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Generalized Solution of the Photon
Transport Problem

Yu-Hsien Chang and Cheng-Hong Hong

Abstract. The purpose of this paper is to show the existence of a generalized solution of the photon

transport problem. By means of the theory of equicontinuous C0-semigroup on a sequentially com-

plete locally convex topological vector space we show that the perturbed abstract Cauchy problem has

a unique solution when the perturbation operator and the forcing term function satisfy certain con-

ditions. A consequence of the abstract result is that it can be directly applied to obtain a generalized

solution of the photon transport problem.

1 Introduction

The motivation of this study is due to the problem of photon transport in a cloud.

Meri Lisi and Silvia Totaro [5] consider the photon transport problem in a cloud that

occupies a convex region of space with a localized source inside (for example, a star).

They assume that the photon transport phenomenon is one-dimensional; that is, the

photon number density U depends on the space variable x, on the angle variable µ,

and time t . They also assume that the nebula is bounded by the two surfaces x = a(t)

and x = b(t). In order to avoid a moving reference system, it is convenient to assume

that the surface at the left end is fixed, i.e., x = a(t) = 0. Hence, the boundary

plane x = b(t) moves with speed
.

b(t), where b(t) is a continuously differentiable real

function of t ∈ [0, +∞) such that

|
.

b(t)| ≤ sup
t≥0

|
.

b(t)| < ∞.

The following figure gives a sketch of the situation:

Vacuum Nebula Vacuum

(Part I) (Part II) (Part III)

Each region is characterized by some different total and scattering cross sections.

However, in each region, the relative cross sections can be considered constants; in

particular, in the vacuum the total cross section and the scattering cross section are

very small, because the particle density is low. Hence, in Parts I and III, if we denote

the total cross section and the scattering cross section by σ̂, σ̂s, respectively, then we

may assume σ̂ > σ̂s > 0. On the other hand, in Part II, one has that σ > σs > 0,

where σ, σs are the total cross section and the scattering cross section, respectively.
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Generalized Solution of the Photon Transport Problem 29

Moreover, since the particle density in the nebula is higher than that in the vacuum,

we may assume that σ > σ̂ > 0 and σs > σ̂s > 0.

The photon transport equation in interstellar space can be described as follows:

(1.1)
∂

∂t
U (x, µ, t) = −cµ

∂

∂x
U (x, µ, t) − c[σ̂ + (σ − σ̂)χ(x, t)]U (x, µ, t)

+ c
[
σ̂s + (σs − σ̂s)χ(x, t)

]

×

∫ 1

−1

k(µ, µ′)U (x, µ′, t)dµ ′ + q0δ(x − x0)χ(x, t),

∀x ∈ (−∞, +∞), µ ∈ (−1, 1), and t ∈ (0, +∞),

where χ = χ(x, t) is the characteristic function of the interval [0, b( · )], q0 is a con-

stant, x ∈ [0, b(t)], and δ(x − x0) is the Dirac delta function. The scattering kernel

k(µ, µ′) is a positive C∞-function with compact support with respect to each vari-

able in (−1, 1) such that

(1.2) k(µ, µ′) = k(µ ′, µ),

∫ 1

−1

k(µ, µ′)dµ = 1

and

(1.3)
∣∣∣ ∂r

∂µr
k(µ, µ′)t

∣∣∣ ≤
k

2
∀r ∈ N0

(
N0 = {0, 1, 2, . . . }

)
,

where k is a suitable positive constant. They chose σs small enough such that

(1.4) kσs < σ.

However, since the derivative of χ is not defined at x = 0 and x = b(t), in order

to avoid this difficulty, we consider a mollified version χ̂(x, t) of χ(x, t), which is

defined as follows:

χ̂(x, t) = 0, ∀x ∈ (−∞, 0] ∪ [b(t), +∞),

χ̂(x, t) = −
2

ε2
x3 +

3

ε3
x2, ∀x ∈ (0, ε);

χ̂(x, t) = 1, ∀x ∈ [ε, b(t) − ε];

χ̂(x, t) = −
2

ε2
[b(t) − x]3 +

3

ε3
[b(t) − x]2, ∀x ∈ (b(t) − ε, b(t)).

