THE HÖLDER EXPONENT FOR RADIALLY SYMMETRIC SOLUTIONS OF POROUS MEDIUM TYPE EQUATIONS

GASTON E. HERNANDEZ AND IOANNIS M. ROUSSOS

1. Introduction. The density u(x, t) of an ideal gas flowing through a homogeneous porous media satisfies the equation

(1)
$$u_t = \Delta u^m \text{ in } \Omega_T = \mathbb{R}^N \times (0, T).$$

Here m > 1 is a physical constant and u also satisfies the initial condition

(2)
$$u(x,0) = u_0(x) \ge 0 \text{ for } x \in \mathbb{R}^N.$$

If the initial data is not strictly positive it is necessary to work with generalized solutions of the Cauchy problem (1), (2) (see [1]). By a *weak solution* we shall mean a function u(x,t) such that for $T < \infty$, $u \in L^2(\Omega_T)$, $\nabla u^m \in L^2(\Omega_T)$ (in the sense of distributions) and

(3)
$$\int_{\Omega_T} \int (u\varphi_t - \nabla u^m \nabla \varphi) \, dx \, dt + \int_{\mathbb{R}^N} u_0(x)\varphi(x,0) \, dx = 0$$

for any continuously differentiable function $\varphi(x, t)$ with compact support in $\mathbb{R}^N \times (0, T)$.

We assume here that $0 \le u_0(x) \le M_0$, u_0^{m-1} is Lipschitz and $u_0 \in L^2(\mathbb{R}^N)$. Then (see [8]) there exists a unique solution u(x, t) of (1) and (2). This solution is obtained as the limit of classical solutions $u_{\varepsilon}(x, t)$ of

(4)
$$\begin{aligned} (u_{\varepsilon})_t &= \Delta u_{\varepsilon}^m \\ u_{\varepsilon}(x,0) &= u_0(x) + \varepsilon \,. \end{aligned}$$

We let $v(x, t) = \frac{m}{m-1}u^{m-1}(x, t)$ (This is the pressure of the gas up to a multiple), then (1) and (2) becomes

(5)
$$v_t = (m-1)v\Delta v + |\nabla v|^2$$
$$v(x,0) = v_0(x) = \frac{m}{m-1}u_0^{m-1}(x).$$

In the one dimensional case, Aronson [2], proved that if v_0 is a Lipschitz continuous function then v is also Lipschitz continuous with respect to x in $\mathbb{R} \times (0, T)$. Aronson and Caffarelli [3] proved that v is also Lipschitz continuous with respect to t in the same domain. In particular u(x, t) is α -Hölder continuous for any $\alpha \in (0, \frac{1}{m-1})$, i.e., the quotient

(6)
$$\frac{|u(x,t) - u(y,\tau)|}{|x-y|^{\alpha} + |t-\tau|^{\alpha/2}}$$

Received by the editors January 30, 1990.

[©] Canadian Mathematical Society 1991.

is bounded in $\mathbb{R} \times (0, T)$ by a constant K that depends only in u_0, m and T.

In higher dimensions Caffarelli and Friedman [5] proved that u(x, t) is continuous with modulus of continuity

$$W(\rho) = C |\log \rho|^{-\epsilon}, \quad N \ge 3, \, 0 < \epsilon < \frac{2}{N}$$

and

$$W(\rho) = 2^{-c} |\log \rho|^{1/2}, \quad N = 2$$

where $\rho = (|x - y|^2 + |t - \tau|)^{1/2}$ is the parabolic distance between (x, t) and (y, τ) . Thus if u_0 is α -Hölder continuous for some $\alpha \in (0, 1)$, then $|u(x, t) - u(y, \tau)| \leq W(\rho)$ uniformly in $\mathbb{R}^N \times (0, T)$. The same authors in [6] proved that u(x, t) is actually α -Hölder continuous for some $\alpha \in (0, 1)$, but α is completely unknown.

The more general porous medium equation

(7)
$$u_t = \Delta u^m + h(x, t, u)u$$
$$u(x, 0) = u_0(x) \ge 0$$

was treated by the author in [7] in the case N = 1. It is shown there that the corresponding v(x, t) is α -Hölder continuous for any $\alpha \in (0, 1)$ provided v_0 is α -Hölder continuous and h is bounded. (In particular the bound K in (6) does not depend on the modulus of continuity of h.)

