THE HÖLDER EXPONENT FOR RADIALLY SYMMETRIC SOLUTIONS OF POROUS MEDIUM TYPE EQUATIONS

GASTON E. HERNANDEZ AND IOANNIS M. ROUSSOS

1. Introduction. The density $u(x, t)$ of an ideal gas flowing through a homogeneous porous media satisfies the equation

$$
\begin{equation*}
u_{t}=\Delta u^{m} \text { in } \Omega_{T}=\mathbb{R}^{N} \times(0, T) . \tag{1}
\end{equation*}
$$

Here $m>1$ is a physical constant and u also satisfies the initial condition

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \geq 0 \text { for } x \in \mathbb{R}^{N} . \tag{2}
\end{equation*}
$$

If the initial data is not strictly positive it is necessary to work with generalized solutions of the Cauchy problem (1), (2) (see [1]). By a weak solution we shall mean a function $u(x, t)$ such that for $T<\infty, u \in L^{2}\left(\Omega_{T}\right), \nabla u^{m} \in L^{2}\left(\Omega_{T}\right)$ (in the sense of distributions) and

$$
\begin{equation*}
\int_{\Omega_{T}} \int\left(u \varphi_{t}-\nabla u^{m} \nabla \varphi\right) d x d t+\int_{\mathbb{R}^{N}} u_{0}(x) \varphi(x, 0) d x=0 \tag{3}
\end{equation*}
$$

for any continuously differentiable function $\varphi(x, t)$ with compact support in $\mathbb{R}^{N} \times(0, T)$.
We assume here that $0 \leq u_{0}(x) \leq M_{0}, u_{0}^{m-1}$ is Lipschitz and $u_{0} \in L^{2}\left(\mathbb{R}^{N}\right)$. Then (see [8]) there exists a unique solution $u(x, t)$ of (1) and (2). This solution is obtained as the limit of classical solutions $u_{\varepsilon}(x, t)$ of

$$
\begin{align*}
\left(u_{\varepsilon}\right)_{t} & =\Delta u_{\varepsilon}^{m} \\
u_{\varepsilon}(x, 0) & =u_{0}(x)+\varepsilon . \tag{4}
\end{align*}
$$

We let $v(x, t)=\frac{m}{m-1} u^{m-1}(x, t)$ (This is the pressure of the gas up to a multiple), then (1) and (2) becomes

$$
\begin{align*}
v_{t} & =(m-1) v \Delta v+|\nabla v|^{2} \\
v(x, 0) & =v_{0}(x)=\frac{m}{m-1} u_{0}^{m-1}(x) . \tag{5}
\end{align*}
$$

In the one dimensional case, Aronson [2], proved that if v_{0} is a Lipschitz continuous function then v is also Lipschitz continuous with respect to x in $\mathbb{R} \times(0, T)$. Aronson and Caffarelli [3] proved that v is also Lipschitz continuous with respect to t in the same domain. In particular $u(x, t)$ is α-Hölder continuous for any $\alpha \in\left(0, \frac{1}{m-1}\right)$, i.e., the quotient

$$
\begin{equation*}
\frac{|u(x, t)-u(y, \tau)|}{|x-y|^{\alpha}+|t-\tau|^{\alpha / 2}} \tag{6}
\end{equation*}
$$

is bounded in $\mathbb{R} \times(0, T)$ by a constant K that depends only in u_{0}, m and T.
In higher dimensions Caffarelli and Friedman [5] proved that $u(x, t)$ is continuous with modulus of continuity

$$
W(\rho)=C|\log \rho|^{-\epsilon}, \quad N \geq 3,0<\epsilon<\frac{2}{N}
$$

and

$$
W(\rho)=2^{-c}|\log \rho|^{1 / 2}, \quad N=2
$$

where $\rho=\left(|x-y|^{2}+|t-\tau|\right)^{1 / 2}$ is the parabolic distance between (x, t) and (y, τ). Thus if u_{0} is α-Hölder continuous for some $\alpha \in(0,1)$, then $|u(x, t)-u(y, \tau)| \leq W(\rho)$ uniformly in $\mathbb{R}^{N} \times(0, T)$. The same authors in [6] proved that $u(x, t)$ is actually α-Hölder continuous for some $\alpha \in(0,1)$, but α is completely unknown.

The more general porous medium equation

$$
\begin{align*}
u_{t} & =\Delta u^{m}+h(x, t, u) u \\
u(x, 0) & =u_{0}(x) \geq 0 \tag{7}
\end{align*}
$$

was treated by the author in [7] in the case $N=1$. It is shown there that the corresponding $v(x, t)$ is α-Hölder continuous for any $\alpha \in(0,1)$ provided v_{0} is α-Hölder continuous and h is bounded. (In particular the bound K in (6) does not depend on the modulus of continuity of h.)

