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Abstract. We examine connections betwedrhypergeometric differential equations and the theory
of integer programming. In the first part, we develop a ‘hypergeometric sensitivity analysis’ for small
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1. Introduction

In this paper we examine connections between hypergeometric differential equa-
tions and the theory of integer programming. l&t= (a;;) be a non-negative
integerd x n-matrix which has no zero column. Letbe theith column vector of

A. We obtain a linear map

T:N* - N w— A-u, (1.1)

whereN = {0,1,2,...}. The fiberT~(«) over a poinio € N is called the set of

feasible pointsinteger programmings concerned with the problem of minimizing
alinear functionab overT—(«). On the other hand, the matrikand a parameter
vectora define theA-hypergeometric systeaf partial differential equations due
to Gel'fand, Kapranov and Zelevinsky [9]

Zaijwj%_ai p=0 fori=1,...,d
=1 !

<<3> _ <3> >¢ =0 forall u,v € N with Tu =Tw.
ox ox

(1.2)
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This can be regarded as a holonorflemodule (see [1], [3]) on affine-space
C". The A-hypergeometric system (1.2) is an excellent test case for studying
general problems in algebraic analysis, and there are many important and beautiful
connections to combinatorics, algebraic geometry (see [8]) and theoretical physics
(see e.g. [10]).

Our point of departure in this work is Proposition 2.1 which states that (1.2) has
at most one linearly independent polynomial solution, namelyhypergeometric
polynomial

Un

D(asz) == Y x_T:: > W—% (1.3)

! up! up! - - uy!
weT—1(a) weT-Y(a) 112 n

IS

This polynomial encodes the fib@*(«). In Sections 2 and 3 we develop a
‘hypergeometric sensitivity analysis’ for small variations of the right hand side

of our integer program. The key player is a certain differential operéatocalled
thecreation operatoywhich transformsd (« — a;; ) into ®(a; x). The existence

of C; is proved in Theorem 3.1. In Algorithms 3.1 and 3.1 we show how to compute
C; using Gbbner bases.

Sections 4 and 5 are concerned withitigicial polynomialof the A-hypergeo-
metric system along the hypersurface= 0. The notion of indicial polynomial
appears classically in the Frobenius method for solving ordinary linear differential
equations. The roots of the indicial polynomial, called exponents, indicate the
lowest order terms in a possible power series solution. For the modern approach in
terms ofD-modules, see [11], [12], or [13].

Our main results are Theorem 4.2 and Theorem 5.1 which give formulas for the
indicial polynomial, the first for arbitraryd and the second for normal. These
formulas involve polyhedral combinatorics and the value function of an integer
program (see [2]).

One of our objectives is to supply users ofdBner bases software with some
new algorithmic tools. The Gbner-minded reader will notice a surprising interplay
between

— Grdbner bases for commutative polynomials (the classical version; see e.qg. [4]),
— Grobner bases for integer programming (as in [6], [22], [26]),
— Grdbner bases in the ring of differential operators (as in [16], [24]).

2. A generating function for feasible points

We fix a linear maf: N* — N as in (1.1). For each € N? thefiberT—1(a) =
{u € N": Au = a}isafinite set. The integer programming problemis to minimize
a linear functionals over this set. We encode the fidEr(«) by the polynomial
O (a, z) in (1.3).

Throughout this paper we assume that fahk = d, and that the vector
(1,1,...,1) lies in the row space ofi, or equivalently, that the column vec-
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torsas, ... ,a, span affinely a hyperplane not passing through the origiR‘n
see e.g. [22, Lem. 4.14]. This allows to define de¢ig¢e= vy + - - - 4+ u,, for any
u = (u1,...,u,) € T"(a), and we may compute the polynomiab$c; ) by
means of the generating function

1
1— Z?:lfﬂi . tili . _tZdi .

> degreéa)! - ®(o;x) - 51157 =
acN*
We next recall the definition of thd-hypergeometric system due to Gel'fand,

Kapranov and Zelevinsky [9]. Consider tiiéeyl algebraover the field of rational
numbers

(2.1)

Ap = Q(z1, ..., zp,01,...,0n).

The 2n variables satisfy the commutation relations
TiT; = T;x;, 0;0; = 0;0;, Oixrj=1;0;
if 1 #£4, and O;z; = 2;0; + L.

In the commutative polynomial subrir@[os, . .., d,] of A,, we consider théoric
ideal

Iy:=(0"—0": Au= Av).

Recall from [6], [22] and [26] that the integer programming problem can be solved
by normal form reduction modulo the &ner basis of 4 with respect tav.
For anya € Q¢ we introduce the linear differential operators

n
Zi(ai) = Zaijxjaj — Q4 for ¢ = 1,...,d.
i=1

The A-hypergeometric system with parameter veetas the leftA,,-module gen-
erated by the toric idedl, and the operator&i(a1), ..., Z4(ag). A function
on an open subset @&” which is annihilated by this left module is calle%
hypergeometric with parametess This definition agrees with the slightly more
informal description in (1.2).