Let $r = |x| = (\sum x_i^2)^{1/2}$ be the Euclidean distance in \mathbb{R}^N . If v(r, t) is a radially symmetric solution of (5), it satisfies

(8)
$$v_t = (m-1)vv_{rr} + v_r^2 + (m-1)(N-1)\frac{vv_r}{r}, \quad r > 0$$
$$v(r,0) = v_0(r) \ge 0.$$

We shall first consider the spatial dimension N = 3. We are interested in the "bad" case, when $v_0(r)$ has compact support and is possibly 0 at r = 0. By using only elementary considerations we show that for a solution v(r, t) of (8), $r^{\alpha}v(r, t)$ is α -Hölder continuous for $\alpha \in (0, \frac{m-1}{m}]$ in a domain $[0, R] \times [0, T]$. As an application of this result it follows that v(r, t) is α -Hölder continuous for $r \ge r_0 > 0$. Also if $v_0(0) > 0$ then v is α -Hölder continuous in the whole domain Ω_T for $0 < \alpha \le \frac{m-1}{m}$.

Further we prove the same result for the more general equation

(9)
$$v_t = (m-1)vv_{rr} + v_r^2 + (m-1)(N-1)\frac{vv_r}{r} + h(r,t,v)v$$
$$v(r,0) = v_0(r)$$

that corresponds to $u_t = \Delta u^m + h(x, t, u)u$. Here the bound is also independent of the modulus of continuity of h.

Through this work we shall assume the following:

A1. $v_0(r)$ is a nonnegative Lipschitz continuous function (contant M_0), with compact support in $[0, R_1]$, $v_0(r) \le M_0$.

A2. $L_1[v_0] = (m-1)v_0v_0'' + (v_0')^2 + 2(m-1)\frac{v_0v_0'}{r}$ is bounded by M_0 for r > 0. Under assumption (A1) there exists a unique classical solution $v = v_{\varepsilon}$ of the problem

(12)
$$v_t = (m-1)vv_{rr} + v_r^2 + (m-1)(N-1)\frac{vv_r}{r}, \quad r > 0$$
$$v(r,0) = v_0(r) + \varepsilon$$

v(r, t) has bounded derivatives (depending on ε) and $\varepsilon \le v(r, t) \le M$ (*M* depends only on v_0 and *m*). Also $v_{\varepsilon}(r, t) \rightarrow v(r, t)$ as $\varepsilon \rightarrow 0$.

We will consider $\alpha \in (0, \frac{m-1}{m}]$ to be fixed, $R_2 \in [0, R]$ is a point at which v_0 is strictly positive, $v_0(R_2) = \eta > 0$.

2. Main results.

THEOREM 1. Let v(r, t) be a (weak) solution of (8), where $v_0(r)$ satisfies A1, A2. Let $R_2 \in [0, R_1]$, be a point at which $v_0(R_2) = \eta > 0$. Then $r^{\alpha}v(r, t)$ is α -Hölder continuous in $\overline{\Omega}_{R_2} = [0, R_2] \times [0, T]$.

PROOF. We shall prove that for a solution v(r, t) of (12), the α -quotient (6) corresponding to $r^{\alpha}v$ can be estimated independently of ε .

Let $B = (0, R_2) \times (0, R_2) \times (0, T) \times (0, T)$. Since v_r, v_t are bounded (in terms of ε) we can choose $\delta > 0$ small, such that $|v_r|, |v_t| \le \delta^{\alpha - 1}$ in $\overline{\Omega}_T = [0, \infty] \times [0, T]$. Define $B_{\delta} = \{(r, s, t, \tau) \in B \mid |r - s| > \delta \text{ or } |t - \tau| > \delta\}$ and

$$h(r,s,t,\tau) = \frac{|r^{\alpha}v(r,t) - s^{\alpha}v(s,\tau)|^{\lambda}}{|r-s|^2 + A|t-\tau|}$$

where $\lambda = \frac{2}{\alpha}$ and A = 6mM + 1.

