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Remarks on Inner Functions and
Optimal Approximants

Catherine Bénéteau,Matthew C. Fleeman, Dmitry S. Khavinson,
Daniel Seco, and Alan A. Sola

Abstract. We discuss the concept of inner function in reproducing kernel Hilbert spaceswith an or-
thogonal basis ofmonomials and examine connections between inner functions and optimal poly-
nomial approximants to 1/ f , where f is a function in the space. We revisit some classical examples
from this perspective, and show how a construction of Shapiro and Shields can bemodiûed to pro-
duce inner functions.

1 Introduction

_e notion of inner function is a central concept in operator-theoretic function the-
ory, and has played a signiûcant role in the description of the invariant subspaces
of the shi� operator. _e Hardy space H2 of the disk consists of all the functions f
analytic in the open unit disk D that satisfy the norm boundedness condition

∥ f ∥2
H2 = sup

0<r<1

1
2π ∫

2π

0
∣ f (re iθ)∣2 dθ <∞.

It is well known [7] that such functions have non-tangential boundary values on the
unit circle T almost everywhere. A bounded analytic function f ∶D → C is called
inner if its boundary values satisfy ∣ f (e iθ)∣ = 1 for almost every θ ∈ [0, 2π). Beurling
[5] showed that every closed z-invariant subspace is generated by an inner function.
Implicit in his proof is the fact that if G is an inner function, then G is orthogonal to
z jG for every integer j ≥ 1. In his analysis of z-invariant subspaces in the Dirichlet
space D, which is the space of all analytic functions in the disk whose derivative is
square integrable with respect to area measure, Richter [22] showed that, as in the
case of the Hardy space, the invariant subspaces are generated by a single function
that satisûes the same orthogonality relationships.

_e situation in the Bergman spaces turned out to be considerably more compli-
cated. _e Bergman space A2 is the set of all analytic functions in the disk whose
modulus squared is integrablewith respect to areameasure. In 1991,Hedenmalm [15]
noticed that if M is a z-invariant subspace, then the function that is a solution to a
particular extremal problem related to M plays the same role as that of the H2 inner
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functions. Moreover, this function is a so-called contractive divisor. Duren, Khavin-
son, Shapiro and Sundberg [8] extended this result to all Ap spaces of the disk. Ko-
renblum [19] coined the term A2-inner to describe Hedenmalm’s extremal function
G, and Aleman, Richter, and Sundberg [1] proved an analogue of Beurling’s theorem
for the Bergman space, namely, that z-invariant subspaces M of the Bergman space
are generated by the wandering subspace M ⊖ zM. _ey deûned an A2-inner func-
tion as a function G that has norm 1 and is such that G is orthogonal to z jG for every
integer j ≥ 1. More generally, such orthogonality conditions appear naturally in con-
nection with the study of wandering subspaces in operator theory [6, 13, 18, 20], and
more concretely in many papers dealing with the shi� operator acting on spaces of
analytic functions.
Another nice property that functions in the Hardy space satisfy is that any func-

tion factors as the product of an inner and an outer function. Outer functions f ∈ H2

are deûned by the condition that log ∣ f (0)∣ = 1
2π ∫

2π
0 log ∣ f (e iθ)∣ dθ, and in theHardy

space, such functions are always cyclic (and vice versa), that is, their polynomial mul-
tiples generate thewhole space. _is factorizationwas an important tool in Beurling’s
characterization of the invariant subspaces of theHardy space. Korenblum deûned a
notion of an A2-outer function based on the concept of domination and proved that
cyclic functions are outer in this sense [19]; he also proved the converse [1]. However,
cyclic functions in the Bergman space are still not well understood, and it is an open
problem to characterize cyclic functions in other spaces of analytic functions such as
the Dirichlet space.

