,, C,}, p>q.

Then, by construction, ¢’ < C and C;? <1 — p°. Moreover, since |zl <
C;_2| TI_,, by Lemma 4.3, we have

7 ’— 1_ ?
cllcle < CfC, 2|r|_q=|z|_qs——;"—.
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This completes the proof. Q.E.D.

Remark. By a similar (but much simpler) computation as in the proof of
Propositon 5.4, we obtain a somehow better estimate of a white noise delta func-
tion 0,, £ € E*. Let ¢ € (E) be given by

¢(x) = i Cx® fy, z€ET,

as usual. Then, for p = 0 we have

(6@ | < 212 8|

<l ¢l,exp <|x2l"’_,,) 5 lfklsz (lleip * k>k’

k=0

and therefore,

(33) 10,0 < exp (H572) £ Lelis (12h 4y

k=0

The last series converges whenever | T|_p < et and |x|_,, < oo, This condition

may be compared with | T 1_/: +x ‘—p < 1 in Theorem 3.2.

6. Tensor product

The standard construction of a Gelfand triple is well suited to tensor pro-
ducts. We begin with the following

ProposiTION 6.1. For ¢ = 1,2 let A, be a standard operator on H, and let E; C
H, C E,* be the Gelfand triple constructed in the standard manner. Then, A, @ A, is
a standard opevator on H, @ H, with domain Dom (4, ® A,) = Dom (4,) @ ,,
Dom(A,) and the Gelfand triple obtained from A, Q@ A, is given by E, Q E, C H &
H,C (E,QE)".

Proof. 1t follows from Theorem 1.1 that E; = projlim, . E,, 1= 1,2,
where E,, is the Hilbert space obtained by completing E; with respect to the norm
], = |Af$ l,, € € E,. Then a simple observation implies that

(34) E,QE, = projlim E,, @ E,, = projlim E,, Q E,,.
p—ro0

b,g—oo

On the other hand, it is easily verified that A, @ A, is a standard operator on
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H,® H, Let F be the nuclear Fréchet space constructed from A; ® A, in the
standard manner. Then, F = projlim,_,, F, with F, being the completion of F
with respect to the norm | {|, = | (4, ® A,)" C|, Note here that F, = E,, ® E,,
It then follows from (34) that F = E, @ E,. Q.E.D.

PrOPOSITION 6.2.  For i = 1,2 let £, be a topological space with a Borel measure
v, and let A, be a standard operator on L*(2,, v,; R). Then
By o4, (1 X 2) = 3, (2) ®“‘3A2('QZ)
under the identification: L'(Q, X £,, v, X v,;R) = LZ(QI, v ;R ®L* (2, v,;R).

Proof. Immediate from Proposition 6.1. QE.D.

PRrROPOSITION 6.3. Let notations and assumptions be the same as in Proposition
6.2. If both B, (2,) and B,, (2,) satisfy the hypotheses (H1)-(H3), so does
Suen, (@ % D).

Proof. For { € B, ,,(2, X 2) = 3, (2) ® 8, (2,) we put

{w, @) = {0y, ®d,,, O, 0, €2, w, €0,
Then z is a continuous function on £, X £, because of (H3) and the fact that
z,y~z®y € S (2)BSL(Q), €8 (Q), yeI;(Q),

is continuous. Take an approximating sequence {{,},-; C 8, (2,) @y, 3, (2,)
such that

(35) limIC,,—'CIp———O for all p = 0.

n—oo

Then

(36) l G — ilﬁ = f l Colwy, wy) — ﬁ (w,, w,) 'le(dwl) v,(dw,)

1%82;

= 1€8,,®4,,, &, — O I'v,(dw) v,(dw,)

2%,
<1 = el [ 10, vo) [ 16,1 v o).

