
Canad. Math. Bull. Vol. 27 (2), 1984 

VON NEUMANN OPERATORS IN âB^n) 

BY 

K A R I M S E D D I G H I 

ABSTRACT. For a connected open subset Cl of the plane and n a 
positive integer, let SBn(n) be the space introduced by Cowen and 
Douglas in their paper, "Complex geometry and operator theory". 
Our main concern is the case n = 1, in which case we show the 
existence of a functional calculus for von Neumann operators in 
^ ( O ) for which a spectral mapping theorem holds. In particular we 
prove that if the spectrum of Te&b-yiCl), <x(T), is a spectral set for T, 
and if cr(T) = fi, then cr(/(T)) = f(£l)~ for every bounded analytic 
function / on the interior of L, where L is compact, cr(T) <= L, the 
interior of L is simply connected and L is minimal with respect to 
these properties. This functional calculus turns out to be nice in the 
sense that the general study of von Neumann operators in âBx(n) is 
reduced to the special situation where Ù is an open connected 
subset of the unit disc D with ôD c dû. 

§1. Introduction. If K is a compact subset of the plane, then K is a spectral 
set for T G ^ ) if a(T)^K and ||/(T)||<max{|/(z)| :zeK) for all rational 
functions / with poles off K. An operator T whose spectrum is a spectral set for 
T is called a von Neumann operator. 

In dealing with von Neumann operators in ^1(fl) we will show that there 
exists a simply connected open set Cl0 containing fl such that the weak-star 
closure of the rational functions in T with poles off ft0 *s isometrically 
isomorphic to the space H°°(fl0) of all bounded analytic functions in ft0- This 

result will furnish us with a functional calculus for von Neumann operators in 
ÔôiCfî) for which a spectral mapping theorem holds. That is, or(/(T)) = f(fl)~ for 
all / in H°°(H0). If T is a von Neumann operator in ^ ( f l ) and <p is the 
conformai mapping from ft0 onto O, then <p(T) is also a von Neumann 
operator, furthermore cp(T) is in ^(cpfTl)). This result enables us to transfer 
the general study of von Neumann operators in ^ ( f t ) to the special case where 

Received by the editors October 19, 1982 and in revised form March 25, 1983. 
AMS (MOS) subject classifications (1980). Primary 47B20, 47A60; Secondary 47B37, 47A25. 
Key words and phrases. Von Neumann operator, functional calculus, spectral set, spectral 

mapping. 
The results in this paper are part of the author's Ph.D. thesis written under the direction of 

Professor John B. Conway, at Indiana University, to whom the author is deeply indebted for his 
constant encouragement. 

© Canadian Mathematical Society 1984. 

146 

https://doi.org/10.4153/CMB-1984-023-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-023-2


VON NEUMANN OPERATORS 147 

ft is an open connected subset of the unit disc D, dD c= dft, and the correspond
ing set ft0 = D. 

§2. Preliminaries. Let ^ b e a separable, infinite dimensional, complex Hil-
bert space, and let £(!$€) denote the Banach algebra of all bounded linear 
operators on $€. 

For a connected open subset ft of the plane and n a positive integer, let 
£$n(ft) denote the operators T in SEffi) which satisfy: 

(a) ft^cr(T) = {coeC: T-co is not invertible}; 
(b) ran(T-a>) = ^ for co in ft; 
(c) Va>enker(T-co) = ^ ; and 
(d) dimker(T-<o) = n for co in ft. 
The space S8n(ft) has been introduced and investigated by Cowen and 

Douglas [5]. 
For TeS£(26), the approximate point spectrum of T and point spectrum of T 

will be denoted by crap(T) and crp(T), respectively. 

(2.1) LEMMA. Let Te38n(ft) such that <r(T) = ft. Then a(T) = aap(T). 

Proof. By definition of S8n(ft), (lÇ(ip(T)çorap(T). Because orap(T) is closed 
(Halmos [9], problem 62), ftçaap(T). Hence cr(T) = crap(T). 

Let K be a compact subset of the complex plane C, and let R(K) denote the 
algebra of all continuous complex-valued functions on K which can be approxi
mated uniformly on K by rational functions whose poles all lie outside 
K R(K) is a Dirichlet algebra on dK if Re R(K)\dK is dense in Cu(dK). That 
is, the real parts of the functions in R(K) when restricted to dK are dense in 
the continuous real-valued functions on dK. R(K) is a hypodirichlet algebra on 
dK if there exists invertible elements fl9 f 2 , . . . , fn in R(K) such that the linear 
span of Re R(K)\dK, log \fx\,..., and log |/n| is uniformly dense in CR(dK). 