We also put $w(r, t) = r^{\alpha} v(r, t)$. Then for $\alpha = \frac{m-1}{m}$, w(r, t) satisfies

(13)
$$r^{\alpha}w_{t} = (m-1)ww_{rr} + w_{r}^{2}, \quad r > 0$$
$$w(r,0) = r^{\alpha}v_{0}(r)$$

We shall prove that in B_{δ} , $h(r, s, t, \tau) \leq K_1$ independently of δ . Then, since $\lambda = \frac{2}{\alpha}$

$$K_1^{\alpha/2} \ge \frac{|r^{\alpha}v(r,t) - s^{\alpha}v(s,\tau)|}{(|r-s|^2 + A|t - \tau|)^{\alpha/2}} \ge \frac{|r^{\alpha}v(r,t) - s^{\alpha}v(s,\tau)|}{|r-s|^{\alpha} + A^{\alpha/2}|t - \tau|^{\alpha/2}}$$

and since A > 1, we obtain that $r^{\alpha}v(r, t)$ is α -Hölder continuous with constant $A^{\alpha/2}K^{\alpha/2}$.

Clearly h is continuous in B_{δ} . Let us assume that max h occurs at a point $Q_0 = (r_0, s_0, t_0, \tau_0) \in \overline{B}_{\delta}$. We look first at the case $t_0 = \tau_0$.

Let g(r, s, t) = h(r, s, t, t). We will use the abbreviations

$$g(r,s,t) = \frac{|w(r,t) - w(s,t)|^{\lambda}}{(r-s)^2} = \frac{|w_1 - w_2|^{\lambda}}{(r-s)^2} = |S|^{\lambda} R^{-2}.$$

LEMMA 1. g(r, s, t) is bounded independently of δ in $\overline{B}_{\delta,1}$ where $B_{\delta,1} = \{(r, s, t) \mid 0 < r < s < R_2, 0 < t \le T, |r-s| > \delta\}.$

PROOF. Clearly g is continuous in $\bar{B}_{\delta,1}$. Let us assume that max g occurs at a point $Q_1 = (r, s, t) \in \bar{B}_{\delta,1}$. Then either Q_1 is an interior point at which g is differentiable or Q_1 is a boundary point of $\bar{B}_{\delta,1}$ (g is not differentiable only when g = 0). We begin with the former case. At Q_1 we have

(14)
$$g_r = g_s = 0, g_{rr}, g_{ss} \le 0 \text{ and } g_t \ge 0.$$

The first derivatives are:

(15)
$$g_{r} = \lambda |S|^{\lambda - 1} \sigma w_{1r} R^{-2} - 2|S|^{\lambda} R^{-3}, \quad \sigma = \operatorname{sgn} S$$
$$g_{s} = -\lambda |S|^{\lambda y} \sigma w_{2s} R^{-2} + 2|S|^{\lambda} R^{-3}$$
$$g_{t} = \lambda |S|^{\lambda - 1} \sigma (w_{1t} - w_{2t}) R^{-2}$$

Thus, (14) implies

(16)
$$w_{1r} = \frac{2\sigma}{\lambda} |S| R^{-1} = w_{2s}$$

and

(17)
$$g_{rr} = 2|S|^{\lambda}R^{-4}(1-\frac{2}{\lambda}) + \lambda|S|^{\lambda-1}\sigma R^{-2}w_{rr}$$
$$g_{ss} = 2|S|^{\lambda}R^{-4}(1-\frac{2}{\lambda}) - \lambda|S|^{\lambda-1}\sigma R^{-2}w_{ss}$$

Let

(18)
$$E = (m-1)r^{-2}w_1g_{rs} + (m-1)s^{-2}w_2g_{ss} - g_t.$$

Then $E \leq 0$ at Q_1 . Replacing g_{rr} , g_{ss} and g_t in E we get (19)

$$2(m-1)|S|^{\lambda}R^{-4}\left(1-\frac{2}{\lambda}\right)\left(\frac{w_{1}}{r^{\alpha}}+\frac{w_{2}}{s^{\alpha}}\right) + \lambda|S|^{\lambda-1}\sigma R^{-2}\left[\left((m-1)r^{-\alpha}w_{1}w_{1rr}-w_{1t}\right)-\left((m-1)s^{-\alpha}w_{2}w_{2ss}-w_{2t}\right)\right] \leq 0.$$

ii) If s = 0 we have

$$g(r,0,t) = \left[\frac{r^{\alpha}v(r,t)}{r^{\alpha}}\right]^{\lambda} \leq M^{\lambda}.$$

iii) If $|r - s| = \delta$ we use the mean value theorem and the fact that the first derivatives of *v* are bounded by $\delta^{\alpha - 1}$ to get