Let $r=|x|=\left(\sum x_{i}^{2}\right)^{1 / 2}$ be the Euclidean distance in \mathbb{R}^{N}. If $v(r, t)$ is a radially symmetric solution of (5), it satisfies

$$
\begin{align*}
v_{t} & =(m-1) v v_{r r}+v_{r}^{2}+(m-1)(N-1) \frac{v v_{r}}{r}, \quad r>0 \tag{8}\\
v(r, 0) & =v_{0}(r) \geq 0 .
\end{align*}
$$

We shall first consider the spatial dimension $N=3$. We are interested in the "bad" case, when $v_{0}(r)$ has compact support and is possibly 0 at $r=0$. By using only elementary considerations we show that for a solution $v(r, t)$ of (8), $r^{\alpha} v(r, t)$ is α-Hölder continuous for $\alpha \in\left(0, \frac{m-1}{m}\right]$ in a domain $[0, R] \times[0, T]$. As an application of this result it follows that $v(r, t)$ is α-Hölder continuous for $r \geq r_{0}>0$. Also if $v_{0}(0)>0$ then v is α-Hölder continuous in the whole domain Ω_{T} for $0<\alpha \leq \frac{m-1}{m}$.

Further we prove the same result for the more general equation

$$
\begin{align*}
v_{t} & =(m-1) v v_{r r}+v_{r}^{2}+(m-1)(N-1) \frac{v v_{r}}{r}+h(r, t, v) v \tag{9}\\
v(r, 0) & =v_{0}(r)
\end{align*}
$$

that corresponds to $u_{t}=\Delta u^{m}+h(x, t, u) u$. Here the bound is also independent of the modulus of continuity of h.

Through this work we shall assume the following:
A1. $v_{0}(r)$ is a nonnegative Lipschitz continuous function (contant M_{0}), with compact support in $\left[0, R_{1}\right], v_{0}(r) \leq M_{0}$.

A2. $L_{1}\left[v_{0}\right]=(m-1) v_{0} v_{0}^{\prime \prime}+\left(v_{0}^{\prime}\right)^{2}+2(m-1) \frac{v_{0} v_{0}^{\prime}}{r}$ is bounded by M_{0} for $r>0$. Under assumption (A1) there exists a unique classical solution $v=v_{\varepsilon}$ of the problem

$$
\begin{align*}
v_{t} & =(m-1) v v_{r r}+v_{r}^{2}+(m-1)(N-1) \frac{v v_{r}}{r}, \quad r>0 \tag{12}\\
v(r, 0) & =v_{0}(r)+\varepsilon
\end{align*}
$$

$v(r, t)$ has bounded derivatives (depending on ε) and $\varepsilon \leq v(r, t) \leq M$ (M depends only on v_{0} and m). Also $v_{\varepsilon}(r, t) \rightarrow v(r, t)$ as $\varepsilon \rightarrow 0$.

We will consider $\alpha \in\left(0, \frac{m-1}{m}\right]$ to be fixed, $R_{2} \in[0, R]$ is a point at which v_{0} is strictly positive, $v_{0}\left(R_{2}\right)=\eta>0$.

2. Main results.

THEOREM 1. Let $v(r, t)$ be a (weak) solution of (8), where $v_{0}(r)$ satisfies A1, A2. Let $R_{2} \in\left[0, R_{1}\right]$, be a point at which $v_{0}\left(R_{2}\right)=\eta>0$. Then $r^{\alpha} v(r, t)$ is α-Hölder continuous in $\bar{\Omega}_{R_{2}}=\left[0, R_{2}\right] \times[0, T]$.

Proof. We shall prove that for a solution $v(r, t)$ of (12), the α-quotient (6) corresponding to $r^{\alpha} v$ can be estimated independently of ε.

Let $B=\left(0, R_{2}\right) \times\left(0, R_{2}\right) \times(0, T) \times(0, T)$. Since v_{r}, v_{t} are bounded (in terms of ε) we can choose $\delta>0$ small, such that $\left|v_{r}\right|,\left|v_{t}\right| \leq \delta^{\alpha-1}$ in $\bar{\Omega}_{T}=[0, \infty] \times[0, T]$. Define $B_{\delta}=\{(r, s, t, \tau) \in B| | r-s \mid>\delta$ or $|t-\tau|>\delta\}$ and

$$
h(r, s, t, \tau)=\frac{\left|r^{\alpha} v(r, t)-s^{\alpha} v(s, \tau)\right|^{\lambda}}{|r-s|^{2}+A|t-\tau|}
$$

where $\lambda=\frac{2}{\alpha}$ and $A=6 m M+1$.
We also put $w(r, t)=r^{\alpha} v(r, t)$. Then for $\alpha=\frac{m-1}{m}, w(r, t)$ satisfies

$$
\begin{align*}
r^{\alpha} w_{t} & =(m-1) w w_{r r}+w_{r}^{2}, \quad r>0 \\
w(r, 0) & =r^{\alpha} v_{0}(r) \tag{13}
\end{align*}
$$