In [2], the authors proposed to investigate cyclic functions in a large class ofHilbert
spaces of analytic functions via the study of optimal polynomial approximants, that is,
polynomials p minimizing the norm ∥p f − 1∥ among all polynomials in the space Pn
of polynomials of degree less or equal to n. _is was done in a more general setting
in [12]. Optimal polynomial approximants are given as the unique solution to a linear
system of the form Mc = b, where M is amatrix whose elements are given as

(1.1) M j,k = ⟨z j f , zk f ⟩,

where j and k are nonnegative integers, ⟨ ⋅ , ⋅ ⟩ denotes the inner product in the
space H, c is the vector of unknown coeõcients of the optimal polynomial approxi-
mant p∗n , and b is the vector given by

(b j)
n
j=0 = (⟨1, z j f ⟩)n

j=0 = ( f (0), 0, . . . , 0).

Optimal approximants were further studied in a subsequent series of papers [3, 4],
and it seems worthwhile to isolate additional properties of functions G that satisfy
the orthogonality relations ⟨z jG ,G⟩ = 0, j = 1, 2, . . . , from this perspective.

_e goal of this paper is to discuss the notion of inner function in a wide class of
Hilbert spaces, with a special focus on describing the optimal polynomial approxi-
mants associated with such functions. We point out that certain functions, which we
dub Shapiro–Shields functions a�er the authors in whose papers they ûrst appeared,
are inner and can be viewed as analogues of ûnite Blaschke products. Finally,we show
how distances between 1 and subspaces generated by inner functions can be computed
using elementary linear algebramethods.
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In Section 2, we give the relevant deûnitions and prove a characterization of inner
functions in terms of optimal polynomial approximants: the optimal approximant of
all orders of an inner function turn out to be equal to a single constant. In Section
3, we use a slightly modiûed version of a construction of Shapiro and Shields to give
examples of inner functions in Hilbert spaces of weighted Hardy type vanishing on
prescribed ûnite sets. We also compute distances between the function 1 and invari-
ant subspaces generated by an inner function. Finally, in Section 4, we discuss some
examples of inner functions.

2 Characterization of Inner Functions via Optimal Approximants

Henceforth, given a sequence of real positive numbers ω = {ωk}k∈N, let H = H2
ω be

theHilbert space ofholomorphic functions f ∶D→ CwithTaylor coeõcients {ak}k∈N
endowed with norm

(2.1) ∥ f ∥ω ∶= (
∞

∑
k=0

∣ak ∣
2ωk)

1/2
<∞,

and equipped with the inner product ⟨ ⋅ , ⋅ ⟩ = ⟨ ⋅ , ⋅ ⟩ω induced by the norm. Without
loss of generality, we will assume ω0 = 1. Furthermore, let us restrict ourselves to the
class of weights ω with

(2.2) lim
k→∞

ωk

ωk+1
= 1.

Condition (2.2) ensures that functions that areholomorphic on a disk of radius strictly
greater than 1 are elements of H, that all elements of H are holomorphic on D, and
that both the forward and backward shi�s are bounded operators. Note that theHardy
space, the Bergman space, and the Dirichlet space are all examples of spaces H2

ω with
appropriate choice of weights ω. See [7, 10, 11, 16,25] for treatments of these spaces.

Spaces deûned as in (2.1) are examples of reproducing kernel Hilbert spaces (hence-
forth, RKHS) over the disk D. _is means that for any point z0 ∈ D, point evaluation
is a bounded functional, and there exists a function kz0 ∈ H2

ω such that for any func-
tion g ∈ H2

ω we have the reproducing property g(z0) = ⟨g , kz0⟩. Using the usual
representation of a reproducing kernel in terms of an orthonormal basis, we ûnd that

kz0(z) =
∞

∑
k=0

zk
0z

k

ωk
.

See [21] for a primer on the theory of RKHS.

Deûnition 2.1 A function f ∈ H is calledH-inner (or simply, inner) if ∥ f ∥H = 1 and
for all j > 0, ⟨z j f , f ⟩H = 0.