(22)
$$g(r,s,t) \leq \left[r^{\alpha} \frac{|v(r,t)-v(s,t)|}{|r-s|^{\alpha}} + v(s,t) \frac{|r^{\alpha}-s^{\alpha}|}{|r-s|^{\alpha}}\right]^{\lambda} \leq \left[R_{2}^{\alpha} \frac{\delta^{\alpha-1} \cdot \delta}{\delta^{\alpha}} + M\right]^{\lambda} \leq \left[R_{2}^{\alpha} + M\right]^{\lambda}.$$

iv) Finally assume $r = R_2$. Since $v_0(R_2) = \eta > 0$ there exists $\delta_1 > 0$ such that $v_0(r) > \frac{v_0(R_2)}{2}$ for $R_2 - \delta_1 < r < R_2 + \delta_1$.

In this case there exists $N_1 > 0$ such that $v(r, t) \ge N_1$ in $\Omega_2 = [R_2 - \delta_1, R_2 + \delta_1] \times [0, T]$. Thus (see [8]) $|v_r^{\varepsilon}|$, $|v_s^{\varepsilon}|$ are bounded by constant K_3 independently of ε and δ in Ω_2 . Without loss of generality we assume $K_3 > 1$, $\delta_1 < 1$. Then by (19) if $|R - s| \le \delta_1$ we have

$$g(R,s,t) \leq \left[R_2^{\alpha} K_3 |R-s|^{1-\alpha} + M\right]^{\lambda} \leq \left[R_2^{\alpha} K_3 + M\right]^{\lambda}.$$

Otherwise

$$g(R,s,t) \leq \frac{|r^{\alpha}v_1 - s^{\alpha}v_2|^{\lambda}}{(R-s)^2} \leq \frac{(2R_2^{\alpha}M)^{\lambda}}{\delta_1^2}.$$

We conclude that $g(r, s, t) \leq K_2$, where

$$K_2 = \max\left\{\left(R_2^{\alpha}K_3 + M\right)^{\lambda}, M^{\lambda}, \left(R_2^{\alpha} + M\right)^{\lambda}, \frac{2^{\lambda}R_2^2M^{\lambda}}{\delta_1^2}\right\} \text{ for any point in } B_{1,\delta}.$$

From this lemma we obtain that if $t_0 = \tau_0$, then $h(r_0, s_0, t_0, \tau_0) = g(r_0, s_0, t_0) \leq K_1$.

Let us assume next that Q is an interior point of B and h is differentiable at Q, (i.e., $h(Q) \neq 0$) then

(23)
$$h_r = h_s = 0 \text{ and } h_{rr}, h_{ss}, -h_t, -h_\tau \leq 0 \text{ at } Q.$$

Assume $t_0 > \tau_0$. This time instead of (18) we take

(24)
$$E = 2(m-1)r^{-\alpha}w_1h_{rr} + (m-1)s^{-\alpha}w_2h_{ss} - 2h_1 - h_s.$$

Then $E \leq 0$ at Q.

We write

$$h(r,s,t,\tau) = \frac{|w(r,t) - w(s,\tau)|^{\lambda}}{(r-s)^2 + A|t-\tau|} = \frac{|w_1 - w_2|^{\lambda}}{R} = |S|^{\lambda} R^{-1}.$$

Then using (21) we get

$$E = 2(m-1)|S|^{\lambda}R^{-2}((2-\alpha)R^{-1}(r-s)^{2}-1)(2R^{-\alpha}w_{1}+s^{-\alpha}w_{2})$$

+ $\lambda |S|^{\lambda-1}\sigma R^{-1}[(2(m-1)r^{-\alpha}w_{1}w_{1rr}-2w_{t}) - ((m-1)s^{-\alpha}w_{2}w_{2ss}-w_{2})]$
+ $A|S|^{\lambda}R^{-2} \le 0$

We use the differential equation in (r, t) and (s, τ) in the second term to get

$$E = 2(m-1)|S|^{\lambda}R^{-2}((2-\alpha)R^{-1}(r-s)^2 - 1)(2r^{-\alpha}w_1 + s^{-\alpha}w_2) + \lambda|S|^{\lambda-1}\sigma R^{-1}(s^{-\alpha}w_s^2 - 2r^{-\alpha}w_r^2) + A|S|^{\lambda}R^{-2} \le 0$$