If R(K) is Dirichlet and z is in the interior of K (denoted by K°), then there 
exists a unique measure mz supported on dK such that $fdmz = / (z ) for all 
feR(K). Let {Gn}^=1 be the components of K° and fix zn e Gn for all 
n = 1, 2 , . . . . Set m =Sn=i 2_nmZn. This m will be referred to as the harmonic 
measure on dK. We let H°°(dlC) denote the weak-star closure of JR(KT) in 
V°{m). The weak-star topology is denoted by w*. It is a well known fact that 
the definitions of L°°(m) and H^idK) are independent of the sequence {zn} 
used to define the measure m. 

For each function / in H°°(ôK) we define a function / on K° by /(z) = J /dm z . 
It is a standard result that / is a bounded analytic function in K° (see Sarason 
[11], p. 5). It is also shown there that whenever R(K) is a Dirichlet algebra the 
map /—>/ is an isometric isomorphism of H^idK) onto H°°(K0), the space of 
bounded analytic functions on K°. It is customary not to distinguish between 
the two spaces H°°(dK) and H°°(K°) and we will follow this custom too. 
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We will also use, either explicitly or implicitly, a well known fact from 
function theory which states that whenever R(K) is a Dirichlet algebra, then 
the components of K° are simply connected. So it makes sense to talk about 
the conformai map from K° onto D, in case K° is connected. 

We will denote the Banach space of trace-class operators in 5£{^f€) with the 
trace norm || \\x by <€x. Recall from [6, Theorem 8, p. 105] that setting 

<T,A> = tr(AT), A G ^ ( f ) , T e « 1 } 

defines a bilinear functional on ^^XSEi^t) that allows us to identify <£* with 
5£($f€). We refer to the weak-star topology <£($€) inherits as a dual as the 
w*-topology. Some authors choose to call this topology "ultra weak", though it 
is stronger than what is commonly referred to as the "weak operator topol
ogy". We denote the weak operator topology by WOT. 

Let S 2 denote the extended complex plane. The analytic capacity of a planar 
set E is 

7(E) = sup{ | / 'H | : / is analytic on S 2 ~ K 

for some compact subset K of E, | / | < 1}. 

If K is a compact set with cr(T)^K, then 9tK(T) will denote the w*-closure 
of the rational functions in T with poles off K. 

(2.2) DEFINITION. If T G ^ ) , then a compact subset K ç C is D-spectral for 
T if K is a spectral set for T and R(K) is a Dirichlet algebra. 

If K is a spectral set for T e ££ffi) and / is a rational function with poles off 
K, then clearly /(T) is well defined. If <I>K denotes the map that sends / to /(T), 
then the fact that K is a spectral set says that O K extends to a norm contraction 
<Ï>K:1?(K)-><RK(T). 

An operator T in <£(%€) is irreducible if T has no nontrivial reducing 
subspaces. 

(2.3) PROPOSITION. (Agler [1]). Let T be a von Neumann operator such that 
T is irreducible and a(T) = crap(T). If K is D-spectral for T, then $ K extends to a 
norm contractive algebra homomorphism ^ K : H ° ° ( ô K ) ^ ^ K ( T ) . Furthermore 
O K is continuous when domain and range have their w* topologies. 

§3. Von Neumann Operators in ^ ( f t ) . In his paper [1] J. Agler proves the 
following theorem. 

(3.1) THEOREM. Let T<^5E(^€) be a von Neumann operator such that T is 
irreducible and o~(T) = o-ap(T). Then there exists a compact set K with the 
following properties: 

(1) K is D-spectral for T, 
(2) K° has one (simply connected) component, 
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and 
(3) If cp is the conformai map from K° onto D, then dDçcr(<p(T)). 

Agler has also shown that the <ï> of Proposition 2.3 associated with the K of 
Theorem 3.1 is an isometric, w* homeomorphic algebra isomorphism from 
H°°(dK) onto <%K(T). We give a simpler proof of this theorem and we use the 
idea of the proof to derive a few more interesting results. To do this we need a 
few technical lemmas. 