PROPOSITION 2.1The A-hypergeometric system has a nonzero polynomial solu-
tion if and only if the parameter vectaris integral and lies in the image @f. In
this cased(«; x) is the uniqugup to scaling A-hypergeometric polynomial with
parametersy.

Proof. Lety = Ye¢,z* be anA-hypergeometric polynomial for some The
relations Z;(«; )1 = 0 imply T'(u) = « for all uw appearing in. In particular, we
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find that « is integral and lies in the image @f. For any two terms, z* andc, z"
in 1) we haved" — 9" € I4. The relationg“y = 9"y impliesu! - ¢, = v! - ¢,.
Therefore the space of-hypergeometric polynomials with parameterss one-
dimensional. It is easily checked thbta; x) is annihilated by all operators ify,
and hence it spans this space.

EXAMPLE 2.1. (The twisted cubic curve). Let= 4,d = 2 and

A 3210
~\012 3/

Herel, is the defining ideal of the twisted cubic curve in projective 3-space. It is
generated by the 2 2-minors of(gi gz gj). A function = (z1, x2, 3, x4)
is hypergeometric with parametdis;, o) if and only if

8183@0 = 8%@0, 8184@0 = 32331/1, (92(941,0 = (932,1/}
3$131¢ + 2x262¢ + .%‘3331/) =1 ’gb,
22001 + 213039 + 324047 = 2 - 1.

Here is a small example of atv-hypergeometric polynomial

®(6,6;z) = %x%xﬁ + 2122234 + %xlxg + %x%m + %x%x%
EXAMPLE 2.2. (The transportation problem, [22, Exam. 5.1]). Fix positive integers
r ands and letN"** be the monoid of non-negative integex s-matrices. We
consider the linear operat@: N"** — N"** which maps a matrix to its vector of
row sums and column sums. Hete=r - s andd = r + s, andA is a unimodular
{0, 1}-matrix of rankd — 1. The columns ofA are the vertices of the product
of regular simplice\,_; x As_;. The integer programming problem associated
with A is called thetransportation problemThe toric ideall 4 is generated by
the 2x 2-minors of anr x s-matrix of indeterminates. The variety defined by
I, is the Segre embedding of the product of projective spdtes x P 1.
The corresponding system of hypergeometric differential equations is ¢aéed
hypergeometric system of typer + s). It equals

%) %)

afliijal"kl N afliilaflikj

forl<i<jg<r, 1<k<I<s,
oy .
;332]%:7]@[} for]:]-a"'asa (22)

S
0 .
Z$ij87izpi‘¢ fori =1,....r
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The system (2.2) was associated with the Grassmanniaplahes inC"** in [7].
It is holonomic of rank(’"jj]z) =vol(A,_1 x A;_;). See [9] for details.

Lety = (y1,...,7s) andp = (p1, ..., pr) be non-negative integer vectors such
thatyy +-- -+ = p1+- - -+ pr. The fiberT ~1(v, p) is the set of all non-negative
integerr x s-matrices with row sumg and column sums. We encode this set by
the polynomial

l]

o(y,px) = Y HH (2.3)

u€T~1(y,p) i=1j= 1Y

This is the unique (up to scaling) polynomial solution to (2.2).
The hypergeometric polynomials in (2.3) satisfy the following relations for all

17,%, P

0
9 21 pw) = (v —ei,p — €55 2). (2.4)
i

These are the simplesbntiguity relations They are straightforward to check.

We shall be interested in inverting the effect of the differential ope@tor:;;
in (2.4). This is accomplished by the following non-trivial contiguity relations due
to Sasaki [20].

THEOREM 2.1. [20]. The operatc@’ij =+ Z;ZlEgzlxmxiq(a/aqu) satis-
fies

Cij®(v,pz)=(vi+1) - (pj+1)- (v +ei,p+ej; 7). (2.5)

The contiguity relations (2.5) can be used iteratively to compute any of the
hypergeometric polynomial&(~, p; z) and hence to enumerate any set of non-
negative integer matrices with fixed row and column sums. The idea is to start
with the trivial hypergeometric polynomia#(0,0;z) = 1 and then to apply an
appropriately scaled sequence of theation operator€’y1, C1o, . .., C,s. Here is
a little example forr = s =3

®((2,2,1),(1,3,1);z)
= 2 - C11(C12(C22(C23(C32(1)))))
= T11T12%22T23T32 + T12T13721T22%32
+ 1 (21225m13m31 + 379720723731 + 111713755732

2 2 2
+ TToT21223T32 + T{oT21%22233 + T11T12T5,733) (2.6)
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3. Computing creation operators

An important issue in integer programming is to understand how thefib&fo)
behaves under a small change in the right-handsidgguivalently, how does the
hypergeometric polynomidl(«; ) change under a small variation@? It is easy
to see that subtracting a column vecdtgifrom the right-hand side: corresponds
to taking a partial derivative

0;®(a;x) = ®(a — a;; ). (3.1)

This is the simplestontiguity relation We calld; thesth annihilation operator.

