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RANK k VECTORS IN SYMMETRY CLASSES OF 
TENSORS* 

BY 

MING-HUAT LIM 

1. Introduction. Let F be a field, G a subgroup of Sm9 the symmetric group 
of degree m, and % a linear character on G, i.e., a homomorphism of G into the 
multiplicative group of F. Let Vl9... , Vm be vector spaces over F such that 
V~ Va{i) for / = 1 , . . . , m and for all a e G. If W is a vector space over F, then a 
m-multilinear func t ion / :X^ F ^ W i s said to be symmetric with respect to G and 

xif 
/C*<r(l), • • > X«(m)) = #<*>/(*!, • • • , *m) 

for any a GG and for arbitrary x{ G ^ . A pair (P, /J) consisting of a vector space 
P over i7 and a m-multilinear function /JL'.X^ Vi->P9 symmetric with respect to 
G and %9 is a symmetry classes of tensors over Vl9. . . 9 Vm associated with G and 
% if the following universal factorization property is satisfied: for any vector space 
U over F and any ra-multilinear function/: X ^ Vi-+U9 symmetric with respect to 
G and %9 there exists a unique linear mapping g:P-+U such that /=g/ j . 

The symmetry class over Vl9.. . , Vm associated with G and % always exists and 
is unique up to vector space isomorphism (see [11], [12]). We shall denote such a 
space by (Vl9... , Vm)x(G). If Vx-=- • «=K m =F, then such a space is usually 
denoted by V™(G) [11]. The vector p,(xl9... , xm) is called decomposable and is 
denoted by * ! * • • • * xm. The most familiar symmetry classes are the tensor, 
Grassmann and symmetric spaces. 

Let Tf. Vf-^Vi be linear mappings such that 7 ^ = 7 ^ ) for f = l , . . . , m and for 
all oeG. Then 

<£:(*!, . . . , xm) -> Ti*! * • • • * Tmxm 

is symmetric with respect to G and % and hence induces a unique linear mapping 
K(T19... , T J on ( J ^ , . . . , VJX(G) such that 

K(7i, . . . , TJXl * • • • * xm = 7 ^ * • • • * TmxM. 
K(Tl9... 9 Tw) is called the associated transformation of 7 i , . . . , Tm. When 
r1==. • .=Tm=T9 we shall denote X ( 7 \ , . . . , TJ simply by K(T) [9, 11]. 

A non-zero vector in (Vl9.. . , FW)X(G) is said to have rank k if it is the sum of A: 
but not less than k non-zero decomposable elements in (Vl9... , Vm)x(G). The 
set of all rank k vectors in (Vl9... 9 VJX(G) is denoted by Rk((Vl9... 9 Vm)x(G)). 
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In this paper we prove that (i) the rank of each vector in (Vl9... , Vm)x(G) is 
unchanged if we extend Vl9.. . , Vm\ (ii) for each rank k vector in (Vl9... , 
Vm) (G) and each orbit 0 of G there associates a unique subspace of Vi where feO; 
(iii) if there is an orbit 0 of G such that |0|>2, dim F;.>|0|+2(fc-l) where; G 0, 
then (Vl9... , Vm)x(G) has a basis consisting of rank k vectors, (i) and (ii) genera
lize two results of Lim [8]. We also give some criteria for determining the rank of a 
vector in (Vl9. . . , Vm)x(G). From (i) and (ii) we obtain an application on 
intersections of symmetry classes and an application on equalities of two associated 
transformations. 

2. Properties of rank k vectors. Throughout this section, let (Vl9..., Vm)x(G) 
denote a symmetry class of tensors over Vl9.. . , Vm associated with a subgroup 
G of Sm and a linear character % on G. 

For any vectors zl9... , zn in a vector space Z, let (zl9. . . , zn) denote the 
subspace of Z spanned by zl9... , zn. 