(3.2) LEMMA. If K is a compact subset of the plane then there is a countable 
ordinal a0 such that for every a<a0 there is a component Va ofC ~ K such that: 

(a) If 0 is the first ordinal, V0 is the unbounded component of C ~ K; 

(b) For each ordinal a, V~ n[U3<« VpT 7̂  0 ; 
(c) If Vis a component ofC~K and V ^ V« for any a, then V~H[LL VoJT = 

0 . 

Proof. The proof is an easy application of transfinite induction. 

The enumeration of the components of C ~ K in the preceding lemma picks 
out those components that can be "chained" to the unbounded component. So 
if K is finitely connected, the unbounded component is enumerated but there 
may be no others. If K is the annulus, for example, only the unbounded 
component is selected. On the other hand if K is as in the figure below, 

then V0 is the unbounded component, V1 = A, V2 = B, and a0 = 3. If K is the 
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infinitely connected set pictured below, 

then every component of C ~ K is enumerated and A corresponds to the first 
infinite ordinal. 

If K is a compact set, {V(x:a<a0} are those components of C~K that are 
picked out by the preceding lemma and K is the polynomially convex hull of K, 
then for each a, a < a0, let 

!* = £ - u vp. 
Also let 

L^K- u va=ni* 
and set 

OLQ 

(3.3) LEMMA. For each a < a 0 , R(La) is a Dirichlet algebra. 

Proof. See (Conway [3], p. 402). 

Now let T be a von Neumann operator satisfying the hypothesis of Theorem 
3.1. Set K = a(T) in the preceding inductive process and find L. Note that L 
contains <r(T) and by Lemma 3.3, R(L) is a Dirichlet algebra. Therefore L is a 
D-spectral set for T. Since T is irreducible, L° is connected ([1], Lemma E). 
Actually L is the smallest compact subset of C that contains K and has L° 
simply connected. In constructing L we did not use the full strngth of Lemma 
3.2, this will be done in Theorem 3.6. 

In the following lemma note that by Proposition 2.3 it makes sense to talk 
about the operator g(T) whenever g is in H^iL0). 
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(3.4) LEMMA. Let T and L be as before. If geH°°(L0), then g ( a ( T ) n L ° ) ç 

cr(g(T)). 

Proof. Let A e a ( T ) H L°. Write g(z) = g(A) + (z-A)h(z) where heH~(L°). 
Then g(T)-g(A) = (T-A)h(T) = h(T)(T-A). Since T - A is not invertible, it 
follows that g(T)-g(A) is not invertible either. 

Next we give a simpler proof of Agler's Theorem, though the idea is taken 
from Scott Brown's proof of Sarason's characterization of weak-star closure of 
polynomials (unpublished). 

(3.5) THEOREM. Let T and L be as before. Then there exists an isometric 
isomorphism $:H°°(dL)^£%L(T) which is a w* homeomorphism. 

Proof. By Proposition 2.3 there is a norm contractive algebra homomorph-
ism <Ï>L: H°°(dL) —> @lL(T) which is w* continuous. We now show that O = <Ï>L is 
an isometry. Suppose there is a g in H^iL0) such that ||g(T)||<||g||Lo. Put 
G = {aeL°:\g(a)\>\\g(T)\\} and let V be a component of G Clearly G and V 
are open. We show that V~C\dL^ 0. Otherwise V " ç L ° . Now there exists 
Z 0 G V " such that |g(z0)| = ||gllv->llg(T)||. There exists B=B(z0,r)^L° such 
that |g(z)|>||g(T)|| for all z in B. Clearly V U B <= G, so V U E = V and z0e V. 
Thus g attains its maximum on V~ at z0 in V contradicting the maximum 
modulus principle. Next we show that VDK= 0 (K = a(T)). If this is true, 
then it is easy to see that O is an isometry. Indeed if V ç C ~ i C , there is a 
component UofC~K9 V ç [ / . But L was obtained in such a way that each 
component of C~K is included in either L or C ~ L . Since V ç L , U^L. 
Because V~ n dL ^ 0 we have U'HdL^ 0 contradicting condition (c) of 
Lemma 3.2. We denote the spectral radius of an operator A in ££{$) by r(A). 
By Lemma 3.4 g(o-(T)nL°)ç=a(g(T)), so ||g(T)||^r(g(T)) = 
sup{|A|:A6o-(g(T))}^sup{|A|:AGg(o-(T)nL0)}-sup{|g(A)|:AGor(T)nL0}. It 
is now clear that Vn<r(T)= 0 . Therefore O is an isometry. 