In this section we address the problem of inverting the annihilation operator

0;. The goal is to compute a differential operator whose action on hypergeometric
polynomials corresponds to adding a column veetoto the right-hand side..
For the transportation problem (Example 2.2) such operdtgrsvere given in
Theorem 2.1. In what follows we explain how to preprocess an arbitrary mdtrix
for subsequent derivations like (2.6).

We call the matrixA normalif the monoid spanned by its columns is normal,

i.e.,
n n n
> Na;=> Za;NY Rya;. (3.2)
i=1 i=1 i=1
Letsy, ..., sq be indeterminates and form the Weyl algebra over these parameters
Aplsty ..y 84] = Qls1,- -+, sal{x1, .-, Tpn, 01,...,0n).

Let B4,(s) be the leftideal in4,,[s1,...,sq] generated by the toric idedl, the

annihilation operatot); and the parametric linear operatds(s1), . .., Zq4(sq)-

We are interested in its intersection with the commutative polynomial subring
Qls1, .., sd]-

THEOREM 3.1.

(a) The elimination idealB3 4 ;(s) N Q[s1, ..., sq4] IS NONZero

(b) If Alis normal thenB.4 ;(s) N Q[s1, ..., sq] is a principal ideal

(c) If « is not a zero of the above elimination ideal, then the annihilation oper-
ator 0; possesses an inversg modulo theA-hypergeometric module with
parametersy.

Proof. Part (a) is proved in [19, page 560]. Part (b) is proved in [18]. For part
(c) choose an element= b(s) in the elimination ideal such thata) # 0. There
exists a relation

d
b(s) =ri(z,0,s)-9; moduloA,[s]- T4+ Z Ayls] - Zi(sj)- (3.3)
j=1

https://doi.org/10.1023/A:1000609524994 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000609524994

HYPERGEOMETRIC POLYNOMIALS AND INTEGER PROGRAMMING 191

Using the relationsZ;(s;) we may eliminate the occurrence of= (s1,...,54)
in the operatorr;(z,d,s) and write r;(x,d) instead. The resulting operator
(1/b(w)) - ri(z, 9) is an inverse t@; modulo theA-hypergeometric system.

We callb(s) ab-polynomialfor 9;. It is essentially unique i is normal. The
operator

Ci(z,0,a) = ri(z, 0) (3.4)

1
b(a)
is called anith creation operatorFrom (3.1) we conclude the desired relation

Ci(z,0,a) ®(a —a;; ) = ®(a; ). (3.5)

for all o € N with b(cr) # 0.

We shall present two algorithms for computing creation operators. The first
algorithm is a straightforward application of @mer bases in the Weyl algebra.
See e.g. [4] for Gibner basics. Algorithm 3.1 can be run in the computer algebra
systemkan/sm1 [24]. Its correctness follows immediately from the basic facts in
[16], [23] or [24].

ALGORITHM 3.1. (Computing arith creation operator from scratch).

(1) Compute a sefF of generating binomial$* — 9¥ for the toric ideall4
(e.g. using one of the two algorithms presented in [22, Sect. 12.A)]).
(2) Let< be any term order on the Weyl algebta|[s1, . . ., sq] which refines the

weights
81 ... S8g T1 ... Tp O1 ... On
0O..0 1 ...1 1..1

(3) Compute the reduced &iner basig in the Weyl algebrad,, [s1, . . ., s4] for
the input setF U {9;} U {Z1(s1), ..., Z4(sq)} With respect to the term order

<.
(4) Choose an elemebts) of minimal degree irt§ N Q[s1, .. ., 4]
(5) Derive an identity (3.3) by tracing back the dner basis computation in
step (3).

(6) Output the resulting creation operator (3.4).

EXAMPLE 3.1. (continuation of Example 2.1). M is the matrix of the twisted
cubic curve then the ideals éfpolynomials are principal

[s1, 82]
BAyz(S) N Q[Sl, 82] = (81(81 — 1)82) (3.6)
Baga(s) NQ[s1,s2] = (s152(s2 — 1))
Baa(s) NQ[s1,s2] = (s2(52 — 1)(s2 — 2))
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We computed the following four explicit creation operators for the twisted cubic.