Now, $h_r = h_s = 0$ implies $w_r = \frac{2\sigma}{\lambda} |S| R^{-1}(r-s) = w_s$, so

$$E = 2(m-1)|S|^{\lambda}R^{-2}((2-\alpha)R^{-1}(r-s)^2 - 1)(2v_1 + v_2) + \frac{4}{\lambda}|S|^{\lambda+1}\sigma R^{-3}(r-s)^2(s^{-\alpha} - 2r^{-\alpha}) + A|S|^{\lambda}R^{-2} \le 0$$

Also

$$\sigma |S|(s^{-\alpha} - 2r^{\alpha}) = (w_1 - w_2)(s^{-\alpha} - 2r^{-\alpha})$$
$$= \left(\frac{R}{s}\right)^{\alpha} v_1 + 2\left(\frac{s}{r}\right)^{\alpha} v_2 - (2v_1 + v_2).$$

Thus, dividing by $|S|^{\lambda}R^{-2}$, we have:

$$2(m-1)((2-\alpha)R^{-1}(r-s)^2-1)(2v_1+v_2) + \frac{4}{\lambda}R^{-1}(r-s)^2\left[\left(\frac{s}{r}\right)^{\alpha}v_1 + 2\left(\frac{s}{r}\right)^{\alpha}v_2\right] - \frac{4}{\lambda}R^{-1}(r-s)^2(2v_1+v_2) + A \le 0$$

Dropping the positive term containing $\frac{r}{s}$ and $\frac{s}{r}$ we get

$$(2v_1 + v_2) \left[R^{-1} (r-s)^2 \left(2(m-1)(2-\alpha) - \frac{4}{\lambda} \right) - 2(m-1) \right] + A \le 0.$$

But $2(m-1)(2-\alpha) - \frac{4}{\lambda} = 2(m-1)$.

Thus $-2(m-1)(2v_1+v_2) + A \leq 0$, in contradiction with the choice of $A(A \geq 6(m-1)M+1)$.

Therefore $\max h$ does not occur at an interior point.

If the maximum of h occurs at a lateral point $r_0 = R_2$ or $s_0 = R_2$ or at an *interior* boundary point $(|r_0 - s_0| = \delta)$ and $(|t_0 - s_0| \le \delta)$ or $(|r_0 - s_0| \le \delta)$ and $(|t_0 - s_0| = \delta)$, we use the same arguments as in Lemma 1 to conclude that h is uniformly bounded in these cases.

Finally, if the maximum of h occurs at $t_0 = 0$ or $\tau_0 = 0$ we use the following:

LEMMA 2. Let $f(r, s, t) = \frac{|w(r,t)-w(s,0)|^{\lambda}}{(r-s)^2+At}$. Then f is uniformly bounded on the set $\Omega_{3,\delta} = \{(r,s,t) \mid 0 < s \leq R_2, 0 \leq t \leq T, |r-s| \geq \delta \text{ or } t \geq \delta\}.$

PROOF. We test the boundary points as in the previous cases. For an interior boundary point (at which $f \neq 0$) we choose $E = (m-1)r^{-\alpha}w_1f_{rr} + (m-1)s^{-\alpha}w_2f_{ss} - f_t$. Then $E \leq 0$ at a point of maximum.

Replacing the derivatives, the differential equation in (r, t), and using the condition $f_r = f_s = 0$, we get

$$E = 2(m-1)|S|^{\lambda}R^{-2}((2-\alpha)R^{-1}(r-s)^2 - 1)(v_1 + v_2)$$

+ $\lambda \sigma |S|^{\lambda-1}R^{-1}\left(\frac{-4}{\lambda^2}r^{-\alpha}|S|^2R^{-2}(r-s)^2 - (m-1)s^{-\alpha}w_2w_{2rs}\right)$
+ $A|S|^{\lambda}R^{-2} \le 0.$