Note that the standard Hardy inner functions are inner in this sense, as are Berg-
man-inner functions. We will say a closed subspace M ⊂ H is z-invariant in H if
zM ⊂ M. For a function f ∈ H, we will write [ f ] for the subspace generated by f
under the unilateral shi�, that is, the closure of all polynomial multiples of f in the
norm of H.
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A related concept is that of cyclicity. A function is called cyclic (in H, for the oper-
ator ofmultiplication by z) if [ f ] is equal to the whole space H. Because polynomials
are dense in H, the function 1 is cyclic, and hence a function f is cyclic if and only
if 1 ∈ [ f ]. _at is, we can deûne f to be cyclic if there exists a sequence {pn}n∈N of
polynomials such that limn→∞ ∥pn f − 1∥2

H = 0.
_e following theorem is known for many spaces and appears in diòerent forms in

several places, including in [1,22], butwe include it for completeness and to emphasize
that it holds thanks to general principles governing these Hilbert spaces, rather than
to particular characteristics of the individual spaces.

_eorem 2.2 Let M be z-invariant in H, and assume that there exists a function in M
that does not vanish at 0. _en there is a unique solution G = h/

√
h(0) to the extremal

problem

(2.3) sup{Re(g(0)) ∶ g ∈ M , ∥g∥ ≤ 1},

where h is the orthogonal projection of 1 onto M. Moreover, G is an H-inner func-
tion. Conversely, if G is a (non-constant) H-inner function, then G generates a proper
z-invariant subspace and solves (up to multiplication by a unimodular constant) the
extremal problem (2.3) for M = [G].

Proof Let M be z-invariant in H and let h be the orthogonal projection of 1 onto
M. _en, since 1 − h ⊥ h, we have that ∥1 − h∥2 + ∥h∥2 = 1, ⟨1 − h, 1 − h⟩ = 1 − h(0),
and 0 = ⟨z jh, 1 − h⟩ = −⟨z jh, h⟩, j = 1, 2, . . . . _erefore ∥h∥2 = h(0), so letting
G(z) = h(z)/

√
h(0), we see that G has norm 1 and is inner.

Now let g ∈ M. _en 0 = ⟨g , 1 − h⟩ = g(0) − ⟨g , h⟩, or ⟨g , h⟩ = g(0), so in fact
h(z) = KM(z, 0), the reproducing kernel of M at 0. If in addition ∥g∥ ≤ 1, then by
the Cauchy–Schwarz inequality, Re(g(0)) ≤ ∥h∥ =

√
h(0). _erefore, by the above,

G solves the extremal problem (2.3).
Uniqueness follows by a standard argument in extremal problems inHilbert spaces

[10]: it is easy to see that the extremal problem (2.3) is equivalent to the problem of
minimizing the norm of all functions g ∈ M such that g(0) = 1. _is last collection
of functions forms a convex set in H, and convex sets in Hilbert spaces have unique
elements ofminimal norm.
Conversely, suppose G is a (non-constant) inner function. Suppose the invariant

subspace [G] = H. _en 1 ∈ [G], and therefore there exists a sequence of polynomials
pn such that pnG → 1 in H. Since G is inner, ⟨G , pnG⟩ = pn(0). Taking limits of
both sides as n → ∞ forces G(0) = 1/G(0) or ∣G(0)∣2 = 1. Since ∥G∥ = 1, this can
only happen if G is a constant. _us non-constant inner functions generate proper
invariant subspaces.

Moreoever, for any polynomial p, since G is inner, ⟨(p − p(0))G ,G⟩ = 0 or
⟨pG ,G⟩ = p(0), that is, G(0)G(z) is the reproducing kernel at 0 for the space [G].
_us, by the above discussion, G is a unimodular multiple of the extremal solution to
problem (2.3).

Now let us examine how inner functions relate to optimal approximants. _e study
of optimal approximants in the context of the Dirichlet-type spaces Dα was initiated
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by the authors [2], who were interested in cyclic functions. We proposed to examine
cyclicity (in a certain family of spaces) via the study of optimal polynomial approxi-
mants, that is, polynomials p minimizing the norm ∥p f − 1∥ among all polynomials
in the space Pn of polynomials of degree less than or equal to n. A polynomial mini-
mizing this norm will be called the optimal approximant of degree n of 1/ f . However,
this deûnition makes sense for all functions in the space, not only the cyclic func-
tions. Indeed, _eorem 2.3 indicates what these optimal approximants are for inner
functions. If we denote by Pn the space of polynomials of degree less or equal to n, it
is clear that if p∗n is the optimal approximant of degree n, then p∗n f is the orthogonal
projection of 1 onto the space Pn f .