The operatorr; = 27:E?3% + 54.%‘%%28182 + 27:E%m‘33133 + 36561x%8183 +
36x122230104 + 91‘1%%8284 + 81‘%8184 + 12:)5%:1038284 + 6:521‘%8334 + xgaﬁ +
54.%‘%81 + 54x12202 + 18x12303 + 12.’B%33 + 6202304 + 621

satisfiesr1® (a1, ag; x1, T2,23,24) = (a1 + 3)(a1 + 2)(a1 + 1)P (a1 + 3, az;
T1, 2,3, T4),

the operator; = 9:10%3628%—{—18{10%:1038182—1—2736%:1048%4—1235136%8182—1—30561962:538%—1—
36x122240203 + 125611‘%3233 + 182123240204 + 41‘%3% + 1256%:533283—{—
12.%%1‘48234 + 91‘2%%8284 + 122023240304 + 2:10%8384 + 336%:15482 + 18z120201+
24011302 + 18x11403 + 1(}17%(92 + 16x22303 + 6222404 + 433%34 + 2xo

satisfie9’2<1>(a1, a2,%1,22,T3, 334) = (al + 2)(0[1 + 1)(0[2 + 1)'1)(011 +2,a0+1;
T1, T2, T3, T4),

the operatorz = 3331I%(9% + 120122230102 + 18120240103 + 12$1I§(9183 +
36z1137140205+ 27$133£21332, + ngalaz + 9$%I33133 + 121"%$4(9233 + 12$2$§3233 +
303:23:33:4(932, + l8cz2$£213334 + 4x§332, + 129:%3:433(94 + 93:3@213% + 6z12301+
18x12405 + 43:%(91 + 16222302 + 24121403 + 1017%83 + 18137404 + 223

satisfiess® (a1, ag; x1, 2,23, 24) = (a1 + 1) (a2 + 2) (a2 + 1) P (a1 + 1, a2 + 2;
x1,%2,X3, 1‘4), and

the operator, = x%@f +6x%x38182+9x%w48183+ 12702:15%81834—36052:533648184—{—
27$2$£8234 + 81‘%8184 + 36(E§$48284 + 54:E3$£3334 + 27:E28£ + 6z2x301 +
18z2x407 + 12.’B§32 + 54232403 + 54$£34 + 624

satisfiesr4® (a1, az; 21, 22,23, 74) = (a2 + 3) (a2 + 2) (a2 + 1)@ (a1, a2 + 3;
T1,T2,T3, 1‘4).

We next present a polyhedral formula for th@olynomial which generalizes
the specific expressions for the twisted cubic in (3.6). This additional information
will then be used to give an alternative algorithm for computing creation operators.
Choose any elementin the monoid:?_;Na; which satisfies the property

n n n
h+ (Z Za;NY R+ai> C ) Na. 3.7)
=1 1=1 =1

The existence of such elemeritds proved in [19, Appendix, Lem. 1]. We can
choose, = 0 if and only if A is normal. In generah is a ‘common denominator’
for all Hilbert basis elements of the normalization, and it can be found using
Algorithm 13.2in [22].

We identify the matrixA with the set{as, ..., a,}. Its convex hull conyA) is
a(d — 1)-dimensional polytope. Every facEtof con A) has a unique primitive
integral support function

Fr: 2% - 7.
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This function is linear, vanishes on the fatetakes positive values ad\I" and is
surjective. The extension @ to C? is also denoted byt-. Ourb-polynomial for
0; is expressed in terms of the primitive support functions of those facetsich
are visible fromh + a;.

THEOREM 3.2. [19, p. 560], [18, Thm. 6.4for any element as in (3.7), the
polynomial
Fp(h-l-ai)—l

bh(Sl, e ,Sd) = H H (FF(S]_, ceey Sd) — m) (38)

Fle(h+ai)>0 m=0
lies in the idealB 4 ;(s) N Q[s1, . .., sq]. Moreoverb, generates this ideal ift is
normal
Note the following obvious congruence in the Weyl algebra
d

n n
bh(al, . ,ad) — bh (Z a,ljxjaj, ceey Z adjxjaj) S Z AnZl(al)-
j=1 j=1

=1

It gives rise to the following algorithm for computing é@h creation operator. One
advantage of Algorithm.2 over Algorithm 31 is that it can be run in any computer
algebra systenfe.g. maple) since it does not require non-commutativeb@mer
bases.

ALGORITHM 3.2. (Computing atith creation operator from a givérpolynomial).

(1) Compute a Gibner basig for the toric ideall 4 in Q[01, . . . , 0, ] with respect
to anyreversdexicographic term order which has lowest variabje
(2) Expand the following expression in the Weyl algeldra

n n
bn (Zj:l a152505, -+ 2 j=1 adjwjaj) ;

into aQ-linear combination of monomials! - - - zir " - - - 9.
(3) Reduce thaQ-linear combination modulo the @Glbner basigj; either in A,
or in the commutative polynomial ring

Qlz1,...,zn,01,...,0n].

(4) The normal form computed in Step 3 lisas a right factor. Divide by; and
output the result. It is a creation operator &pr

Proof of Correctness'he toric ideall 4, is homogeneous by our assumption that
ai,...,an lie on an affine hyperplane. The expression computed in step (2) looks
like

— P B LN Y N
p—ZCll...lnjl...h zt-xy -0t O
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Note thatp is the unique polynomial in the Weyl algehdg which is congruent to
by (s) modulo the leftd,, [s]-ideal generated by th8; (s;). By Theorem 3.2h;(s)
liesin B4 ;(s). This implies thap lies in the left4,,-ideal generated by, ando;.
Therefore there exists another polynomial

k k [ [
q= Z Dkl---knll-"ln . .%‘11 ceexy” 811 s 8n",

which hasg; as a right factor and is congruent jomodulo the leftA,,-ideal
generated byl 4.