In the preceding equations, ε is a positive constant such that ε ≪ b(0), with

b(0) 6= 0 (see [6] for details). Equation (1.1) is supplemented by the initial condition

(1.5) U (x, µ, 0) = U0(x, µ) for x ∈ (−∞, +∞) and for µ ∈ (−1, 1),
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30 Y.-H Chang and C.-H. Hong

where U0 is a given positive function. In order to study (1.1)–(1.5), Lisi and Totaro

first considered the Banach space X = L1(R × (−1, 1)) endowed with the norm

‖ f ‖ =

∫ ∞

−∞

dx

∫ 1

−1

| f (x, µ)|dµ ∀ f ∈ X.

They defined the operators S : D(S) ⊂ X → R(S) ⊂ X and J : D( J) ⊂ X → R( J) ⊂
X by

S f (x, µ) = −cµ
∂

∂x
f (x, µ) ∀ f ∈ D(S) ⊂ X,

J f (x, µ) =

∫ 1

−1

k(µ, µ′) f (x, µ′)dµ ′ ∀ f ∈ X,

where D(S) = { f ∈ X : S f ∈ X}. Moreover, they set

σ(t) = σ̂ + (σ − σ̂)χ̂(x, t),

σs(t) = σ̂s + (σs − σ̂s)χ̂(x, t),

Q(t) = q0δ(x − x0)χ̂(x, t),

where σ(t) and σs(t) are functions from [0, +∞) into L∞(R), and Q(t) is considered

as a function from [0, +∞) into X.

Hence, the problem (1.1)–(1.5) can be transformed into the form

(1.6)

{
d
dt

U (t) = [S − cσ(t)I + cσs(t) J]U (t) + Q(t), ∀t > 0;

U (0) = U0,

where U (t) = U ( · , · , t) is considered as a function from [0, +∞) into X. It is

reasonable to assume that the number of photons inside the cloud changes slowly

in time, i.e., d
dt

U (t) is small. For the same reasons they assumed that σ(t) ≡ σ,

σs(t) ≡ σs, Q(t) ≡ Q, and b(t) = b, do not depend on time t . They transformed the

initial value problem (1.6) into the equation

(1.7)

{
d
dt

U (t) = [S − cσI + cσs J]U (t) + Q, ∀ t > 0;

U (0) = U0.

However, they found that the initial value problem (1.7) has no solution in the

Banach space X = L1(R × (−1, 1)), since δ(x − x0) does not belong to X. To solve

(1.7) they had to consider a more general space. It is for this reason that we consider

the perturbed Cauchy problem in a sequentially complete locally convex space rather

than in a Banach space. They solved equation (1.7) for the special case d
dt

U (t) = 0.

The new system

{
[S − cσI + cσs J]U (t) + Q(t) = 0, ∀t > 0

U (0) = U0
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is the so-called quasi-static equation in the space X̃ = D ′(R × (−1, 1)), where X̃

is the space of all linear continuous functionals on the space D consisting of all test

functions. We will give further descriptions of these spaces in Section 3 and show

that the initial value problem (1.7) has a unique generalized solution for the case
d
dt

U (t) 6= 0.

Throughout this paper we will use the following notations. We let X be a se-

quentially complete locally convex space (sclcs) under a family of seminorms Γ. We

denote by L(X) the space of all linear continuous operators on X and by E a collec-

tion of bounded subsets of X such that (
⋃

M∈B M) = X . For each B ∈ E and q ∈ Γ,

a seminorm pB,q on L(X) is defined by

pB,q(L) = sup{q(Lx) : x ∈ B} for every L ∈ L(X).