_eorem 2.3 Let f ∈ H, not identically 0, and for each n, let p∗n be the optimal
approximant of degree n of 1/ f .
(i) If h is the orthogonal projection of 1 onto [ f ], then h is the unique function such

that ∥p∗n f − h∥→ 0 as n →∞.
(ii) If f is inner, then all the optimal approximants are constants: p∗n(z) = f (0).
(iii) If f is inner, then ∥p∗n f − 1∥2 = dist2H(1, [ f ]) = 1 − ∣ f (0)∣2.

Proof To prove (i), notice that⋃n∈N Pn f is dense in [ f ]. Since H is aHilbert space,
the orthogonal projection of 1 onto Pn f , p∗n f , must converge to the orthogonal pro-
jection of 1 onto [ f ], that is, h. (_is fact was previously noticed in [4].)

To prove (ii), notice that for an inner function f , thematrix M whose entries M j,k
are given by (1.1) has zeros in all positions of the ûrst column and row (except for
the ûrst position, j = k = 0, where we have M0,0 = 1). _erefore, the inverse M−1

of M also satisûes this property. _is tells us that the optimal approximants p∗n (for
all n ∈ N) are all the same constant, given by p∗n(z) = p∗0(z) = f (0). But then any
H-inner function f and its corresponding optimal polynomial approximants p∗n have
for all n ∈ N the property that ∥p∗n f − 1∥2 = 1 − ∣ f (0)∣2, and by deûnition of p∗n , this
quantity equals dist2H(1, [ f ]), which proves (iii).

Note that functions in H always admit a kind of a weak factorization, where the
“outer" factor can be expressed in terms of the optimal approximants. More speciû-
cally, we have the following theorem.

_eorem 2.4 Let f ∈ H with f (0) /= 0 and for each n, let p∗n be the optimal approxi-
mants of degree n of 1/ f . Let G be the solution to the extremal problem

(2.4) sup{Re(g(0)) ∶ g ∈ [ f ], ∥g∥ ≤ 1}.

_en there exists a function F, analytic in the disk, such that f (z) = G(z)F(z), and

F(z) = lim
n→∞

f (0)
p∗n(z)

.

Proof Suppose f ∈ H, and let G be the solution to the extremal problem (2.4). _en
[G] ⊂ [ f ], and therefore all the zeros of G must also be zeros of f , and so F ∶= f /G is
an analytic function in the disk. Letting p∗n be the optimal approximants of degree n of
1/ f , by_eorem 2.3, ∥p∗n f −h∥→ 0 as n →∞,where h is the orthogonal projection of
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1 onto [ f ]. By_eorem 2.2,G(z) = h(z)/
√

h(0). _erefore, since norm convergence
implies pointwise convergence,

lim
n→∞

p∗n(z)G(z)F(z) =
√

h(0)G(z) = f (0)G(z),

and therefore the conclusion follows.

Remark 2.5 It is natural to askwhether the function F appearing in _eorem 2.4 is
truly “outer”, in the sense of being cyclic in H; in particular,wewould require that F ∈
H. _is, unfortunately, need not be the case in general. It is known that factorization
fails in some weighted Bergman spaces [17]. While G has precisely the same zeros as
f inside the disk, it may well happen that G(ζ) = 0 for some ζ ∈ T, leading to rapid
growth in F at this boundary point, thus preventing F from belonging to H. See [17]
for further details.

3 Shapiro–Shields Functions and Distances to Invariant Subspaces
Generated by Inner Functions

We now describe amethod for constructing inner functions in the setting of a general
H2

ω-space. _e functions in question can be viewed as analogues of ûnite Blaschke
products in theHardy space or of contractive divisors associated with ûnite zero sets
in the Bergman space.