It is obvious that the range of <£> contains the rational functions in T with 
poles off L. The proof will now be completed by using the fact that any 
isometric, w* continuous, linear map between the duals of two separable 
Banach spaces has w* closed range and is actually a w* homeomorphism onto 
its range. 

Now let TeÇft^Çl) such that a(T) = Ù is a spectral set for T. Then T is 
irreducible ([5], Corollary 1.19) and a(T) = crap(T) by Lemma 2.1. Let <p be the 
conformai map from L° onto D and let A = <p(T). Then ||A|| = WcpW^ = 1, and A 
is irreducible ([1], Lemma 2). If heH°°, then ||MCT(A)nDHMLor(T)nL0) ([1], 
Lemma 3). Hence ||h|U(A)nD = \\h ° <phmnL« = \\h °<PIIL°HMIOO by the construc
tion of L. 

The following theorem allows us to transfer the general study of von 
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Neumann operators in ^ ( f l ) to the special case when Q is an open connected 
subset of the unit disc D and dû ç dfl. 

(3.6) THEOREM. Let Te&^Q) such that <J(T) = Ù is a spectral set for T and 
let <p be the conformai map from L° onto O. Then A = cp(T) is a von Neumann 
operator. 

Proof. Let {l/j}r=i be those components of C ~ K (K = a(T)) that cannot be 
chained to the unbounded component of C ~ K . Then Ut^L, i > l . Now 
cp:L°->0 and if r is a rational function with poles off cr(A), then ro(pGH°° 
(int(XUUr=N+ifJi)) for some N. Let W, - Uo<a<«0 Va, W2 = U?=lUi,W = 
W t U W 2 and set X = K ~ W and Y = K ~ W2 (see Fig. 1). 

Figure 1 

In order to show that A = <p(T) is a von Neumann operator, it suffices to 
show that ||r°cp(T)||<||ro(p||ft. So we need to approximate r°(p by a suitable 
sequence in R(Ù). To this end we show that R(X) is a hypodirichlet algebra 
and then use the approximation properties of these algebras. This will be our 
next goal. 

If S 2 denotes the extended complex plane, then S 2 ~ Y° and S2~L° have 
only a finite number of components, R(L) is a Dirichlet algebra (Lemma 3.3) 
and R(Y) is a hypodirichlet algebra (Gamelin [7]). For a subset E of the plane, 
let 7 CE) denote the analytic capacity of E. Applying Theorem 7 of (Gamelin 
and Garnett [8]) to both R(L) and R(Y) we can find ô > 0 sufficiently small 
such that 

7(B(z, Ô ) ~ L ) > - , zedL, 

and 

7 ( B ( z , 8 ) ~ Y ) > | , z ^ Y . 

https://doi.org/10.4153/CMB-1984-023-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-023-2


1984] VON NEUMANN OPERATORS 153 

Now it is easy to see that dX = dLUdY, hence y(B(z, 8 ) ~ X ) > 8 / 4 , zedX. 
Since S 2 ~ X ° has only a finite number of components again using the same 
theorem we conclude that R(X) is a hypodirichlet algebra, it is pointwise 
boundedly dense in H°°(X0), and R(dX) = C(dX). 

Since r ° <p e H°°(X°) we can choose a sequence {/n}ç JR(X) such that ||/n||x ^ 
||r°<p||x and /n(z)-»ro<p(z) for all Z G X ° . NOW Ù Ç X , SO /nel?(f t) and 
ll/nllfl^l|r ° <p||x = l|r ° <p||n. Because T is von Neumann, ||/„(T)||<||/n||n and since 
the unit ball of 5£ffi) is WOT compact, by passing to a subsequence, if 
necessary, we may assume that fn(T)-*S (WOT) for some S in ££($€). 

For o) in Ci let u(o)) be a unit vector in ker(T-co). Then fn(T)u((o) —» Su(oy) 
weakly. Also fn(T)u(o)) = fn(o))u((o) converges to r °cp(<o)w(<o) in norm. Thus 
Su(o)) = r °<p((o)u(ù)). Since {u(w):wen} spans a dense subspace of $£,S = 
r°<p(T). It is clear that ||r°<p(T)||<||r°<p||n. We also know that rT :{T}'-> 
H°°(ft), where {T}' is the commutant of T, is a contractive monomorphism 
(Cowen and Douglas [5], Proposition 1.21), from which we obtain ||r°<p||< 
||r°<p(T)||. Therefore ||r °<ph = \\r °<p(T)||. It follows that cp(T) is a von 
Neumann operator. 