In the second term we add and subtract $s^{-\alpha}W_2^2\sigma = \frac{4}{\lambda^2}s^{-\alpha}|S|^2R^{-2}(r-s)^2$ this term, I_2 , becomes

$$I_{2} = \lambda \sigma |S|^{\lambda-1} R^{-1} 2 \left(\frac{4}{\lambda^{2}} |S|^{2} R^{-2} (r-s)^{2} (s^{-\alpha} - r^{-\alpha}) - s^{-\alpha} \left((m-1) W_{2} W_{2ss} + W_{2s}^{2} \right) \right)$$

= $\frac{4}{\lambda} |S|^{\lambda+1} \sigma R^{-3} (r-s)^{2} (s^{-\alpha} - r^{-\alpha}) - \lambda |S|^{\lambda-1} \sigma R^{-1} s^{-\alpha} (m-1) W_{2} W_{2ss} + W_{2s}^{2}.$

318

As before $\sigma |S| = W_1 - W_2$, so the first term in I_2 is $\frac{4}{\lambda} |S|^{\lambda} R^{-3} (r-s)^2 \left(\left(\frac{r}{s}\right)^{\alpha} v_1 + \left(\frac{s}{r}\right)^{\alpha} v_2 - (v_1 + v_2) \right)$ thus we get

$$E = |S|^{\lambda} R^{-2} \left[(v_1 + v_2 \left\{ 2(m-1) \left((2-\alpha) R^{-1} (r-s)^2 - 1 \right) - \frac{4}{\lambda} R^{-1} (r-s)^2 \right\} \right] \\ + \frac{4}{\lambda} |S|^2 R^{-3} (r-s)^2 \left(\left(\frac{r}{s}\right)^{\alpha} v_1 + \left(\frac{s}{r}\right)^{\alpha} v_2 \right) + A \right] \\ - \lambda |S|^{\lambda - 1} \sigma R^{-1} s^{-\alpha} \left((m-1) W_2 W_{2ss} + W_{2s}^2 \right) \le 0.$$

Now $2(m-1)(2-\alpha) - \frac{4}{\lambda} = 2(m-1)$. We drop the positive term in $\frac{r}{s}, \frac{s}{r}$ and get $|S|^{\lambda}R^{-1}[A-2(m-1)(v_1+v_2)] \le \lambda |S|^{\lambda-1}\sigma s^{-\alpha}((m-1)W_2W_{2ss}+W_{2s}^2)$.

By the choice of A the coefficient on the left hand side is larger than 1. Also, in terms of the function v we have

$$(m-1)ww_{rs} + w_s^2 = s^{2\alpha} \left((m-1)vv_{ss} + v_s^2 + 2\alpha m \frac{vv_s}{s} \right).$$

Since $\alpha = \frac{m-1}{m}$, the right hand side is $s^{2\alpha}[v_0]$, so

$$\frac{|S|^{\lambda}}{R} \leq \lambda (2R_2^{\lambda}M)^{\lambda-1}R_2^{\alpha} \quad [\nu_0] \leq \lambda (2R_2^{\alpha}M)^{\lambda-1}R_2^{-\alpha}M_0$$

We conclude that h is uniformly bounded independently of δ , on B_{δ} . Thus letting $\delta \to 0$ we obtain that

$$h(r, s, t, \tau) = \frac{|r^{\alpha}v(r, t) - s^{\alpha}v(s, \tau)|^{\lambda}}{|r - s|^2 + A|t - \tau|} \le K_1 \text{ on } [0, R_2]^2 \times [0, T]^2.$$

Therefore $r^{\alpha}v(r,t)$ is α -Hölder continuous on $[0,R_2] \times [0,T]$, with constant $K_2 = (AK_1)^{\alpha/2}$.

COROLLARY 1. v(r, t) is α -Hölder continuous for $r \ge r_0 > 0$.

PROOF. We have

$$K_{2} \geq \frac{|r^{\alpha}v(r,t) - s^{\alpha}v(s,\tau)|}{|r-s|^{\alpha} + |t-\tau|^{\alpha/2}}$$

$$\geq r^{\alpha} \frac{|v(r,t) - v(s,\tau)|}{|r-s|^{\alpha} + |t-\tau|^{\alpha/2}} - v(s,\tau) \frac{|r^{\alpha} - s^{\alpha}|}{|r-s|^{\alpha} + |t-\tau|^{\alpha/2}}$$

thus

$$\frac{v(r,t) - v(s,\tau)|}{|r-s|^{\alpha} + |t-\tau|^{\alpha/2}} \le \frac{K_2 + M}{r_0^{\alpha}} \text{ for } r_0 \le r, s \le R_2, \quad t, \tau \in [0,T].$$

COROLLARY 2. If $v_0(0) = \eta > 0$ then v(r, t) is α -Hölder continuous on the whole domain Ω_{R_2} for $0 < \alpha \leq \frac{m-1}{m}$.