LEMMA 1. Let xx+- • -+Xk=yi+. • •+yqeRk((Vl9... , VJX(G)) where x t= 
*ti * ' ' * * xim9 yn=ynl * • • • *ynmfor each z = l , . . . ,k and w = l , . . . ,q. Then 
for each orbit 0 ofG, 

i<xw:deO>c2<y«d:deO>. 

Proof. Suppose that for some j9 l<j<k9 

< x i d : d e 0 > $ i < y w d : d e 0 ) . 
n=l 

Then for some .s G 0, xis <£ 2«=i OW* G 0)-
Consider the associated transformation i£(7\ , . . . , Tm) on (P^, . . . , Vm)x(G) 

where T~Ta(i) for all o* G G, i = l , . . . , m and Tx . . . , Tm are defined as follows: 
If i G 0, Til Vi->Vi is a linear mapping such that rf(*,s)=0 and 7; | 2 L i OW 

d G 0) is the identity mapping. 
If / <£ 0, T{: Vj-^Vi is the identity mapping. 
We have K(Tl9... , TJ^ti *ù=K(Tl9... , r j Q ^ i y J. Since tf(rls... , 

^ J ^ , » ^ » for w= 1 , . . . , ^ and 

K(T19 . . . , TJx, = TlXjl * • • • * Twx,w = 0, 
it follows that 

X(Tl5 . . . , TJ& + - • •+*._1+x.+1+. • •+**) 

= yi + - ' '+yQ e **((*i,. . . , FJZ(G)). 

This is a contradiction since the left hand side is a vector of rank less than k or the 
zero vector. Hence 

Q 

(xjd:de0)<= 2(yna:de0) 
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for each 7 = 1 , . . . 9k. Hence 
k Q 

i=l w = l 

THEOREM 1. Let x±+- • '+xk=y1+- • -+ykeRk((Vl9... 9 Vm)x{G)) where *,= 
xa * • • • * x,-m and yi=^yH * • • • *y3mfor eachj=l9... 9k. Then for each orbit 0 
o/G, 

2<x,d:deO>=2<y,d:deO>. 
Proof. This follows immediately from Lemma 1. 

COROLLARY 1. Suppose that x± * • • • * xm=y1 * • • • * ym e V™(G) and xx * • • • * 
xm^0. Then (xl9... , xj=(yl9... , ym). 

This corollary generalizes a lemma of Marcus and Mine [11]. 

EXAMPLE. Let ®m V denote the mth tensor product space of a vector space V. 
Let z G ®m F be a rank k vector. Then for any non-zero vector v e V, v <g> z is of 
rank k in ®w+1 V. To prove this, we first note that v ® z^O. Suppose v 0 z= 
J i+ ' - -+Jnei* n (® w + 1 *0 where #=j>a®- • '®yiifM.1)9 l<i<n. Clearly «<£. 
By Lemma 1, (v)^(yll9... ,yn l) . This implies that yn=^iV for some non-zero 
scalars Xt. Hence ^®z=y(H)(2̂ w=l>l 7̂*2(S)• * #®Ji(m+i))- Thus z=2Li ^<y«®' • -<8> 
Jt(m+i) 6 -K*(®w *0- This shows that n=k. Hence i?®z G Rk(®

m+1 V). 

DEFINITION. Let z=zx-\ \-zk be a rowfc k vector in ( F l s . . . , Vm)x(G) where 
^•=^1 * ' ' ' * zjm> 1 </<£• F° r e a ch orbit 0 of G9 we define 0(z) to be the subspace 
ZU(zjd:deO). 

THEOREM 2. Let Ul9... , Um be subspaces ofVl9...9 Vm respectively such that 
Ui— U<j{i) for 1= 1,. . . , w and for all a eG. Then 

Rk((Ul9. . . , Um\(G)) s ^ ( ( F l 5 . . . , VJX(G)). 