Note that

(37) [ 16,1 vtdo) = 0= 5t <, i=1g2,
) =0
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which is immediate from the identity:

M

16,12, = 2 40,, e A5 = Zey(w)* A, i=12.
j=0

0

)

It then follows from (36) and (37) that
(38) 16, — Tl < a7 ;1 G — i
Hence, we see from (35) and (38) that

|C‘i|oS|C—Cn|o+|Cn—§|o
g|C_Cn|o+5162|Cn_Cll

— 0 as n— o,

Namely, {(w,, ®,) = C(w,, w,) for v, X v,-ae. (@, w,) € 2, X 2, This proves
(H1). The properties (H2) and (H3) are now immediate. Q.E.D.

In view of Theorems 3.1-3.3 and Proposition 6.3 we conclude the following

THEOREM 6.4. Any function in the n-fold tensor product (E) @ -+ Q (E) is

continuous on the product space E*x -+ x E* (m times), or more precisely, admits a
unique continuous version with vespect to the product measure (t X « -+ X p (n times),
n=1.

Appendix. A sufficient condition for the hypotheses (H1)-(H3)

We shall give a sufficient condition for (H1)-(H3) from a different viewpoint.

PROPOSITION.  Let £2 be a topological space with a Borel measure v and let A be a
standard operator on H = L*(Q, v; R) with eigenfunctions {e,},_, and eigenvalues
{lj};lo satisfying (S1) and (S2). Assume the following thvee conditions :

(1) () > 0 for any non-empty open subset U C Q ;

(i1) every e; is a continuous function on 2 ;

(1i1) £ admits an open covering 2 = U, 8 with the property that for each 7 there

exists a(y) = 0 such that

M, =sup (3" e |;0€E R,j=0,12,...} <oco.

Then S, (2) satisfies (H1)-(H3). Moreover, ¢ is given by the absolutely convergent
series
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8

(39) dlw) = X {p, ey ¢; (w).
0

j

I

Proof. By Lemma 1.2 we may assume # = 1 in (S2). We first show that for ¢
€ J, (£2) the series (39) converges absolutely at any w € £. Choosing £, con-
taining w, we observe

o

|<go,e>e @ [ <M, Z 27 [<p, e |

i=0

(i 2@ (g ej>z>”2 (%2?)1/2.

iMs

Hence
(40) % 146, ¢) (@) | < OM,| ¢y, wERQ, ¢E 3,2,

where 8 = (X, 2,_2)1/2 < oo, This proves that the series (39) converges abso-
lutely at each w € Q.

For the continuity of ¢ we need only to prove that ¢ is continuous on &,. For
W, W, € .Q,, a similar argument as above yields

(41)
n 172
I qg(wl) - Qs(wz) | < ; I <¢, ej> | I ej(wl) - ej(wz) I + 2Mr| ¢ ‘a(r)+1 <Z '11_2)

Since ¢; is continuous and o= 20 A ? < 0 by assumption, the continuity of @
on 2, follows from (41). It is clear that ¢(w) = @(w) for v-ae. @ € 2 because
the Fourier expansion ¢ = 2;;0 {¢, ej> e; converges in L*_sense. We have thus
proved (H1).

According to our convention, we do use the symbol ¢ for ¢ hereafter. The
inequality (40) means that the evaluation 8,:¢ = ¢ (w) is a continuous linear
function on B, (). (In fact, | 8, |_gq-y < OM, for w € 2,.) Hence, J, € S5 (2)
and (H2) holds.

Finally we consider (H3). For a bounded subset B € J,(£) put

| Bl, =sup{l ¢l,; ¢ € B
for simplicity. This is always finite. Note that

(42) SUP{|<¢, ej>|;¢€B} SSup{lQS'OI‘ZJ"o;(]SEB} :|B|0<°°~
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In view of (41) and (42), for w;, w, € £, we have

sup {€3,, — 8, ¢ |; ¢ € B}
” 172
<1BL 21 6@) = ¢@) | +2M,| Blyy. (= 57

Hence the map = 8, € &} (2) is continuous on 2, and therefore on 2. Q.ED.
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