Before concluding this section we will record a few results that will be used 
in the sequel. In the following lemma, note that the fact that R(K) is a 
Dirichlet algebra and K° has one component implies that K° is simply 
connected. 

(3.7) LEMMA. If K is a D-spectral set for T, K° has one component, and <p is 
the conformai map from K° onto O, then the following are true for keK°: 

(i) ker(À-T) = ker(<p(À)-<p(T)); 
(ii) ran(À-T) is closed if and only if ran(<p(À)-(p(T)) is closed. 

Proof, (i) If x G ker(À - T), then Tx = Ax. Choose rn G R(K) with rn -» <p w* in 
H°°(dK) and | | rn | |K<l (Sarason [11], Lemma 4.3). Then rn(T)x = rn(A)x, so 
cp(T)x = <p(A)jc. Hence x€ker(<p(A)-cp(T)). 

Conversely, let y eker(cp(A)-cp(T)). Then <p(T)y = <p(A)y, so p°cp(T)y = 
p°cp(A)y for every polynomial p. Because cp_1GH°°, there is a uniformly 
bounded sequence {pn} of polynomials such that pn(z) —•> ip~x{z), z eO. There
fore, pn°<p(A)^A, A G X ° . Hence pn°cp-*z w* in H^idK). By Proposition 
2.3, pn o <p(T) -^ T w* in «S?(3if). Now pn o <p(T)y = pn ° <p(A)y. By passing to the 
limit, Ty = Ay. Therefore y G ker(A - T). 

(ii) If A — T does not have closed range, then it is not bounded below on the 
ortho-complement of ker(A - T) = ker(cp(A)-cp(T)). Therefore there exists a 
sequence {xp}p=1 of unit vectors in the ortho-complement of ker(<p(A)-<p(T)) 
with ||(A-T)Xp||= 8P and limp.^ ep = 0. Choose rneR(K) with rn-xp w* in 
H~(ôK) and | | r n | | k<l. Then rn(A)-><p(A) and rn(T)^<p(T) w* in 2(X). If 
sn(z)= (rnW~ rn(z))(h ~ z)'1, then sneR(K). Because XeK° the maximum 
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modulus principle implies there is a constant M such that | | s n | |K<M for all n. 

T h u s | k ( T ) | | < M 
Now for arbitrary y e ^ and n, p > 1 

|((rn(A)- rn(T))xp, y)| = |(sn(T)(A - T ) ^ , y)| < | k (T ) | | ||(A - T)xJ ||y|j<M||y|| sp. 

Letting n - ^ ^ w e get, 

|((<p(A)-<p(T))xp,y)|<M||y||ep. 

From this inequality we conclude that ||(<p(A) —<p(T))Xp||<Mep. Therefore 
<p(A)-<p(T) is not bounded below on the ortho-complement of ker(cp(A) — 
cp(T)) and hence it does not have closed range. The converse follows similarly. 

(3.8) LEMMA. Let T e ^ ( f t ) such that a(T) = Ù is a spectral set for T. Let L be 
as before and let <p be the conformai map from L° onto O. Then cp(T) G£$!(<p(ft)), 
cr(<p(T)) = <p(ft)~ and dDça(<p(T)). 

Proof. In order to show that cp(T)G^!(cp(fl)) we need to consider the 
following four conditions. 

(1) Because ftço-(T)nL° we get <p(ft)çcp(o-(T)nL°). By Lemma 3.4 we 
have cp(a(T)nL°)ço-(<p(T)). Therefore <p(ft)çcr(cp(T)). 

(2) By Lemma 3 of [1] we have ran(cp(A)-<p(T))~ = ^ , À G L ° . 
Since Teâô^ft) we conclude that ran(A —T) is closed, A G ft. By Lemma 3.7, 
ran(cp(A)-cp(T)) = ^ , A G ft. 