We shall prove that in $B_{\delta}, h(r, s, t, \tau) \leq K_{1}$ independently of δ. Then, since $\lambda=\frac{2}{\alpha}$

$$
K_{1}^{\alpha / 2} \geq \frac{\left|r^{\alpha} v(r, t)-s^{\alpha} v(s, \tau)\right|}{\left(|r-s|^{2}+A|t-\tau|\right)^{\alpha / 2}} \geq \frac{\left|r^{\alpha} v(r, t)-s^{\alpha} v(s, \tau)\right|}{|r-s|^{\alpha}+A^{\alpha / 2}|t-\tau|^{\alpha / 2}}
$$

and since $A>1$, we obtain that $r^{\alpha} v(r, t)$ is α-Hölder continuous with constant $A^{\alpha / 2} K^{\alpha / 2}$.
Clearly h is continuous in B_{δ}. Let us assume that $\max h$ occurs at a point $Q_{0}=$ $\left(r_{0}, s_{0}, t_{0}, \tau_{0}\right) \in \bar{B}_{\delta}$. We look first at the case $t_{0}=\tau_{0}$.

Let $g(r, s, t)=h(r, s, t, t)$. We will use the abbreviations

$$
g(r, s, t)=\frac{|w(r, t)-w(s, t)|^{\lambda}}{(r-s)^{2}}=\frac{\left|w_{1}-w_{2}\right|^{\lambda}}{(r-s)^{2}}=|S|^{\lambda} R^{-2} .
$$

LEmmA 1. $g(r, s, t)$ is bounded independently of δ in $\bar{B}_{\delta, 1}$ where $B_{\delta, 1}=\{(r, s, t) \mid$ $\left.0<r<s<R_{2}, 0<t \leq T,|r-s|>\delta\right\}$.

Proof. Clearly g is continuous in $\bar{B}_{\delta, 1}$. Let us assume that max g occurs at a point $Q_{1}=(r, s, t) \in \bar{B}_{\delta, 1}$. Then either Q_{1} is an interior point at which g is differentiable or Q_{1} is a boundary point of $\bar{B}_{\delta, 1}$ (g is not differentiable only when $g=0$). We begin with the former case. At Q_{1} we have

$$
\begin{equation*}
g_{r}=g_{s}=0, g_{r r}, g_{s s} \leq 0 \text { and } g_{t} \geq 0 \tag{14}
\end{equation*}
$$

The first derivatives are:

$$
\begin{align*}
& g_{r}=\lambda|S|^{\lambda-1} \sigma w_{1 r} R^{-2}-2|S|^{\lambda} R^{-3}, \quad \sigma=\operatorname{sgn} S \\
& g_{s}=-\lambda|S|^{\lambda y} \sigma w_{2 s} R^{-2}+2|S|^{\lambda} R^{-3} \tag{15}\\
& g_{t}=\lambda|S|^{\lambda-1} \sigma\left(w_{1 t}-w_{2 t}\right) R^{-2}
\end{align*}
$$

Thus, (14) implies

$$
\begin{equation*}
w_{1 r}=\frac{2 \sigma}{\lambda}|S| R^{-1}=w_{2 s} \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
& g_{r r}=2|S|^{\lambda} R^{-4}\left(1-\frac{2}{\lambda}\right)+\lambda|S|^{\lambda-1} \sigma R^{-2} w_{r r} \tag{17}\\
& g_{s s}=2|S|^{\lambda} R^{-4}\left(1-\frac{2}{\lambda}\right)-\lambda|S|^{\lambda-1} \sigma R^{-2} w_{s s}
\end{align*}
$$

Let

$$
\begin{equation*}
E=(m-1) r^{-2} w_{1} g_{r s}+(m-1) s^{-2} w_{2} g_{s s}-g_{t} . \tag{18}
\end{equation*}
$$

Then $E \leq 0$ at Q_{1}. Replacing $g_{r r}, g_{s s}$ and g_{t} in E we get
(19)

$$
\begin{aligned}
& 2(m-1)|S|^{\lambda} R^{-4}\left(1-\frac{2}{\lambda}\right)\left(\frac{w_{1}}{r^{\alpha}}+\frac{w_{2}}{s^{\alpha}}\right) \\
& \quad+\lambda|S|^{\lambda-1} \sigma R^{-2}\left[\left((m-1) r^{-\alpha} w_{1} w_{1 r r}-w_{1 t}\right)-\left((m-1) s^{-\alpha} w_{2} w_{2 s s}-w_{2 t}\right)\right] \leq 0 .
\end{aligned}
$$

ii) If $s=0$ we have

$$
g(r, 0, t)=\left[\frac{r^{\alpha} v(r, t)}{r^{\alpha}}\right]^{\lambda} \leq M^{\lambda}
$$