Let Z = {z i}
n
i=1 be a collection of n distinct points in D/{0} and let kw denote the

reproducing kernel ofH = H2
ω at the pointw ∈ D. We deûne KZ to be the n×n matrix

with elements given by

(3.1) K i , j = ⟨kz j , kz i ⟩,

for i , j = 1, . . . , n. Inwhat follows,wewrite ∣M∣ for the determinant of a squarematrix
M.

In their study of the classical Dirichlet space and its zero sets, Shapiro and Shields
[24] exhibited functions that have a prescribed ûnite set of zeros in the disk andmaxi-
mize a certain functional. Amodiûcation of their construction yields inner functions.
With a standard Hilbert space argument, their construction can be extended to inû-
nite zero sets [24]. (See [11] for further developments.)

Deûnition 3.1 Let Z = {z i}
n
i=1 ⊂ D, let kz i denote the reproducing kernel at z i in

H2
ω , and set

(3.2) fZ(z) ∶= ∣
1 1 ⋅ ⋅ ⋅ 1

(kz i (z))
n
i=1 KZ

∣ .

We deûne the Shapiro–Shields function in H2
ω for the set Z as

(3.3) gZ(z) ∶=
fZ(z)
∥ fZ∥ω

.

It is readily seen that gZ(z i) = 0 for i = 1, . . . , n since the ûrst and (i+1)-th column
in the determinant deûning fZ are then equal. In order to show that Shapiro–Shields
functions gZ are indeed H-inner, we need two auxiliary results.
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Lemma 3.2 ∥ fZ∥2 = ∣KZ ∣ fZ(0).

Proof Consider thematrices (Bt)
n
t=0 where

(Bt)i , j =

⎧⎪⎪
⎨
⎪⎪⎩

K i , j if i /= t,
1 otherwise.

In particular, B0 = KZ .
We ûrst expand the determinant deûning fZ in terms of the Bt :

fZ(z) = ∣B0∣ +
n

∑
t=1

kz t(z)∣Bt ∣(−1)t .

_is expresses the norm ∥ fZ∥ in terms of a useful linear combination

⟨ fZ , fZ⟩ = ∣B0∣⟨ fZ , 1⟩ +
n

∑
t=1

∣Bt ∣(−1)t
⟨ fZ , kz t ⟩.

Two observations ûnish the proof: by the deûnition of the norm in H, ⟨ fZ , 1⟩ = fZ(0),
and by the reproducing property of the kernels, ⟨ fZ , kz t ⟩ = fZ(zt) is the determinant
of amatrix where two columns ( j = 0 and j = t) are identical, and hence fZ(zt) = 0.

_e previous lemma tells us, in particular, that gZ iswell deûned provided ∣B0∣ /= 0.
_e next lemma shows that this is indeed the case.

Lemma 3.3 Let Z = {z i}
n
i=1 ⊂ D be a set of n distinct points. _en KZ is invertible.

Proof If n = 1, KZ = kz1(z1) = ∥kz1∥
2 > 0.

Suppose n ≥ 2. From (3.1) we see that KZ is a Gram matrix, and therefore its
determinant is non-zero if and only if the kernels {kz i}

n
i=1 are linearly independent.

Seeking to arrive at a contradiction, let us assume linear independence fails. Without
loss of generality, suppose

(3.4) kzn =
n−1

∑
i=1

λ ikz i .

Let L be the Lagrange interpolating polynomial that is equal to 1 at zn and vanishes
at z i for 1 ≤ i ≤ n − 1. Taking the inner product of L with the le�-hand side of (3.4)
then gives 1, while the inner product of L with the right-hand side of (3.4) gives 0, a
contradiction.

We arrive at themain result of this section.

_eorem 3.4 Let Z = {z i}
n
i=1 ⊂ D/{0} be a set of n distinct points. _en the function

gZ is H-inner and given by

gZ(z) =
fZ(z)

√

∣KZ ∣ fZ(0)
.
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Proof By the deûnition of gZ and by Lemma 3.2, we have ∥gZ∥ = 1. It remains to
verify that ⟨zk fZ , fZ⟩ = 0, k = 1, 2, . . . .
From the deûnition of fZ in (3.2), we see that

⟨zk fZ , fZ⟩ = ∣B0∣⟨zk fZ , 1⟩ +
n

∑
t=1

∣Bt ∣(−1)t
⟨zk fZ , kz t ⟩.