PROOF. In this case, there exist $\eta_1, \delta_1 > 0$ such that $v(r, t) \ge \eta_1 > 0$ for $0 \le r \le \delta_1$. Then v is a classical solution in $[0, \delta_1] \times [0, T]$ with bounded derivative independent of ε . Thus v is Lipschitz in $[0, \delta_1]$, and by Corollary 1 it is Hölder in $[0, R_2] \times [0, T]$. THEOREM 2. Let v(r, t) be a radially symmetric solution of (9). Then $r^{\alpha}v(r, t)$ is α -Hölder continuous in Ω_{R_2} , for $\alpha \in (0, \frac{m-1}{m}]$.

PROOF. v(r, t) satisfies

(25)
$$v_t = (m-1)vv_{rr} + v_r^2 + 2(m-1)\frac{vv_r}{r} + h(r,t,v)v$$
$$v(r,0) = v_0(r) \ge 0.$$

We assume $|h| \leq M_0$.

Again we put $w(r, t) = r^{\alpha} v(r, t)$ and consider the same functions $h(r, s, t, \tau)$, g(r, s, t)and f(r, s, t) over their corresponding domains. Here w(r, t) satisfies

(26)
$$r^{\alpha} w_{t} = (m-1)ww_{rr} + w_{r}^{2} + r^{\alpha} h(r, t, v)w$$

We study first the function

$$g(r,s,t) = \frac{|w(r,t) - w(r,t)|^{\lambda}}{(r-s)^2} = |S|^{\lambda} R^{-1}.$$

This time at an interior point of maximum of g we get like in (19) (27)

$$2(m-1)|S|^{\lambda}R^{-\alpha}\left(1-\frac{2}{\lambda}\right)\left(\frac{w_{1}}{r^{\alpha}}+\frac{w_{2}}{s^{\alpha}}\right) + \lambda|S|^{\lambda-1}\sigma R^{-2}\left[\left((m-1)r^{-\alpha}w_{1}w_{rr}-w_{1t}\right)-\left((m-1)s^{-\alpha}w_{2}w_{2ss}-w_{2t}\right)\right] \leq 0.$$

When we use the differential equation (26), and the condition $w_{1r} = \frac{2\sigma}{\lambda} |S| R^{-1} = W_{2s}$ we get

(28)
$$\frac{2(m-1)|S|^{\lambda}R^{-4}\left(1-\frac{2}{\lambda}\right)\left(\frac{w_{1}}{r^{\alpha}}+\frac{w_{2}}{s^{\alpha}}\right)}{+\lambda|S|^{\lambda-1}\sigma R^{-2}\left[\frac{4}{\lambda^{2}}|S|^{2}R^{-2}\left(\frac{1}{s^{\alpha}}-\frac{1}{r^{\alpha}}\right)+h(s,t,v_{2})w_{2}-h(r,t,v_{1})w_{1}\right] \leq 0$$

this is, like in Theorem 1,

$$2\alpha |S|^{\lambda} R^{-4} \left(\frac{w_1}{s^{\alpha}} + \frac{w_2}{r^{\alpha}} \right) + \lambda |S|^{\lambda - 1} \sigma R^{-2} (h_2 w_2 - h_1 w_1) \le 0,$$

factoring R^{-2} , transposing the second term, taking absolute value and replacing w, we get

$$2\alpha \frac{|S|^{\lambda}}{R^2} (v_1 + v_2) \le \lambda |S|^{\lambda - 1} |h_2 r^{\alpha} v_2 - h_1 s^{\alpha} v_1|.$$

Thus

$$\frac{|S|^{\lambda}}{R^{2}} \leq \frac{1}{\alpha^{2}} (2R_{2}^{\alpha}M)^{\lambda-1} \Big[(M_{0}R_{2}^{\alpha}) \Big[\frac{v_{2}}{v_{2}+v_{2}} \Big] + (M_{0}R_{2}^{\alpha}) \Big[\frac{v_{1}}{v_{1}+v_{2}} \Big] \Big],$$

i.e., $\frac{|S|^{\lambda}}{R^2} \leq 2 \frac{M_0 R_2^{\alpha}}{\alpha^2} (2R_2^{\alpha}M)^{\lambda-1}$ in this case.