iii) If $|r-s|=\delta$ we use the mean value theorem and the fact that the first derivatives of v are bounded by $\delta^{\alpha-1}$ to get

$$
\begin{align*}
g(r, s, t) & \leq\left[r^{\alpha} \frac{|v(r, t)-v(s, t)|}{|r-s|^{\alpha}}+v(s, t) \frac{\left|r^{\alpha}-s^{\alpha}\right|}{|r-s|^{\alpha}}\right]^{\lambda} \tag{22}\\
& \leq\left[R_{2}^{\alpha} \frac{\delta^{\alpha-1} \cdot \delta}{\delta^{\alpha}}+M\right]^{\lambda} \leq\left[R_{2}^{\alpha}+M\right]^{\lambda} .
\end{align*}
$$

iv) Finally assume $r=R_{2}$. Since $v_{0}\left(R_{2}\right)=\eta>0$ there exists $\delta_{1}>0$ such that $v_{0}(r)>$ $\frac{v_{0}\left(R_{2}\right)}{2}$ for $R_{2}-\delta_{1}<r<R_{2}+\delta_{1}$.

In this case there exists $N_{1}>0$ such that $v(r, t) \geq N_{1}$ in $\Omega_{2}=\left[R_{2}-\delta_{1}, R_{2}+\delta_{1}\right] \times[0, T]$. Thus (see [8]) $\left|v_{r}^{\varepsilon}\right|,\left|v_{s}^{\varepsilon}\right|$ are bounded by constant K_{3} independently of ε and δ in Ω_{2}. Without loss of generality we assume $K_{3}>1, \delta_{1}<1$. Then by (19) if $|R-s| \leq \delta_{1}$ we have

$$
g(R, s, t) \leq\left[R_{2}^{\alpha} K_{3}|R-s|^{1-\alpha}+M\right]^{\lambda} \leq\left[R_{2}^{\alpha} K_{3}+M\right]^{\lambda}
$$

Otherwise

$$
g(R, s, t) \leq \frac{\left|r^{\alpha} v_{1}-s^{\alpha} v_{2}\right|^{\lambda}}{(R-s)^{2}} \leq \frac{\left(2 R_{2}^{\alpha} M\right)^{\lambda}}{\delta_{1}^{2}}
$$

We conclude that $g(r, s, t) \leq K_{2}$, where

$$
K_{2}=\max \left\{\left(R_{2}^{\alpha} K_{3}+M\right)^{\lambda}, M^{\lambda},\left(R_{2}^{\alpha}+M\right)^{\lambda}, \frac{2^{\lambda} R_{2}^{2} M^{\lambda}}{\delta_{1}^{2}}\right\} \text { for any point in } B_{1, \delta}
$$

From this lemma we obtain that if $t_{0}=\tau_{0}$, then $h\left(r_{0}, s_{0}, t_{0}, \tau_{0}\right)=g\left(r_{0}, s_{0}, t_{0}\right) \leq K_{1}$.
Let us assume next that Q is an interior point of B and h is differentiable at Q, (i.e., $h(Q) \neq 0)$ then

$$
\begin{equation*}
h_{r}=h_{s}=0 \text { and } h_{r r}, h_{s s},-h_{t},-h_{\tau} \leq 0 \text { at } Q . \tag{23}
\end{equation*}
$$

Assume $t_{0}>\tau_{0}$. This time instead of (18) we take

$$
\begin{equation*}
E=2(m-1) r^{-\alpha} w_{1} h_{r r}+(m-1) s^{-\alpha} w_{2} h_{s s}-2 h_{1}-h_{s} . \tag{24}
\end{equation*}
$$

Then $E \leq 0$ at Q.
We write

$$
h(r, s, t, \tau)=\frac{|w(r, t)-w(s, \tau)|^{\lambda}}{(r-s)^{2}+A|t-\tau|}=\frac{\left|w_{1}-w_{2}\right|^{\lambda}}{R}=|S|^{\lambda} R^{-1} .
$$

Then using (21) we get

$$
\begin{aligned}
E=2(m & -1)|S|^{\lambda} R^{-2}\left((2-\alpha) R^{-1}(r-s)^{2}-1\right)\left(2 R^{-\alpha} w_{1}+s^{-\alpha} w_{2}\right) \\
& +\lambda|S|^{\lambda-1} \sigma R^{-1}\left[\left(2(m-1) r^{-\alpha} w_{1} w_{1 r r}-2 w_{t}\right)-\left((m-1) s^{-\alpha} w_{2} w_{2 s s}-w_{2}\right)\right] \\
& +A|S|^{\lambda} R^{-2} \leq 0
\end{aligned}
$$

We use the differential equation in (r, t) and (s, τ) in the second term to get

$$
\begin{gathered}
E=2(m-1)|S|^{\lambda} R^{-2}\left((2-\alpha) R^{-1}(r-s)^{2}-1\right)\left(2 r^{-\alpha} w_{1}+s^{-\alpha} w_{2}\right) \\
+\lambda|S|^{\lambda-1} \sigma R^{-1}\left(s^{-\alpha} w_{s}^{2}-2 r^{-\alpha} w_{r}^{2}\right)+A|S|^{\lambda} R^{-2} \leq 0
\end{gathered}
$$