_e reproducing property of the kernel implies that ⟨zk fZ , kz t ⟩ = zk
t fZ(zt) = 0,where

the second identity comes from evaluating fZ(zt) as a determinant, with columns
j = 0 and j = t being the same. Finally, observe that ⟨zk fZ , 1⟩ = 0 for all k ≥ 1 by the
deûnition of the norm in H.

_eorem 2.2 (iii) relates inner functions to distances to invariant subspaces. Let us
now compute the distance from the function 1 to the invariant subspace generated by
a polynomial with zero set Z = {z1 , . . . , zn} ⊂ D ∖ {0}. Denote by K−1

Z the inverse of
thematrix KZ and let v∗ be the transpose conjugate of a vector v.

_eorem 3.5 Let Z ⊂ D/{0} be ûnite, and let distH(1, [gZ]) denote the distance from
1 to [gZ] in H, where gZ is the Shapiro–Shields function associated with Z, and let KZ
be deûned as in (3.1). _en, letting v = (1, . . . , 1), we have

(3.5) dist2H(1, [gZ]) = vK−1
Z v∗ .

Proof By Lemma 3.3, the matrix KZ is invertible and hence the right-hand side of
(3.5) is well deûned.
As mentioned in _eorem 2.3, the distance from the function 1 to the invariant

subspace generated by an inner function f ∈ H is given by
√

1 − ∣ f (0)∣2.
With the notation from (3.3), this means thatwe just need to compute 1− ∣gZ(0)∣2.

From the deûnition of gZ and Lemma 3.2 it is clear that

∣gZ(0)∣2 =
∣ fZ(0)∣2

∥ fZ∥2 =
fZ(0)
∣KZ ∣

.

Since ∣gZ(0)∣ ∈ R, we can ignore the conjugation. Bearing in mind that kz(0) = 1 for
any z ∈ D, we obtain

(3.6) 1 − ∣gZ(0)∣2 = 1 −
∣

1 v
v∗ KZ

∣

∣KZ ∣
.

Notice that ∣KZ ∣ = ∣ 1 v
0 KZ

∣. _is, applied to both the denominator and thenumerator
of the right-hand side of (3.6), shows that

1 − ∣gZ(0)∣2 =
∣ 1 v
0 KZ

∣ − ∣
1 v
v∗ KZ

∣

∣ 1 v
0 KZ

∣
,

and by elementary linear algebra, this yields

(3.7) 1 − ∣gZ(0)∣2 =
∣

0 v
−v∗ KZ

∣

∣ 1 v
0 KZ

∣
.
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By Lemma 3.3, the system

(3.8) (
1 v
0 KZ

) c = (
0
−v∗)

has a unique solution c ∶= (c0 , . . . , cn)T and, by applying Cramer’s rule, we see that
the le�-hand side of (3.7) is equal to c0.

_e ûrst equation in (3.8) tells us that

(3.9) c0 = −
n

∑
j=1
c j = −v ⋅ c,

while the rest can be expressed in the simple form KZ c = −v∗. Applying Lemma 3.3,
we obtain

(3.10) c = −K−1
Z v∗ .

Substituting the value of c0 obtained in (3.9) into (3.10) ûnishes the proof.

4 Examples

Example 4.1 (Zero-based invariant subspaces in H2) _e Shapiro–Shields func-
tions associated with Z = {z1}, a singleton, are straightforward to compute. In the
case of theHardy spaceH2, the reproducing kernel is the Szegő kernel kz1(z) =

1
1−z1z

,
and hence

fZ(z) =
1

1 − ∣z1∣2
−

1
1 − z1z

=
z1

1 − ∣z1∣2
z1 − z
1 − z1z

.