Now apply the reduction modul@in (3) top. In each reduction step we replace
a right monomial factod;* - - - 9%~ of a term ofp by another such monomial. The
result is the same, regardless of whether it was done over the Weyl aldgbra
or overQlzs,...,zy, 01,...,0,]. Moreover, we get the same normal form if we
reduceq modulog, sincep andq are congruent modulé,. Sinceq hasg; as a
(right) factor, the normal form ha8; as a (right) factor, by the property of the
reverse lexicographic order.

EXAMPLE 3.2. (A non-normal matrix). The ideal éfpolynomials is generally
not principal. Leth = 4,d = 2 and

4310
A= .
<0134>

The Gibbner basis of 4 for the reverse lexicographic ordér > 9> > 03 > 04
equals

G = {03 — 020, 0205 — 0104, 03 — 0503, 0105 — 0504}

The underlined monomials are the initial terms. Note that neheror its initial

ideal are Cohen—Macaulay. Suppose we wish to compute a creation operator for
1 = 4. In step (3) of Algorithm 3.1 we would find that the elimination ideal is not
principal

BA,4(S) N Q[Sl, 82]
= (Sz)ﬂ (82—1) 0(82—2) 0(82—3) 0(81—2,82—6).

Applying steps (2)—(4) of Algorithm 3.2 to any element of this ideal will result in
a creation operator. For example, we can substityte= 42101 + 31202 + 7303
and sy = z202 + 31303 + 41404 into 82(82 - 1) (82 - 2)(82 - 3)(81 — 2) and
reduce its expansion modulb Removing a factof, from each term in the output
gives a creation operator.

This example also shows that the polyhedrgblynomials predicted by The-
orem 3.2 are generally not best possible with respect to minimizing degree. For
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instance, we have the following

h = (4,0),b, = s2(s2 — 1)(s2 — 2)(s2 — 3)(s2 — 4)(s2 — 5)(s2 — 6)(s2 — 7),
h=(3,1),b, = sa(s2 — 1)(s2 — 2)(s2 — 3)(s2 — 4)(s2 — 5)(s2 — 6)s1,
h=(1,3),b, = s1(s2 — 1)(s2 — 2)(s2 — 3)(s2 — 4)s1(s1 — 1)(s1 — 2),
h = (0,4),b, = s2(s2 — 1)(s2 — 2)(s2 — 3)s1(s1 — 1)(s1 — 2)(s1 — 3).

4. Optimal value and indicial polynomial

Every integer programming problem can be transformed into a standard form in
which the linear objective function is simply the last coordinate

Minimize u,, subjectto A-u=a and u € N". 4.1)
For instance, if we are given the integer program
Minimize w - u subjectto A'-u = o/ and we N1,

then we transform it into (4.1) by adding a row and a column to get

-1 w
A= .
(o)

In this section we study the optimal value of the integer program (4.1) as
a function ofa = (a4, ...,a4). We shall express the optimal value as root of
the indicial polynomial along the singularify:,, = 0} of the A-hypergeometric
system.

The notion of arindicial polynomialappears classically in the Frobenius method
for solving ordinary linear differential equation. The roots of the indicial polynomial
are callecexponentghey indicate the lowest order terms in a possible power series
solution.

The following modern approach to indicial polynomials is used for holonomic
systems an@-modules ([11, Thm. 2.7], [12, Thm. 1], and [13, Thm. 4.1.1], see
also [15] and [17]). LeP be an element of the Weyl algebrh, = Q(x1, ..., zy,

o, ...,0,). We abbreviated,, := z,0, andz’ = (z1,...,2,-1) andd’ =
(01,...,0nh—1). We define a filtratiod F,, } mez Of A, as follows: for each integer
m, put

Fm - { Z aPaQarasxlpngalrans S An,ap,q,r,s € Q} .

s—q<m
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It can be easily shown thdt,F;, C F,.,. For nonzeraP € A,, the minimum
integerm satisfyingP € F,, is called theF-order of P. When theF'-order of an
operatorP € A, is m, we defines(P) as the top degree component/of

o(P) = Z apqrst 10" 0,5

s—q=m
Noting that

ThOF = 0,(0n — 1) (O —k+1)
and

el =0, +1)(0,+2) - (6, + k),
we can see that

zy'6(P) = Z aparsTT 0 0n (0 — 1)+ (0, — s+ 1) =:p(2',0',0,)
form > 0, and

H"G(P) = > apgrst’’ 0" (0n +1)(0p +2) -+ (6 —m)

X0p (0 — 1) -+ (0, — 5+ 1)
=: p(z',d,0,) form <O.

In either case we replace the operaigrby a new scalar variabkeand we define
P(P) =p(a',0,t) € Ap_1]t].