Now, $h_{r}=h_{s}=0$ implies $w_{r}=\frac{2 \sigma}{\lambda}|S| R^{-1}(r-s)=w_{s}$, so

$$
\begin{aligned}
& E=2(m-1)|S|^{\lambda} R^{-2}\left((2-\alpha) R^{-1}(r-s)^{2}-1\right)\left(2 v_{1}+v_{2}\right) \\
&+\frac{4}{\lambda}|S|^{\lambda+1} \sigma R^{-3}(r-s)^{2}\left(s^{-\alpha}-2 r^{-\alpha}\right)+A|S|^{\lambda} R^{-2} \leq 0
\end{aligned}
$$

Also

$$
\begin{aligned}
\sigma|S|\left(s^{-\alpha}-2 r^{\alpha}\right) & =\left(w_{1}-w_{2}\right)\left(s^{-\alpha}-2 r^{-\alpha}\right) \\
& =\left(\frac{R}{s}\right)^{\alpha} v_{1}+2\left(\frac{s}{r}\right)^{\alpha} v_{2}-\left(2 v_{1}+v_{2}\right)
\end{aligned}
$$

Thus, dividing by $|S|^{\lambda} R^{-2}$, we have:

$$
\begin{aligned}
& 2(m-1)\left((2-\alpha) R^{-1}(r-s)^{2}-1\right)\left(2 v_{1}+v_{2}\right) \\
& \quad+\frac{4}{\lambda} R^{-1}(r-s)^{2}\left[\left(\frac{s}{r}\right)^{\alpha} v_{1}+2\left(\frac{s}{r}\right)^{\alpha} v_{2}\right]-\frac{4}{\lambda} R^{-1}(r-s)^{2}\left(2 v_{1}+v_{2}\right)+A \leq 0
\end{aligned}
$$

Dropping the positive term containing $\frac{r}{s}$ and $\frac{s}{r}$ we get

$$
\left(2 v_{1}+v_{2}\right)\left[R^{-1}(r-s)^{2}\left(2(m-1)(2-\alpha)-\frac{4}{\lambda}\right)-2(m-1)\right]+A \leq 0 .
$$

But $2(m-1)(2-\alpha)-\frac{4}{\lambda}=2(m-1)$.
Thus $-2(m-1)\left(2 v_{1}+v_{2}\right)+A \leq 0$, in contradiction with the choice of $A(A \geq$ $6(m-1) M+1)$.

Therefore max h does not occur at an interior point.
If the maximum of h occurs at a lateral point $r_{0}=R_{2}$ or $s_{0}=R_{2}$ or at an interior boundary point $\left(\left|r_{0}-s_{0}\right|=\delta\right)$ and $\left(\left|t_{0}-s_{0}\right| \leq \delta\right)$ or $\left(\left|r_{0}-s_{0}\right| \leq \delta\right)$ and $\left(\left|t_{0}-s_{0}\right|=\delta\right)$, we use the same arguments as in Lemma 1 to conclude that h is uniformly bounded in these cases.

Finally, if the maximum of h occurs at $t_{0}=0$ or $\tau_{0}=0$ we use the following:
LEMMA 2. Let $f(r, s, t)=\frac{|w(r, t)-w(s, 0)|^{\lambda}}{(r-s)^{2}+A t}$. Then f is uniformly bounded on the set $\Omega_{3, \delta}=\left\{(r, s, t)\left|0<s \leq R_{2}, 0 \leq t \leq T,|r-s| \geq \delta\right.\right.$ or $\left.t \geq \delta\right\}$.

Proof. We test the boundary points as in the previous cases. For an interior boundary point (at which $f \neq 0$) we choose $E=(m-1) r^{-\alpha} w_{1} f_{r r}+(m-1) s^{-\alpha} w_{2} f_{s s}-f_{t}$. Then $E \leq 0$ at a point of maximum.

Replacing the derivatives, the differential equation in (r, t), and using the condition $f_{r}=f_{s}=0$, we get

$$
\begin{aligned}
E=2(m & -1)|S|^{\lambda} R^{-2}\left((2-\alpha) R^{-1}(r-s)^{2}-1\right)\left(v_{1}+v_{2}\right) \\
& +\lambda \sigma|S|^{\lambda-1} R^{-1}\left(\frac{-4}{\lambda^{2}} r^{-\alpha}|S|^{2} R^{-2}(r-s)^{2}-(m-1) s^{-\alpha} w_{2} w_{2 r s}\right) \\
& +A|S|^{\lambda} R^{-2} \leq 0 .
\end{aligned}
$$