Proof. Let j e Rk((Ul9... 9 UJX(G)). For each orbit 0 of G and each r G 0, 
0(y)ç Ur. Suppose 

y=Iy^Rn((vl9...9vm)x(G)) 
3=1 

whereyi is a decomposable element for each j. Then n<k. According to Lemma 1, 
we have for each 0 of G9 

i<Ky,) s 0(y) s ur 
J=I 

where r e 0. If «<&, then the rank of j is less than k in ( t /1 ? . . . , Um)x(G) which 
is a contradiction. Therefore n=k and y e Rk((Vl9... , Vm)x(G)). 

THEOREM 3. Let x e Rk((Vl9... 9 Vm)x(G)). Let y=y± * • • • * ym^0. If for 
some orbit 0, there is a s G 0 such that ys $ 0(x)9 then x+y is of rank k or k+l. 
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Proof. If x + j = 0 , then x = — y. This implies k=l. By Theorem 1, ys e0(x), 
a contradiction. 

If x + j = 2 L i z i is °f r a n ^ w where l<n<k, then * = 2 L i Z;~~J- This implies 
that n=k—l since x is of rank k. By Theorem 1, 

0(x) = 0(z1) + ' - -+0(z,_1)+0(j) . 

Hence ys e 0(x) which is a contradiction. 
Therefore x-j-j is of rank k or k+1. 

THEOREM 4. Lef x be a rank k vector in (Vl9... , FW)X(G). Lef J = j i * • • • * 
JWT^O. Tjf/ar 5ome ore// OofG, there are d,q e 0 swc/z that yd, yq are linearly inde
pendent and 

{y* yÙ n o(x) = {o}, 
/Ae« x+y is of rank k+\. 

Proof. By Theorem 3, x+y is of rank k or £ + 1 . Assume that x+y=z is of 
rank A; where ^ = 2 L i z i a n ( l ^ • = % * , , , * ^ m 5 !<. /</ : . Since j = — x + z , it 
follows from Lemma 1 that 

0(JO Ç 0 ( X ) + 0 ( Z ) . 

If 0(z)g0(x), then 0(y)cO(jc), which is a contradiction to the hypothesis. Hence 
0(z)$Q(x). Thus for some s e O and some l<r<k, zrs$Q(x). We have either 
(yd)+((zrs)+Q(x)) or (ja)+((z r s)+0(x)) is a direct sum. We may assume that 
(yd) + ((zrs)+Q(x)) i s a direct sum. 

Let gs: V8->VS be a linear mapping such that 

gs(yd) = 0, gs(zrs) = 0 
and 

gs|0(a) = identity mapping. 

Let gi'. Vf-^Vi be the identity mapping if / ^ 0 and gi=gs if / e 0. Then 

^(gi , • • • > gJ(x+y) = £(gi, • • • ? g j z = x = X(gl9 . . . , g j ( 2 z i | -

Since x is of rank k and ^ (g 1 ? . . . , gw)Q^Vr z;) ^s either the zero vector or of rank 
<&, we obtain a contradiction. Hence x + j is of rank k+l. 

THEOREM 5. Zef x be a rank k vector in (Vl9. . . , ^TO)Z(CJ). Ze/ j 6e a non-zero 
decomposable element. If there are two orbits 0X and 02 of G such that 

0&) $ 0x(x) and 0a(y) $ 02(x), 

f/*etf x + j /.y of rank k+l. 

Proof. Let y=yx * • • • * j w . Choose J e 0 such that yd $ 01(x). Let x + j = z . 
By Theorem 3, z is of rank k or k+l. Suppose z=]£Li z,- is of rank k where zt 

is a decomposable element for each j . 
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L e t ga: v<r+vd b e a l i n e a r mapping such that gd(yd)=0 and gd \ 0iix) =identity 
mapping. Let gs: VS->VS be the linear mapping such that g8=gd if se 0l9 and gs is 
the identity mapping if s £ Ô  Let K(gl9... , gw)z,=z^, l<,j<k. Then 

K(gi> • • • > &»)(*+)0 = * = *(&> • • • > gm)* = 2 4 

In view of Theorem 1, 02(x)=2/==i %(ZJ)- Since gs: VS->VS is the identity mapping 
if 5 G 02, it follows that 02(z,)=02(z>), 1 <j<k. Hence 

02(*)=io2(z,) = 02(z). 
i=i 

Since y= — x+z, it follows from Lemma 1 that 

02(j)£02(x)+02(z) = 02(x). 
This contradicts the hypothesis. Hence x+y is of rank k+1. 