(3) By Lemma 3.7, ker(A - T) - ker(cp(A) - cp(T)), A G (1. 
(4) Since Te&^f t ) , d imker(A-T) = 1, A G ft. From (3) we get 

dimker(cp(A)-cp(T)) = l , A G ft. 
To show that cr(<p(T)) = <p(ft)~ note that <p(ft)"çcr(<p(T)) by (1). To prove 

the reverse inequality consider the isometric isomorphism 0 : 0tL(T) —» H^iL0) 
of Theorem 3.5 and let r:Hœ(L°)-^H°°(ft) be the restriction map. Then 
r o(p:^L(T)->H°°(ft) is an algebra monomorphism. By Theorem 10.18 of 
Rudin [10], acr^i(T)(cp(T))çaaH~(n)((p). Because o-^mj<p(T)) = aH-^cp) = 
<p(L°)" = 0 , we have aBc<p(ft)-. Hence dDçcr(cp(T))çB. 
Therefore 

c7((p(T)) = [a((p(T))nO]UaO = (p(a-(T)nL0)UaO 

= (p(ftnL°)uao = (p((ftuaft)nL0)uaOç(p(ft)". 
So 

cp(ft)- = a(<p(T)). 

§4. Spectral mapping theorem. Consider an operator Te^^fl) such that 
a(T) = Ù, is a spectral set for T and let L be as in the preceding section. We 
want to determine the spectrum of /(T) for feH^iL0). The result is that a 
spectral mapping theorem holds: 

cr(/(T)) = /(ft)-, feH~(L°). 
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The idea of the proof of the next theorem is due to Conway and Olin [4, 
Lemma 8.9]. 

(4.1) THEOREM. Let Teâô^îl) such that <J(T) = Ù is a spectral set for T Then 
*(f(T)) = mrforfeH~(L°). 

Proof. Let cp be the conformai map from L° onto O. Then we have already 
shown that (p(T)G^!((p(fl)) (Lemma 3.8), cr(<p(T)) = <p(fl)~ is a spectral set for 
cp(T) (Theorem 3.6) and dDçcr(cp(T)) (Lemma 3.8). Without loss of generality 
we may assume that fi is an open connected subset of ED such that L° = D, 
TeëfciiCÏ) is such that cr(T) = Ù is a spectral set for T, dDçf î and we want to 
show that cr(/(T)) = / ( n ) " for / G H ° ° . 

By Lemma 3.4, / (f l )"ç(r( /(T)) , so we need only show cr( / (T))ç / (n)" , 
/eH°° . To see this we assume a^/(ft)~ and we show that f(T) — a is an 
invertible operator in S£(%€). 

Because a^ / ( f l )" there is Ô>0 such that ( Î Ç { Z G D : | / ( z ) - a | > 8 } . Put 
J1 = {ZGD: | / ( z ) - a | > 8 } ~ and J 2 = { Z G D : | / ( z ) - a |>S /2}~ . It is clear that A c 
J i ^ J 2 . Because d D ç Ô , it follows that a D ç ^ ç / j . 

Now ( / - a ^ e f T X / S ) . Because d D ç J 2 ^ Ô , C ~ D is the unbounded com
ponent of C ~ J2. By Theorem VIII. 10.7 of [7], there is a uniformly bounded 
sequence {/n} in H 0 0 ^ ) such that each fn has an analytic continuation to a 
neighborhood of 3D, and fn(z)^(f(z)-a)~1 for z in J§. But J^J^UdD, so 
each /n is analytic in a neighborhood of Jx. By Runge's Theorem ([2], p. 198) 
fn<ER(Ji). Moreover, fn is uniformly bounded on Jx and / n ( z ) - ^ ( / ( z ) - a ) _ 1 

for all z in J^HD. Because Ô ç J l5 fn e R(Ù) and H/JIn^A* f o r s o m e M-
Since 0 = cr(T) is a spectral set for T, | | / „ ( T ) | | < | | / J | Ô < M . But the unit ball of 

££($€) is WOT compact, so by passing to a subsequence we may assume 
fn(T) -> B (WOT) for some B in #($£). For co e fî, let M(<O) be a unit vector in 
ker(T-co). Then fn(T)u(w) -> Bu(w) weakly. Also fn(T)u(<o) = fn(<o)u(œ) con
verges to (/(co)-a)_1w(co) in norm. Hence Bu((o) = (f(co)-a)~1u(o)), wef l . 
But B(/(T)-a)w(co) = (/(û))-a)(/(û))-a)"1u(co), COG H. Since {u(co):coefl} 
spans a dense subspace of 2£, B is the inverse of f(T)-a. 

The author thanks the referee for his helpful comments. 
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