When P is an ordinary differential operator thef(P) is the classical indicial
polynomial.

Consider any left ideal of A,,. Let(I) be the left ideal in4,,_1[t] generated
by the operatorg)(P) for all P € I. We are interested in the elimination ideal
»(I) N Q[t]. This ideal is principal. If it is nonzero then its unique (up to scaling)
generator ofy(I) N Q[¢t] is called the global) indicial polynomialalongz,, = 0
of the left A,-moduleA,,/I.

It was shown by Oaku (see [15], [17]) that thricial ideal (1) N Q[¢] is
gotten from any generating set bby Grdbner basis computation with respect to
the variable weights

O - Op—1 Op o1 -+ Tp—1 Tp
0O --- 0 1 0 --- 0 -1
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In this computation special care must be taken because of the negative weight
The ordinary Buchberger algorithm may not terminate when negative weights are
present. This difficulty can be dealt with by an extra homogenizing variable, or by
adapting the standard basis algorithm in local rings [5, Sect. 4.4]. The following
version of Oaku’s algorithm has been implementekkim/sm1 andrisa/asir [14]
to compute examples for this paper.

Define aQ-linear maph from A,, to A, [s, s ] by theQ-linear extension of the
map

1298 —y gPn—an g5l

defined on monomials id,,. For? € A,,, we callh(¢) the F-homogenizatioof £.

ALGORITHM 4.1. (Computing the global indicial polynomial).

(1) Given generators,, ..., /4, of the left ideall, compute thei’-homogeniza-
tions h(¢;) and find a monomiat? so thatsPh(¢) is a polynomial ins for
all k.

(2) Let> be any term order on the Weyl algebtg[s] which refines the weights

S "'El e xn al . an

v =

(3) Compute a Gibner basig in the Weyl algebrai,, [s] for the input set
{Sph(él)’ Sph(EZ) Yoty Sph(gm) }
(4) Eliminatezy,...,z, 1,01,...,0, 1 from the leading terms

{inv(9:) | 9: € G}

with respect to the variableand choose an elemettts, x,,, 9,) of minimal
degree in,.
(5) The polynomiak)(c(1, z,, 0y)) is the global indicial polynomial of along
T, = 0.
We now fix an integer vectar € N¢ and consider thel-hypergeometric ideal

d
Tpoi=Ap-1a+ ZAn ) Z]'(ij).
Jj=1

THEOREM 4.1.Let (us,...,u,) be an optimal solution to the integer program
(4.1). Then the optimal value= u,, is a zero of the indicial ideap (14 ) N Qlt].
Proof. Letc(t) € ¢(1a,o) N Q[t]. There exists an operatpisuch that

c(zn0n) + zn - (2,0, 20, 0n) € Taq. 4.2)
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The hypergeometric polynomial for the right-hand sidean be written as follows
O(a;x) =zl - P(z') + :1:2”+1 Q' ). (4.3)

Note thatP(z') contains the term* - - - z."3"/(ua! - - - up—1'u,!) and possibly
others. When we apply the operator (4.2) to (4.3) then we get zero. In particular,
the lowest term of (4.2) with respectig must be annihilated by the lowest term

of (4.3)

c(z,0,) (zim - P(2') = e(uy) - zpm - P(z') = 0.

This implies ¢(u,,) = 0, as desired.

We next present a general construction and lemma which will be used in the
proof of Theorem 4.2 below. A subgétof N is called arorder idealif v € ¢/ and
v < u (componentwise) implies € U/. The complement of an order idéakcan be
identified with the monomial ideal/;; = (z*: w ¢ U) in Q[z] = Q[z1,...,Zy].
Let I, be the radical ideal consisting of all polynomials@fz] which vanish at
the points iriA.

LEMMA 4.1. Let Y be an order ideal inN™ and I, its vanishing ideal. Then
the reduced Gibner basis ofl;; with respect to any term order consists of the

polynomials
n w;—1
fw = H H (zi —3),
i=1 j=0

wherez® = z7* - - - % runs over all minimal generators a¥/,.

Proof. Fix an arbitrary term order on Q[z]. We first assume that is finite.
Then bothQlz]/I;; and Q[z]/My, are artinian rings ofQ-dimension #/). Let
F' be the ideal generated by the polynomig}s above. Sincef,, vanishes on
U, we haveF C I. This inclusion lifts to initial monomial ideals and we get
in<(F) C ing(Iy). The observatiorin.(f,) = z* implies My, C iny(F).
Consider now the following chain of inequalities

#u) = dmQs)/Li = dimQ[a]/in(L) <
< dimQlal/in<(F) < dmQlz)/My = #U).

Allinequalities are equalities, and henge, (I;) = in~(F) = M. This shows
that the set{ f,,} is a Gibbner basis fof;, with respect to<.

Next consider the case whetg is infinite. Suppose, by contradiction, that
{fw} is not a Gbbner basis fof;, with respect to<. Then there exists a non-zero
polynomialf € I, such that no term of lies in M;,. Letd’ be the smallest order
ideal in N™ which contains all the terms ¢f. Theni/' is finite andi/’ C U. We
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have f € I;;; and no term off lies in M. This is a contradiction to Lemma 4.1
for finite order ideals.