Then the family {pB,q : B ∈ E, q ∈ Γ} induces a locally convex topology for L(X)

(e.g., see [4, p. 131]).

A family ℑ of linear operators on X is equicontinuous if for each p ∈ Γ, there is a

continuous seminorm q = q(p) ∈ Γ such that p(Lx) ≤ q(x) for all L ∈ ℑ all x ∈ X.

For each p ∈ Γ and a linear operator L on X, we define a corresponding seminorm

for the linear operator L as

p̃(L) = sup{p(Lx) : p(x) ≤ 1}.

A linear operator L on X is said to be p-continuous if

p̃(L) = sup{p(Lx) : x ∈ X with p(x) ≤ 1} < ∞.

A linear operator L ∈ L(X) is said to be Γ-continuous if it is p-continuous for every

p ∈ Γ. Let LΓ(X) denote the space of all Γ-continuous linear operators on X and let

BΓ(X) be the subspace of LΓ(X) whose elements L satisfies

‖L‖Γ = sup{p(Lx) : p ∈ Γ, x ∈ X with p(x) ≤ 1} < ∞.

BΓ(X) with the norm ‖ · ‖Γ is a Banach algebra. With these notations, we have the

relation BΓ(X) ⊂ LΓ(X) ⊂ L(X). For any K ∈ BΓ(X) we define the operator etK by

etK
=

∞∑
i=0

t i

i!
K i , for each t > 0 and e0K

= I for t = 0.

Definition 1.1 Let X be an sclcs. The family of continuous linear operators

{T(t)}t≥0 on X is called a strongly continuous C0-semigroup if the following three

conditions hold:

(i) T(0) = I,

(ii) T(t)T(s) = T(t + s) for all s, t ≥ 0 and

(iii) T(t)x −→ x as t ↓ 0, for every x ∈ X.
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We call a family of linear operators {T(t)}t≥0 equicontinuous if for each continuous

seminorm p on X, there exists a continuous seminorm q on X such that p(T(t)x) ≤
q(x) for all t ≥ 0 and x ∈ X. Such a family {T(t)}t≥0 is called an equicontinuous

C0-semigroup. Moreover, if there exists a number β ≥ 0 such that {e−βt T(t)}t≥0 is

equicontinuous, then it is called a quasi-equicontinuous C0-semigroup. A semigroup

{T(t)}t≥0 is said to be locally equicontinuous if for any fixed 0 < T < ∞, the

subfamily {T(t) : 0 ≤ t ≤ T} is equicontinuous.

Let ℑ be an equicontinuous family of linear operators on X and let Γ be a calibra-

tion for X. We define, for each p ∈ Γ, a continuous seminorm p ′ on X by

p ′(x) = sup{p(Lx) : L ∈ ℑ or L = I} for every x ∈ X.

This implies that p ′ ≥ p for each p ∈ Γ. Choe [1] showed that the new calibration

Γ
′
= {p ′ : p ∈ Γ} induces the same topology on X.

If {T(t)}t≥0 is an equicontinuous C0-semigroup on X, then Choe’s result allows

us to define a new calibration Γ
′ on X such that ‖T(t)‖Γ ′ ≤ 1 for all t ≥ 0. In

this case, {T(t)}t≥0 is called a Γ
′-contraction C0-semigroup. In fact, we have the

following proposition.

Proposition 1.2 If {T(t)}t≥0 is an equicontinuous C0-semigroup on X, then there is

a new calibration Γ
′ on X such that {T(t)}t≥0 is a Γ

′-contraction C0-semigroup.

Proof Let Γ
′ be a new calibration on X that is defined by

p ′(x) = sup
t≥0

{p(T(t)x) : p(x) ≤ 1} for each p ∈ Γ.

Then for every p ∈ Γ

p ′(T(t)x) = sup
s≥0

{p(T(s)T(t)x) : p(x) ≤ 1} = sup
s≥0

{p(T(t + s)x) : p(x) ≤ 1}

= sup
k≥t

{p(T(k)x) : p(x) ≤ 1} ≤ sup
k≥0

{p(T(k)x) : p(x) ≤ 1} = p ′(x).