A�er normalizing, we obtain

gZ(z) =
z1
∣z1∣

z1 − z
1 − z1z

,

a classical Blaschke factor. _e associated distance is dist2H2(1, [g{z1}]) = 1 − ∣z1∣2.
Let us turn to zero sets containing two points, Z = {z1 , z2}. A�er a somewhat

lengthy computation that can be carried out by hand or using computer algebra, we
obtain

fZ(z) =
1

(1 − ∣z1∣2)(1 − ∣z2∣2)
∣z1 − z2∣2

∣1 − z1z2∣2
( z1

z1 − z
1 − z1z

)( z2
z2 − z
1 − z2z

) .

Note that, at this stage, it is not clear that the Shapiro–Shields function factors as a
product of singleton Shapiro–Shields functions. A�er normalizing as in_eorem 3.4,
however, we arrive at

gZ(z) = (
z1
∣z1∣

z1 − z
1 − z1z

)(
z2

∣z2∣
z2 − z
1 − z2z

) ,

a Blaschke product. It is immediate that distH2(1, [g{z1 ,z2}]) = 1 − ∣z1z2∣2.

Example 4.2 (Zero-based invariant subspaces in A2) We next turn to the Bergman
space, whose reproducing kernel is kz1(z) =

1
(1−z1z)2

. Computing the corresponding
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2 × 2-determinant in the deûnition of fZ for the Bergman space, we ûnd that

fZ(z) =
z1

(1 − ∣z1∣2)2
z1 − z
1 − z1z

(
2 − z1z − ∣z1∣2

1 − z1z
) .

Normalization, as in _eorem 3.4, gives us

gZ(z) =
1

√
2 − ∣z1∣2

z1
∣z1∣

z1 − z
1 − z1z

(
2 − z1z − ∣z1∣2

1 − z1z
) .

_is recovers the well-known single-point extremal function for the Bergman space
[15, p. 56]. In terms of distances,

dist2A2(1, [g{z1}]) = 1 − ∣z1∣2(2 − ∣z1∣2) = (1 − ∣z1∣2)2 .

It is a priori clear that the distance to a single-zero invariant subspace is smaller in
the Bergman space than in H2, but the above computations give us a quantitative
comparison.

_e invariant subspace generated by two simple zeros can also be handled. _e
function fZ can be expressed as a linear combination of kernels, cf. also [15]. More-
over,

KZ =
1

(1 − ∣z1∣2)2(1 − ∣z2∣2)2
∣z1 − z2∣2

∣1 − z1z2∣4
(2 − ∣z1 + z2∣2 + 2∣z1z2∣2)

and

fZ(0) =
1

(1 − ∣z1∣2)2(1 − ∣z2∣2)2 ( 1 − (1 − ∣z1∣2)2
− (1 − ∣z2∣2)2

+ (1 − ∣z1∣2)2
(1 − ∣z2∣2)2 2Re(1 − z1z2)2 − 1

∣1 − z1z2∣4
) .

A�er simplifying, using computer algebra for instance, we obtain the Bergman-inner
function

gZ(z) = CZBZ(z)( 1 +
1 − ∣z1∣2

1 − z1z
+

1 − ∣z2∣2

1 − z2z

+
1 − ∣z1∣2

1 − z1z
1 − ∣z2∣2

1 − z2z
∣1 − z1z2∣2 − (1 − ∣z1∣2)(1 − ∣z2∣2)
∣1 − z1z2∣2 + (1 − ∣z1∣2)(1 − ∣z2∣2)

) ,

where BZ = bz1bz2 is a Blaschke product and CZ is the constant

CZ = (3 − ∣z1∣2 − ∣z2∣2 + (1 − ∣z1∣2)(1 − ∣z2∣2)
∣1 − z1z2∣2 − (1 − ∣z1∣2)(1 − ∣z2∣2)
∣1 − z1z2∣2 + (1 − ∣z1∣2)(1 − ∣z2∣2)

)
−1/2

_is is a special case of a more general result of Hansbo [14, Corollary 2.10]. He ob-
tained a formula for the Ap-extremal function associated with two zeros having arbi-
trarymultiplicity. Note that, as iswell known [10], the rational function complement-
ing the Blaschke product BZ in the above formula is (up to a constant) the reproducing
kernel at 0 in the weighted Bergman space with weight ∣BZ ∣

2.
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For A2 then, the distance to a two-zero invariant subspace is

dist2A2(1, [g{z1 ,z2}]) = 1 − ∣z1z2∣2(3 − ∣z1∣2 − ∣z2∣2

+ (1 − ∣z1∣2)(1 − ∣z2∣2)
∣1 − z1z2∣2 − (1 − ∣z1∣2)(1 − ∣z2∣2)
∣1 − z1z2∣2 + (1 − ∣z1∣2)(1 − ∣z2∣2)

) .