In the second term we add and subtract $s^{-\alpha} W_{2}^{2} \sigma=\frac{4}{\lambda^{2}} s^{-\alpha}|S|^{2} R^{-2}(r-s)^{2}$ this term, I_{2}, becomes

$$
\begin{aligned}
I_{2} & =\lambda \sigma|S|^{\lambda-1} R^{-1} 2\left(\frac{4}{\lambda^{2}}|S|^{2} R^{-2}(r-s)^{2}\left(s^{-\alpha}-r^{-\alpha}\right)-s^{-\alpha}\left((m-1) W_{2} W_{2 s s}+W_{2 s}^{2}\right)\right) \\
& =\frac{4}{\lambda}|S|^{\lambda+1} \sigma R^{-3}(r-s)^{2}\left(s^{-\alpha}-r^{-\alpha}\right)-\lambda|S|^{\lambda-1} \sigma R^{-1} s^{-\alpha}(m-1) W_{2} W_{2 s s}+W_{2 s}^{2} .
\end{aligned}
$$

As before $\sigma|S|=W_{1}-W_{2}$, so the first term in I_{2} is $\frac{4}{\lambda}|S|^{\lambda} R^{-3}(r-s)^{2}\left(\left(\frac{r}{s}\right)^{\alpha} v_{1}+\left(\frac{s}{r}\right)^{\alpha} v_{2}-\right.$ $\left.\left(v_{1}+v_{2}\right)\right)$ thus we get

$$
\begin{aligned}
E=|S|^{\lambda} R^{-2}\left[\left(v_{1}\right.\right. & +v_{2}\left\{2(m-1)\left((2-\alpha) R^{-1}(r-s)^{2}-1\right)-\frac{4}{\lambda} R^{-1}(r-s)^{2}\right\} \\
& \left.+\frac{4}{\lambda}|S|^{2} R^{-3}(r-s)^{2}\left(\left(\frac{r}{s}\right)^{\alpha} v_{1}+\left(\frac{s}{r}\right)^{\alpha} v_{2}\right)+A\right] \\
& -\lambda|S|^{\lambda-1} \sigma R^{-1} s^{-\alpha}\left((m-1) W_{2} W_{2 s s}+W_{2 s}^{2}\right) \leq 0 .
\end{aligned}
$$

Now $2(m-1)(2-\alpha)-\frac{4}{\lambda}=2(m-1)$. We drop the positive term in $\frac{r}{s}, \frac{s}{r}$ and get $|S|^{\lambda} R^{-1}\left[A-2(m-1)\left(\nu_{1}+v_{2}\right)\right] \leq \lambda|S|^{\lambda-1} \sigma s^{-\alpha}\left((m-1) W_{2} W_{2 s s}+W_{2 s}^{2}\right)$.

By the choice of A the coefficient on the left hand side is larger than 1. Also, in terms of the function v we have

$$
(m-1) w w_{r s}+w_{s}^{2}=s^{2 \alpha}\left((m-1) v v_{s s}+v_{s}^{2}+2 \alpha m \frac{v v_{s}}{s}\right) .
$$

Since $\alpha=\frac{m-1}{m}$, the right hand side is $s^{2 \alpha}\left[v_{0}\right]$, so

$$
\frac{|S|^{\lambda}}{R} \leq \lambda\left(2 R_{2}^{\lambda} M\right)^{\lambda-1} R_{2}^{\alpha} \quad\left[v_{0}\right] \leq \lambda\left(2 R_{2}^{\alpha} M\right)^{\lambda-1} R_{2}^{-\alpha} M_{0}
$$

We conclude that h is uniformly bounded independently of δ, on B_{δ}. Thus letting $\delta \rightarrow 0$ we obtain that

$$
h(r, s, t, \tau)=\frac{\left|r^{\alpha} v(r, t)-s^{\alpha} v(s, \tau)\right|^{\lambda}}{|r-s|^{2}+A|t-\tau|} \leq K_{1} \text { on }\left[0, R_{2}\right]^{2} \times[0, T]^{2} .
$$

Therefore $r^{\alpha} v(r, t)$ is α-Hölder continuous on $\left[0, R_{2}\right] \times[0, T]$, with constant $K_{2}=$ $\left(A K_{1}\right)^{\alpha / 2}$.