This shows that ‖T(t)‖Γ ′ ≤ 1 for all t ≥ 0, and hence {T(t)}t≥0 is a Γ
′-contrac-

tion C0-semigroup.

For convenience, if no confusion arises, we will still denote this new calibration by

Γ instead of Γ
′.

Definition 1.3 Let X be a locally convex linear space. Then any convex, balanced,

and absorbing closed set is called a barrel. X is called a barrel space if each of its

barrels is a neighborhood of zero.

Let XΓ be the subspace of X such that XΓ = {x ∈ X : supp∈Γ
p(x) < ∞}. We

defined ‖ · ‖Γ on XΓ by ‖X‖Γ = supp∈Γ
p(x) for every x ∈ XΓ. Then ‖ · ‖Γ is a norm

on XΓ for which (XΓ, ‖ · ‖Γ) is a Banach space. (For details, see [7, Proposition 2.5]).

Since XΓ is a Banach space we can consider the Bochner integrable function on XΓ.
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Let Ai be measurable set on [0, T] with the measure µ(Ai) < ∞ for all i =

1, 2, . . . , m and ∪m
i=1Ai = [0, T]. We say that a function f : [0, T] → XΓ is a simple

measurable function if f =
∑m

i=1 xiχAi
, where xi ∈ XΓ.

Naturally we may define
∫ T

0
f dµ =

∑m
i=1 xiµ(Ai) for every simple measure func-

tion f . A measurable function f is called Bochner integrable (or just integrable for

simplicity) if there exists a sequence of simple measurable functions { fn} that con-

verge almost everywhere to f so that
∫ T

0
‖ fn − fm‖Γ ′dµ → 0 and the integral

∫ T

0
f dµ

is then defined as limn→∞

∫ T

0
fndµ.

Choe showed that if A generates an equicontinuous C0-semigroup on X and B ∈
BΓ(X), then (A + B) generates an equicontinuous C0-semigroup on X ([1, Corollary

5.4]). In fact, by means of some estimates of resolvent operators, Choe proved a more

general result for both A and B that depend on t and satisfy certain conditions (see

[1, Theorem 5.3]). However, for discourse on the photon transport problem we need

only to consider the linear operators A and B that are independent of t . By choosing

a suitable calibration on the sclcs X, we can prove Choe’s Corollary 5.4 in a different

approach in Section 2 (see Theorem 2.1).

Instead of solving the photon transport problem (1.6) directly, we consider the

inhomogeneous term Q(t) is not a constant function and d
dt

U (t) 6= 0. We consider

the abstract initial value problem

(1.8)

{
d
dt

(u(t)) = Au(t) + f (t), t > 0;

u(0) = x, x ∈ D(A),

where A is the generator of a equicontinuous C0-semigroup and f : [0, T] → XΓ

is a Bochner integrable function. We will show that the abstract initial value prob-

lem (1.8) has a unique mild solution if A is a generator of the quasi-equicontinuous

C0-semigroup and f is a Bochner integrable function on XΓ (see Theorem 2.3).

2 Main Results

Theorem 2.1 Suppose {T(t)}0≤t≤T is a locally equicontinuous C0-semigroup on a

barrelled space X generated by a closed linear operator A. If B is a closed linear operator

on X with ‖B‖Γ = M < ∞, then there exists a locally equicontinuous C0-semigroup

{S(t)}0≤t≤T generated by (A + B).

Before proving Theorem 2.1 we state the following lemma, which was proved in

[2, Corollary 4.11].

Lemma 2.2 Consider the abstract Cauchy problem

(2.1)

{
d
dt

(u(t)) = Au(t), t > 0;

u(0) = x, x ∈ X.

The following are equivalent.

(i) The operator A generates a locally equicontinuous semigroup.
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(ii) There exists a unique mild solution of (2.1) for all x ∈ X.