The boundary points of the domain of g(r, s, t), the function $h(r, s, t, \tau)$ and the function f(r, s, t) are treated with the same techniques of Theorem 1.

Now we turn to the case N > 3.

THEOREM 3. Theorem 1 and its corollaries, and Theorem 2, remain valid for N > 3. In this case, $r^{\alpha/\beta}v(r,t)$ is $\alpha\beta$ -Hölder continuous for $\alpha \in (0, \frac{m-1}{m}]$, $\beta = \frac{1}{N-2}$.

PROOF. We let $W(r, t) = r^{\alpha} v(r^{\beta}, t)$. With $\alpha = \frac{m-1}{m}$, W(r, t) satisfies:

(30)
$$\beta^2 r^p W_t = (m-1)WW_{rr} + W_r^2, \quad r > 0$$
$$W(r,0) = r^{\alpha} v_0(r^{\beta}), \quad p = \alpha + 2\beta - 2$$

This is like equation (13) with p instead of α . We define the same domains and functions as in Theorem 1, with $\lambda = \frac{2}{\alpha\beta}$, and $|v_r|$, $|v_s| \leq \delta^{\beta(\alpha-1)}$. Then all the previous arguments can be extended to this case obtaining that W(r, t) is $\alpha\beta$ -Hölder continuous with constant, say, K_5 .

Next, let
$$r_1 = r^{1/\beta}$$
, $s_1 = s^{1/\beta}$, then

$$\frac{|r^{\alpha/\beta}v(r,t) - s^{\alpha/\beta}v(s,t)|}{|r-s|^{\alpha\beta}} = \frac{|r_1^{\alpha}v(r_1^{\beta},t) - s_1^{\alpha}v(s_1^{\beta},t)|}{|r-s|^{\alpha\beta}}$$

$$\leq \frac{|W(r_1,t) - W(s_1,t)|}{|r_1 - s_1|^{\alpha\beta}} \frac{|r_1 - s_1|^{\alpha\beta}}{|r-s|^{\alpha\beta}}$$

$$\leq K_5 \left(\frac{r^{1/\beta} - s^{1/\beta}}{|r-s|}\right)^{\alpha\beta} \leq K_5 \left(\frac{1}{\beta}\right)^{\alpha\beta} R_2^{\alpha(1-\beta)}.$$

This shows that $r^{\alpha/\beta}v(r,t)$ is $\alpha\beta$ -Hölder continuous (with respect to r).

All other lemmas and corollaries follow in a similar way.

REFERENCES

- 1. D. G. Aronson, Regularity properties of flows through porous media: a counterexample, SIAM J. Appl. Math. 19(1970), 299–307.
- 2. _____, Regularity properties of gas through porous media, SIAM J. Appl. Math. 17(1969), 461–467.
- **3.** D. G. Aronson and L. C. Cafarelli, *Optimal regularity for one dimensional porous medium*, Revista Mat. Iberoamericana (4)**2**(1986), 357–366.
- 4. P. N. Benilam, A strong regularity L^P for solutions of the porous media equation, (in Contributions to Nonlinear Partial Differential Equations, C. Bardos et al. editors), Research notes in Math, 89, Pitman, London, 1983, 39–58.
- L. A. Caffarelli and A. Friedman, Continuity of the density of a gas flow in a porous medium, Trans. Amer. Math. Soc. 252(1979), 99–113.
- **6.**_____, Regularity of the free boundary of a gas flow in a n-dimensional porous medium, Indiana Univ. Math. J. **29**(1980), 361–391.
- 7. G. Hernandez, the Hölder property in some degenerate parabolic problems, J. Diff. Eq. 65(1986), 240-249.
- 8. E. S. Sabinina, On the Cauchy problem for the equation of nonstationary gas filtration in several space variables, Dokl. Akad. Nauk SSSR 136(1961), 1034–1037.

Department of Mathematics University of Connecticut Storrs, Connecticut 06269-3009 USA

Department of Mathematics Hamline University St. Paul, Minnesota 55104-1284 USA 321