Corollary 1. $v(r, t)$ is α-Hölder continuous for $r \geq r_{0}>0$.
Proof. We have

$$
\begin{aligned}
K_{2} & \geq \frac{\left|r^{\alpha} v(r, t)-s^{\alpha} v(s, \tau)\right|}{|r-s|^{\alpha}+|t-\tau|^{\alpha / 2}} \\
& \geq r^{\alpha} \frac{|v(r, t)-v(s, \tau)|}{|r-s|^{\alpha}+|t-\tau|^{\alpha / 2}}-v(s, \tau) \frac{\left|r^{\alpha}-s^{\alpha}\right|}{|r-s|^{\alpha}+|t-\tau|^{\alpha / 2}}
\end{aligned}
$$

thus

$$
\frac{v(r, t)-v(s, \tau) \mid}{|r-s|^{\alpha}+|t-\tau|^{\alpha / 2}} \leq \frac{K_{2}+M}{r_{0}^{\alpha}} \text { for } r_{0} \leq r, s \leq R_{2}, \quad t, \tau \in[0, T] .
$$

Corollary 2. If $v_{0}(0)=\eta>0$ then $v(r, t)$ is α-Hölder continuous on the whole domain $\Omega_{R_{2}}$ for $0<\alpha \leq \frac{m-1}{m}$.

Proof. In this case, there exist $\eta_{1}, \delta_{1}>0$ such that $v(r, t) \geq \eta_{1}>0$ for $0 \leq r \leq \delta_{1}$. Then v is a classical solution in $\left[0, \delta_{1}\right] \times[0, T]$ with bounded derivative independent of ε. Thus v is Lipschitz in $\left[0, \delta_{1}\right]$, and by Corollary 1 it is Hölder in $\left[0, R_{2}\right] \times[0, T]$.

TheOrem 2. Let $v(r, t)$ be a radially symmetric solution of (9). Then $r^{\alpha} v(r, t)$ is α Hölder continuous in $\Omega_{R_{2}}$, for $\alpha \in\left(0, \frac{m-1}{m}\right]$.

PROOF. $\quad v(r, t)$ satisfies

$$
\begin{align*}
v_{t} & =(m-1) v v_{r r}+v_{r}^{2}+2(m-1) \frac{v v_{r}}{r}+h(r, t, v) v \tag{25}\\
v(r, 0) & =v_{0}(r) \geq 0
\end{align*}
$$

We assume $|h| \leq M_{0}$.
Again we put $w(r, t)=r^{\alpha} v(r, t)$ and consider the same functions $h(r, s, t, \tau), g(r, s, t)$ and $f(r, s, t)$ over their corresponding domains. Here $w(r, t)$ satisfies

$$
\begin{equation*}
r^{\alpha} w_{t}=(m-1) w w_{r r}+w_{r}^{2}+r^{\alpha} h(r, t, v) w . \tag{26}
\end{equation*}
$$

We study first the function

$$
g(r, s, t)=\frac{|w(r, t)-w(r, t)|^{\lambda}}{(r-s)^{2}}=|S|^{\lambda} R^{-1}
$$

This time at an interior point of maximum of g we get like in (19)

$$
\begin{align*}
& 2(m-1)|S|^{\lambda} R^{-\alpha}\left(1-\frac{2}{\lambda}\right)\left(\frac{w_{1}}{r^{\alpha}}+\frac{w_{2}}{s^{\alpha}}\right) \tag{27}\\
& \quad+\lambda|S|^{\lambda-1} \sigma R^{-2}\left[\left((m-1) r^{-\alpha} w_{1} w_{r r}-w_{1 t}\right)-\left((m-1) s^{-\alpha} w_{2} w_{2 s s}-w_{2 t}\right)\right] \leq 0
\end{align*}
$$

When we use the differential equation (26), and the condition $w_{1 r}=\frac{2 \sigma}{\lambda}|S| R^{-1}=W_{2 s}$ we get

$$
\begin{align*}
& 2(m-1)|S|^{\lambda} R^{-4}\left(1-\frac{2}{\lambda}\right)\left(\frac{w_{1}}{r^{\alpha}}+\frac{w_{2}}{s^{\alpha}}\right) \\
& \quad+\lambda|S|^{\lambda-1} \sigma R^{-2}\left[\frac{4}{\lambda^{2}}|S|^{2} R^{-2}\left(\frac{1}{s^{\alpha}}-\frac{1}{r^{\alpha}}\right)+h\left(s, t, v_{2}\right) w_{2}-h\left(r, t, v_{1}\right) w_{1}\right] \leq 0 \tag{28}
\end{align*}
$$

this is, like in Theorem 1,

$$
2 \alpha|S|^{\lambda} R^{-4}\left(\frac{w_{1}}{s^{\alpha}}+\frac{w_{2}}{r^{\alpha}}\right)+\lambda|S|^{\lambda-1} \sigma R^{-2}\left(h_{2} w_{2}-h_{1} w_{1}\right) \leq 0
$$

factoring R^{-2}, transposing the second term, taking absolute value and replacing w, we get

$$
2 \alpha \frac{|S|^{\lambda}}{R^{2}}\left(v_{1}+v_{2}\right) \leq \lambda|S|^{\lambda-1}\left|h_{2} r^{\alpha} v_{2}-h_{1} s^{\alpha} v_{1}\right| .
$$

Thus

$$
\frac{|S|^{\lambda}}{R^{2}} \leq \frac{1}{\alpha^{2}}\left(2 R_{2}^{\alpha} M\right)^{\lambda-1}\left[\left(M_{0} R_{2}^{\alpha}\right)\left[\frac{v_{2}}{v_{2}+v_{2}}\right]+\left(M_{0} R_{2}^{\alpha}\right)\left[\frac{v_{1}}{v_{1}+v_{2}}\right]\right],
$$

i.e., $\frac{|S|^{\lambda}}{R^{2}} \leq 2 \frac{M_{0} R_{2}^{\alpha}}{\alpha^{2}}\left(2 R_{2}^{\alpha} M\right)^{\lambda-1}$ in this case.