Although this lemma was proved in the Fréchet space, it can be easily extended to

the general locally convex space. We leave it to the interested reader.

Proof of Theorem 2.1 By Proposition 1.2, we may assume that {T(t)}0≤t≤T is a lo-

cal Γ-contraction C0-semigroup. Let

(2.2) S0(t)x ≡ T(t)x for 0 ≤ t ≤ T, x ∈ X

and define Sn(t) inductively by

(2.3) Sn+1(t)x ≡

∫ t

0

T(t − s)BSn(s)xds for 0 ≤ t ≤ T, x ∈ X and n = 0, 1, 2, . . . .

From this definition it is obvious that for each x ∈ X and n ≥ 0, t → Sn(t)x is

continuous mapping from [0, T] into X. From (2.2) and (2.3) we see that

‖S1(t)x‖Γ = ‖

∫ t

0

T(t − s)BT(s)xds‖Γ

≤

∫ t

0

‖T(t − s)BT(s)x‖Γds

≤ ‖Bx‖Γ

∫ t

0

ds = t‖Bx‖Γ

for any 0 ≤ t ≤ T and for any x ∈ X. This implies that ‖S1(t)‖Γ ≤ t‖B‖Γ. By

induction, one can show that

‖ Sk(t)‖Γ ≤
tk

k!
‖B‖k

Γ
for every k ∈ N and 0 ≤ t ≤ T.

Let

(2.4) S(t)x =

∞∑
n=0

Sn(t)x for every x ∈ X and 0 ≤ t ≤ T,

then

‖S(t)‖Γ ≤ ‖
∞∑

k=0

Sk(t)‖Γ ≤

∞∑

k=0

‖Sk(t)‖Γ ≤
∞∑

k=0

tk

k!
‖B‖k

Γ
= et‖B‖Γ .

This implies that the series (2.4) converges uniformly in BΓ(X) under the uniform

operator topology on 0 ≤ t ≤ T. Therefore for each x ∈ X, t → S(t)x is continuous

mapping from [0, T] into X. According to (2.2) and (2.3) it follows that for any x ∈ X

and any t ∈ [0, T], S(t)x satisfies the equation

S(t)x = T(t)x +

∫ t

0

T(t − s)BS(s)xds.
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This shows that S(t)x is a mild solution of (1.3). To prove the uniqueness of the

solution we let {V (t) : 0 ≤ t ≤ T} be a family of operators for which t → V (t)x is

continuous for every x ∈ X, and it satisfies that

V (t)x = T(t)x +

∫ t

0

T(t − s)BV (s)xds for every x ∈ X and for every 0 ≤ t ≤ T.

Estimating the difference of S(t) and V (t) yields

‖(S(t) −V (t))x‖Γ ≤

∫ t

0

‖B‖Γ‖(S(s) −V (s))x‖Γds.

Gronwall’s inequality implies that S(t) = V (t) for every t ∈ [0, T]. According to

Lemma 2.2, {S(t)}0≤t≤T is a locally equicontinuous C0-semigroup generated by (A +

B).

To solve the photon transport problem (1.6), where the inhomogeneous term Q(t)

is not a constant function, we should consider the initial value problem

(2.5)

{
du(t)

dt
= Au(t) + f (t), t > 0;

u(0) = u0 ∈ D(A);

where A is a generator of an equicontinuous C0- semigroup and f is a Bochner inte-

grable function on XΓ. Instead of proving that (2.5) has a mild solution directly, we

prove the more general case that (2.5) has a mild solution as long as A is the generator

of a quasi-equicontinuous C0- semigroup. In fact we have following theorem.

Theorem 2.3 If A is the generator of a quasi-equicontinuous C0- semigroup {T(t)}t≥0

and f is a Bochner integrable on XΓ, then (2.5) has a unique mild solution given by

u(t) = T(t)u0 +

∫ t

0

T(t − s) f (s)ds.