One immediately sees thatnot only the radial position, but also the angle in�uence the
distance function in the Bergman space: for two zeros on the same radius, the distance
is maximized by placing the zeros at the same point, andminimized by placing them
antipodally.

Example 4.3 (Optimal approximants for a product function) _e following exam-
ple should be compared with _eorem 2.3 (i).
For λ ∈ D, let

f (z) = (1 − z)bλ(z) = (1 − z)
λ − z
1 − λz

.

Since f contains a Blaschke factor, [ f ] is a proper closed invariant subspace of H2,
but f is not inner in the sense of Deûnition 2.1.

It is natural to askwhat the optimal approximants p∗n to 1/ f look like. By choosing
coeõcients in p = ∑n

k=0 ckz
k in away thatminimizes the norm expression ∥p f −1∥H2 ,

we obtain

p∗0 =
1
2
λ, p∗1 =

2
3
λ( 1 +

1
2
z) , and p∗2 =

3
4
λ( 1 +

2
3
z +

1
3
z2

) .

We now recognize the p∗n for n = 0, 1, 2 as λ-multiples of the optimal approximants
associated with the function 1 − z, as computed in [2].

_is is in fact the case for all n aswewill now prove. First note that for any polyno-
mial p, ∥p f − 1∥H2 = ∥(1−z)p−b−1

λ ∥H2 . Next,we expand b−1
λ in a Laurent series: there

is a constant term λ, and the remaining powers of z are all negative. By orthogonality
then,minimizing ∥p f −1∥H2 over polynomials of degree n is equivalent tominimizing
∥(1 − z)p − λ∥H2 _e equality

∥(1 − z)p − λ∥H2 = ∣λ∣∥
p(1 − z)

λ
− 1∥

H2

shows that the optimal approximants to 1/ f are indeed given by λ times the optimal
approximants to 1/(1 − z) for all n.
A straightforward modiûcation of the above argument identiûes the H2-optimal

approximants to f = (1 − z)BΛ , where BΛ = ∏
N
k=1 bλk is a ûnite Blaschke product.

_e nth-order optimal approximant is p∗n = (∏
N
k=1 λk) ⋅ q∗n , where q∗n is the optimal

approximant of order n to 1/(1 − z).
Despite its simplicity, this example illustrates the fact that in H2, optimal approxi-

mants are essentially determined by the outer part, since the linear system giving the
coeõcients of the polynomials depends only on the outer part, and the inner part only
aòects the end result by multiplying the independent term by a constant.
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Example 4.4 (Singular inner functions) _e construction of Shapiro and Shields
does not not produce inner functions with singular factors. However, it is instructive
to examine distances associated with such functions as well.

Let us focus on the atomic case. For any σ > 0, Sσ(z) = exp(−σ 1+z
1−z ) is an inner

function for theHardy space H2, and we have

dist2H2(1, [Sσ]) = 1 − ∣Sσ(0)∣2 = 1 − e−2σ .

_e function Sσ is not A2-inner, butDuren,Khavinson, Shapiro, and Sundberg [9]
computed the Bergman extremal function for the subspace generated by Sσ . Using a
limiting argument, they obtained

Gσ(z) =
1

√
1 + 2σ

( 1 +
2σ
1 − z

)Sσ(z).

Hence dist2A2(1, [Sσ]) = 1−(1+2σ)e−2σ . Aswith the case of a single zero, the Bergman
distance is smaller than the Hardy distance, but this time merely by a correction of
the coeõcient multiplying e−2σ .

Remark 4.5 As can be seen from the preceding two examples, there are pairs of
invariant subspaces, one zero-based andone associatedwith a singular inner function,
that are equidistant to 1.
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