Therefore{f,,} is a GBbner basis fof;, in both cases. Since is the only
term of f,, which lies inM;,, we conclude thaf f,,} must be the reduced Gloner

basis forly,.
We are now prepared to prove the existence of a nonzero indicial polynomial.
First consider the case of generic parametersslet(sy, ..., sq) be indetermi-

nates and consider
Las = Ap[s] - Ia + Z Ayl

This is a left ideal inA,[s] = Ay,[s1,...,sq4], and(I44) is a left ideal in
Anfl[ta 81y - 7Sd]'

THEOREM 4.2.The idealy(I4,5) N Q[t, s1,...,s4] is the vanishing ideal of
all points (7, «) wherer is the optimal value of the integer prograf#.1) with
right-hand sidex = (a4, ..., ay). This radical ideal has height and contains a
polynomial monic irt.

Proof. Let.J denote the vanishing ideal of all poirits «) wherer is the optimal
value of the integer program with right hand sigelt follows from Theorem 4.1
that ¢ (14,5) N Q[t,s1,...,54] € J. We must prove the reverse inclusion. Let
f=f(t,s1,...,8q4) € J. We replaces; by E] 1%9 +ajpptfori=1,...,dto
get a polynomialf = f(01, ...,0,_1,t) which is congruent tg modulow(IA,s).
We identifyt = 6,,.

By hypothesisf = f(61,...,6,) vanishes at all non-negative integer points
v = (v1,...,v,) Which are optimal in their fiber. These points form an order ideal
in N" ([26, Lem. 2.1.4]). Lemma 4.1 implies thgtcan be written as a linear
combination of the polynomials

n Uj—
H H (0; — k), whereu = (ug,...,u,) isnotoptimalin its fiber. (4.4)

If u is not optimal then there exists another poiin the same fiber which satisfies
v < Un. We haved™ — 0V € I4. This implies that

n uj—1
e (0" =0") =] T] (05— k) liesin (A, - Ia).
j=1 k=0
We concludef € (A, - I4) and, hencef € ¢(14,), as desired.
For the second assertion we recall the following familiar result from inte-

ger programming (cf. [2, Thm. 4.6]): There exist finitely many linear function-
als L1, Lo, ..., L, on Q¢ such that for every feasible € N? there existsj €
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{1,2,...,r} such that the optimal value of (4.1) for the right-hand side equal

to L;(«). (In particular,L; () is an integer, for such). This shows that the monic
(in ) polynomial[];_; (t — L;(s1,--.,s4)) lies in the radical ideal. Hence/J is

a proper ideal. It follows from [2, Thm. 4.6] that at least one ingdex{1,...,r}

is attained on the intersection ofladimensional cone with an affine sublattice of
finite index inZ?. Such a set is Zariski dense @, and therefore/ has height
one.

Remark4.1. One may be tempted to conjecture from the previous argument
thaty(74,5) N Q[t,s1,.. ., sq] €quals the principal ideal generated Wzl(t -

Lj(s1,...,54)). Thisis generally not true, as the following example shows. How-
ever, it is true under a suitable normality hypothesis. This will be shown in the next
section.

EXAMPLE 4.1. (The ideal of optimal values need not be principal). het 5,

d =3 and
11111
A=]102 3 4 3
01102
Here

P(La,s) N QL 51,52, 53]
= (t) N (t82 — 283) N (t + 81— 83)
N (t+481—82—83) ﬂ(S3—2,t—1).

The last prime component shows that this ideal is not principal.
The monic polynomial in Theorem 4.2 guarantees the existence of a nonzero
indicial polynomial for every right-hand side vecior

COROLLARY 4.1.For everya € Q", the idealy(14,,) N Q[t] is nonzero. The
unique (up to scaling) minimal generator is called the indicial polynomial of the
integer program(4.1).

EXAMPLE 4.2. (continuation of Example 4.1). For generic right-hand sidése
indicial polynomial equals

t(t + a2 — 2a3)(t + a1 — a3)(t + dag — az — a3). (4.5)
For o = (0,0,2) the indicial polynomial equalg(t — 4)(t — 2)?(t — 1). For

a = (0,0,0) it equalst®. Thus the degree may be higher or lower than in the
degree in the generic case.
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5. The indicial polynomial in the normal case

In this section a geometric construction of the indicial polynomial will be presented.
We retain the notation from Section 4, and we make the following assumptions
throughout:

(@) The vectorsy, . .., an_1, a, lie on an affine hyperplane iR¢.
(b) The vectorsi, . .., a,_ 1 spanZ®.
(c) The matrixA’ := (ay,...,a,_1) IS normal.