Moreover, if f is continuous, then u(t) is a solution of (2.5).

Proof If u is a solution of (2.5), then the XΓ valued function g(s) = T(t − s)u(s) is

differentiable for 0 < s < t and

d

ds
g(s) = −AT(t − s)u(s) + T(t − s)u ′(s)

= −AT(t − s)u(s) + T(t − s)Au(s) + T(t − s) f (s)

= T(t − s) f (s).

Moreover, if f is Bochner integrable on XΓ, then T(t − s) f (s) is also Bochner

integrable. Integrating it from 0 to t yields

u(t) = T(t)u0 +

∫ t

0

T(t − s) f (s)ds.
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To see that u(t) is a solution of (2.5) when f is continuous, we need only to show

that u(t) satisfies (2.5). Since

u ′(t) = lim
h→0

1

h

(
u(t + h) − u(t)

)

= lim
h→0

1

h

(
T(t + h)u0 +

∫ t+h

0

T(t + h − s) f (s)ds − T(t)u0

−

∫ t

0

T(t − s) f (s)ds
)

= lim
h→0

1

h
(T(t + h)u0 − T(t)u0)

+ lim
h→0

1

h

(∫ t+h

0

T(t + h − s) f (s)ds −

∫ t

0

T(t − s) f (s)ds
)

= AT(t)u0 + lim
h→0

1

h
(T(h) − I)

∫ t

0

T(t − s) f (s)ds

+ lim
h→0

1

h

∫ t+h

t

T(t + h − s) f (s)ds

= AT(t)u0 + A

∫ t

0

T(t − s) f (s)ds + f (t)

= Au(t) + f (t),

we see that u(t) is differentiable on (0,∞), and it satisfies (2.5).

3 Generalized Solution of the Photon Transport Problem

To find a generalized solution of the photon transport problem, we let X be an sclcs

and {T(t)}t≥0 ⊂ L(X, X) be an equicontinuous C0-semigroup. Also, let X ′
s be the

dual space of X endowed with the seminorm pB,q = sup{q(Lx ′) : x ′ ∈ B} for

every L ⊂ L(X ′
s , X ′

s ), and let T∗(t) denotes the dual operator of T(t), where B is an

arbitrary bounded subsets of X ′. Then the family {T∗(t)}t≥0 of linear operators are

in L(X ′
s , X ′

s ) and satisfy the semigroup property

T∗(t)T∗(s) = T∗(t + s), T∗(0) = I∗,

where I∗ is the identity operator on X ′
s . Notice that {T∗(t)}t≥0 is not a C0-semigroup

in general. However, T. Komura [3] showed the following theorem.

Theorem 3.1 Let X be an sclcs such that its strong dual space X ′
s is also sequentially

complete. Let {T(t)}t≥0 be a C0-semigroup with the generator A. Let us denote by X+

the closure of the domain D(A∗) in the strong topology of X ′
s . If T+(t) is the restriction

of T∗(t) of to X+, then {T+(t)}t≥0 ⊂ L(X+, X+) and {T+(t)}t≥0 is a C0-semigroup

with the generator A+, which is the largest restriction of A∗ with domain and range in

X+. In particular, if a C0-semigroup {T(t)}t≥0 is locally equicontinuous (resp. equicon-

tinuous), then {T+(t)}t≥0 is also locally equicontinuous (resp. equicontinuous).
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Now we are able to show the existence of a solution for the photon transport prob-

lem (1.6). As we mentioned in Section 1, it is reasonable to assume that σ(t) = σ

and σs(t) = σs are independent of t and (1.6) may be rewritten as

(3.1)

{
d
dt

U (t) = [S − cσI + cσs J]U (t) + Q, ∀t > 0,

U (0) = U0.