The boundary points of the domain of $g(r, s, t)$, the function $h(r, s, t, \tau)$ and the function $f(r, s, t)$ are treated with the same techniques of Theorem 1 .

Now we turn to the case $N>3$.

THEOREM 3. Theorem 1 and its corollaries, and Theorem 2, remain valid for $N>3$. In this case, $r^{\alpha / \beta} v(r, t)$ is $\alpha \beta$-Hölder continuous for $\alpha \in\left(0, \frac{m-1}{m}\right], \beta=\frac{1}{N-2}$.

Proof. We let $W(r, t)=r^{\alpha} v\left(r^{\beta}, t\right)$. With $\alpha=\frac{m-1}{m}, W(r, t)$ satisfies:

$$
\begin{align*}
\beta^{2} r^{p} W_{t} & =(m-1) W W_{r r}+W_{r}^{2}, \quad r>0 \tag{30}\\
W(r, 0) & =r^{\alpha} v_{0}\left(r^{\beta}\right), \quad p=\alpha+2 \beta-2
\end{align*}
$$

This is like equation (13) with p instead of α. We define the same domains and functions as in Theorem 1, with $\lambda=\frac{2}{\alpha \beta}$, and $\left|v_{r}\right|,\left|v_{s}\right| \leq \delta^{\beta(\alpha-1)}$. Then all the previous arguments can be extended to this case obtaining that $W(r, t)$ is $\alpha \beta$-Hölder continuous with constant, say, K_{5}.

Next, let $r_{1}=r^{1 / \beta}, s_{1}=s^{1 / \beta}$, then

$$
\begin{aligned}
& \frac{\left|r^{\alpha / \beta} v(r, t)-s^{\alpha / \beta} v(s, t)\right|}{|r-s|^{\alpha \beta}}=\frac{\left|r_{1}^{\alpha} v\left(r_{1}^{\beta}, t\right)-s_{1}^{\alpha} v\left(s_{1}^{\beta}, t\right)\right|}{|r-s|^{\alpha \beta}} \\
& \quad \leq \frac{\left|W\left(r_{1}, t\right)-W\left(s_{1}, t\right)\right|}{\left|r_{1}-s_{1}\right|^{\alpha \beta}} \frac{\left|r_{1}-s_{1}\right|^{\alpha \beta}}{|r-s|^{\alpha \beta}} \\
& \quad \leq K_{5}\left(\frac{r^{1 / \beta}-s^{1 / \beta}}{|r-s|}\right)^{\alpha \beta} \leq K_{5}\left(\frac{1}{\beta}\right)^{\alpha \beta} R_{2}^{\alpha(1-\beta)} .
\end{aligned}
$$

This shows that $r^{\alpha / \beta} v(r, t)$ is $\alpha \beta$-Hölder continuous (with respect to r).
All other lemmas and corollaries follow in a similar way.

References

1. D. G. Aronson, Regularity properties of flows through porous media: a counterexample, SIAM J. Appl. Math. 19(1970), 299-307.
2.__, Regularity properties of gas through porous media, SIAM J. Appl. Math. 17(1969), 461-467.
2. D. G. Aronson and L. C. Cafarelli, Optimal regularity for one dimensional porous medium, Revista Mat. Iberoamericana (4)2(1986), 357-366.
3. P. N. Benilam, A strong regularity L^{P} for solutions of the porous media equation, (in Contributions to Nonlinear Partial Differential Equations, C. Bardos et al. editors), Research notes in Math, 89, Pitman, London, 1983, 39-58.
4. L. A. Caffarelli and A. Friedman, Continuity of the density of a gas flow in a porous medium, Trans. Amer. Math. Soc. 252(1979), 99-113.
5. _ Regularity of the free boundary of a gas flow in a n-dimensional porous medium, Indiana Univ. Math. J. 29(1980), 361-391.
6. G. Hernandez, the Hölder property in some degenerate parabolic problems, J. Diff. Eq. 65(1986), 240-249.
7. E. S. Sabinina, On the Cauchy problem for the equation of nonstationary gas filtration in several space variables, Dokl. Akad. Nauk SSSR 136(1961), 1034-1037.

Department of Mathematics
University of Connecticut
Storrs, Connecticut 06269-3009
USA

Department of Mathematics
Hamline University
St. Paul, Minnesota 55104-1284
USA