Here the hypothesis (c) is the most restrictive one. As we shall see in Lemma 5.1,
this hypothesis implies that the integer programming problem (4.1) can be solved
by rounding up the objective function value of the associlite@r programming
problem

Minimize wu, subjectto ueR", A-u=«a and u>0. (5.1)
To solve (5.1) geometrically, we consider the convex hull
conA’) = convay,...,an—1}.

This is a(d — 1)-polytope. The cone over cofW’) is the d-dimensional cone
pog A'). For any facel’ of conu A’) let L1 denote its primitive integral support
function. This is the unique epimorphis&f — Z which is non-negative on
con A’) and vanishes of. We say that a facét s visible froma,, if Lr(a,) < O.
Let F denote the set of all facetsof con A’) which are visible fromu,,. Note
thata, € conA4’) if and only if 7 = (). The linear program (5.1) is feasible if
and only if the right-hand sidae lies in pogA) = pog A’ U {a,}) if and only if

a € pogA') ora € poqI’ U {a,}) for somel’ € F.

PROPOSITION 5.1Let u,, be the optimum value of a feasible linear program
(5.1). Then

0 if o€ pog4’),
{ Lr(a)/Lr(a,) if a€pogl'U{a,}) for I' € F.

Up —
Proof. The first casex € pogA’) is obvious. Suppose we are in the second
case. The optimal value is the smallest real numbesuch thate — u,a, lies
in pog A). SinceLr is non-negative on péd’), we find thatLr(a — upa,) =
Lr(a) — upLr(ay,) > 0. The assumption € poqT" U {a,}) implies that the last
inequality is attained.

THEOREM 5.1. Under the hypothese§a)—(c) above, the ideal)(l4,) N

Qlt, s1, ..., 84| Is principal. Its generator equals the following product of linear
polynomials
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t- H (Lr(s1,...,8q4) —t- Lr(a,) — k). (5.2)

Theorem 51 is our main result in this section. For the proof we need one
lemma.

LEMMA5.1. If the integer progant4.1) is feasible and., is the optimum value of
the linear program(5.1), then the least integgr, | that is greater than or equal
to u,, is the optimum value d#.1).

Proof. First supposer € pogA4'). Thenu,, = 0 by Proposition 5.1. By the
normality hypothesis (c), the right-hand sideis a non-negative integer linear
combination ofas, ..., a,_1. Henceu, = [u,] = 0 is also the optimal value of
the integer program (4.1).

Next supposex € pogI" U {a,,}) for " € F. The optimal value of the integer
program (4.1) is the smallest intedés such thaix — U,, - a,, € NA'. The optimal
valueu,, for the linear program (5.1) satisfies < U,, anda — u,, - a,, € pogT’) C
pog A’).

If u,, = U, we are done, hence assumg< U,,. The identity

[un] = un (o= Upan) + Un = [tun]

U, — up U, — up ' (a B unan)

a— [up|a, =
shows thatv — [uy, ]|ay, lies in pog A’). By normality we conclude: — [u,] - a,, €
NA’. This impliesU,, = [u,], as desired.

Proof of Theoren®.1. Lemma 5.1 and Proposition 5.1 imply that (5.2) lies in
the idealy(74,5) N Q[t, s1,...,sq4]. Conversely, letf = f(t,s1,...,sq4) be any
element of that ideal. Consider the set of all feasible Q¢ such that the optimal
value of (4.1) equalsL(«) — k)/L(ay), for some fixedk. This set equals the
intersection of thel-dimensional cone p¢B U {a, }) with an affine sublattice of
finite index inZ%. Hence this set is Zariski dense @f'. We conclude that the
polynomial f vanishes on the hyperplane @+ defined by any of the linear
factors in (5.2). Thereforé is a multiple of (5.2).

COROLLARY 5.1.For everya € Q¢ the indicial polynomial is a factor of

—L[‘( Qan )—1

t- I (Lr(a) —t- Lr(ay) — k). (5.3)
rer k=0

For generic values ofy, this expression is square-free and it equals the indicial
polynomial

EXAMPLE 5.1. (Transportation problem and hypergeometric system of type-
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5).) We retain the notations of Example 2.2. The indicial polynomial algng= 0
is equal to

ki

for generic values of parameters. Computer experiments indicate that the indicial
polynomial is equal to this quadratic polynomial for all values of parameters.

EXAMPLE 5.2. Letn = 8,d = 3 and consider the matrix

11111111
A=10123 42 33
00000112

This is the normalization of the matrix in Example 4.1. Hepe= (1, 3,2), the
polygon conyA’) is a quadrangle, the st of visible facets has three elements,
and we havd.r-(a,) = —1forallT" € F. The product (5.3) equals the expression
(4.5), but, in contrast to Example 4.1, the generic indicial ideal is now principal

w(IA,S) mQ[ta 31782783]
= (t-(t+s2—2s3) - (t+ 51— 53) - (t +4s1— 52— 53)).

For special values af the indicial polynomial may be a proper factor of (5.3). For
a = (0,0,0) we gethere the same answer as in Example4.2; ,)NQ[t] = (¢°).
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