We will show that problem (3.1) has a unique generalized (or weak) solution U ∗

in some space X̃(= D ′(R × (−1, 1))). To describe the space X̃, we use following

notations: Let {Km}
∞
m=1 be a sequence of compact subsets of R × (−1, 1) such that

K1 ⊂ K2 ⊂ · · · and R × (−1, 1) =
⋃∞

m=1 Km, and let DKm
be the set

DKm
(R × (−1, 1)) = {φ ∈ C∞(R × (−1, 1)) : supp φ ⊂ Km}(m ∈ N)

with the calibration of seminorms Γ = {pm,α; m ∈ N, α ∈ N2
0} such that

(3.2) pm,α(φ) = sup
(x,µ)∈Km

|(∂αφ)(x, µ)|, φ ∈ DKm
.

Here, N0 is the set of all nonnegative integers. Let the space D = D(R × (−1, 1))

be defined by

D = D(R × (−1, 1)) =

∞⋃
m=1

DKm
(R × (−1, 1)).

Then D is a Fréchet space with topology induced by the calibration of seminorms

(3.2). Since every Fréchet space is a barrelled space, this implies that D is a barrelled

space. Let X̃ = D ′ be the dual space of D.

It can be shown that (see e.g., [8]) X = L1(R×(−1, 1)) ⊂ X̃ = D ′ in the following

sense. We say that f ∈ D ′ can be identified with f ∈ L1 if

〈 f , φ〉 =

∫ ∞

−∞

[∫ 1

−1

f (x, µ)φ(x, µ)dµ
]

dx ∀φ ∈ D.

We also extend the operator T = cσI − S − cσs J to the operator

T̃ : X̃ = D ′ → X̃ = D ′

such that

〈T̃ f̃ , φ〉 = 〈T̃ f , φ〉 =

∫ ∞

−∞

[∫ 1

−1

T f (x, µ)φ(x, µ)dµ
]

dx ∀φ ∈ D.
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Now we define the operator T̂on D by

T̂ϕ(x, µ) = cσϕ(x, µ) − cµ
∂ϕ(x, µ)

∂x
− cσs

∫ 1

−1

k(µ, µ′)ϕ(x, µ′)dµ ′ ∀ϕ ∈ D.

Then we have the relation 〈T̃ f̃ , φ〉 = 〈 f̃ , T̂φ〉 ∀ f̃ ∈ D ′, φ ∈ D. In other words, T̃ is

the adjoint of T̂. Let L denote the operator d
dt

+T̂ and let L∗ denotes its formal adjoint

of L. We say that a distribution U ∗ is a generalized solution of (3.1) if 〈 L∗U ∗, φ〉 =

〈U ∗, Lφ〉 = 〈Q, φ〉 is satisfied for every φ ∈ D.

Let the operator A, B, C be on the space D as follows

Aϕ(x, µ) = −cµ
∂ϕ(x, µ)

∂x
,

Bϕ(x, µ) = cσs

∫ 1

−1

k(µ, µ′)ϕ(x, µ′)dµ ′, and

Cϕ(x, µ) = cσϕ(x, µ).

Meri Lisi and Silvia Torato [5] showed that there exists a Γ-contraction C0-semigroup

{W (t)}t≥0on D that is generated by −A, and B and C are in BΓ(D) with the operator

norm ‖B‖Γ = cσsk and ‖C‖Γ = cσ, respectively.

By Theorem 2.1, there exists a locally equicontinuous C0-semigroup {V (t)}t≥0

on D generated by −T̂. Let {V ∗(t)}t≥0 be the C0-semigroup on D ′ generated by

−T̃. According to Theorem 3.1, {V ∗(t)}t≥0 is also locally equicontinuous on D ′

since T̃ (the adjoint of T̂) is an automorphism on D ′, i.e., the domain of T̃ is X̃ (see

[5, Remark 3.2]). Clearly, Q belongs to D ′
Γ

. This implies that (3.1) can be considered

the special case f (t) = Q for all t ∈ [0, T]. Then by Theorem 2.3, we conclude that

(3.1) has a unique generalized solution U ∗.
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