LEMMA 2. Let x=xx * • • • * xm e (Vl9..., Vm)x(G). If x=0 then dim(x,.: 
/ e 0)<|0|/<?r some orbit OofG where |0| denotes the number of elements in 0. 

Proof. Suppose that dim(x t:/e0)=|0| for all orbits 0 of G. For each j , let 
f: V5->F be a linear map such that f(x3)=l, f(xd)=Q> for all d where j^d and 
y, rf belong to the same orbit of G. Since 

m 

/ : K , . . . , w J -> 2 (̂(T) n/*«)(w<)> w* G ** 
creG ,_x 

is symmetric with respect to G and %9 there exists a linear mapping h:(Vl9.. ., 
^ ( G ) - - ^ such that 

ft(Wi * • • • * W j = /(Wi, . . . , WJ. 

Since/ff0)(xy)=l if and only if c(j)=j, it follows that lKLi/a(y)(^)=0 if °'^1-
Hence 

m 

/ te , . . . , x j = (̂i) n/ iW = L 

Therefore A(xx * • • • * xm)=l. This is a contradiction since xx * • • • * xm=0. 
Hence the proof is complete. 

THEOREM 6. Let Xj=xn * • • • * xjm,j= 1 , . . . , k, be k decomposable elements in 
(Vu • • • , Vm)x(G)' If for each orbit 0, 

dim(i<x,d:de0>) = |0| k, 

//ie« 2r/=i ** & of rank k. 

Proof, This follows from Lemma 2, Theorem 4 and Theorem 5 by induction. 

REMARK. Taking G=Sm9 #="sign of permutation" character in Theorem 1, 
Theorem 2 and Theorem 6 we obtain Theorem 3, Theorem 5 and Theorem 6 in 
[8] respectively. 
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LEMMA 3. Let Ul9... 9Utbe vector spaces over the same field such that dim U^ 
mi where m{ is a positive integer for each i. Then (®w* t/j)®- • -®(®w< Ut) has a 
basis consisting of decomposable elements of the form 

(xu®- • -®xlmi) ®- • -®(xa®- • -®xtmt) 

in which xil9. . . , xim. are linearly independent for each i. 

Proof. It suffices to show that the set of all decomposable elements x t l®- • '<8>xim 

such that xil9. . . , xim are linearly independent in £/f spans ®m* £/t. This can be 
shown easily by induction on m{. 

LEMMA 4. (Vl9... , ^TO)Z(G) Aos a basis consisting of decomposable elements v 
such that dim 0(V)=|0| for each orbit 0 of G provided dim Vj>\Q\for j e 0. 

Proof. Let 0l9... 90t be all the orbits of G. In view of Lemma 3 and the canoni
cal isomorphism between V^---<&Vm and (®l01' F^)®- • -(g^®10*1 F ^ where 
j i G 0 1 5 . . . ,yf G 0 t, Fj®- • -® Fm has a basis consisting of decomposable elements 
i?!®* • *®i?m in which dim^ry e 0)= |0 | for each orbit 0. 

Since the mapping/: Fj®- • -®Vm-+(Vl9 • • • , ^ ^ ( G ) such that 

/ f a ® - • -®i?J = Ax * • • • * vm9 v{e Vi9 

is onto, it follows that (Vl9. . . , Vm)x(G) has a basis consisting of decomposable 

elements v such that dim 0(t»)=|0) for each orbit 0. 

THEOREM 7. Suppose for each orbit 0 ofG, dim Vô> |0| where j e 0. TTzefl ( J ^ , . . . , 
FOT)X(G) te a tew consisting of rank k vectors if one of the following conditions holds : 

(i) There is an orbit 0t such that |0i |>2 and dim Fr>|01|+2(A:~-1), r e 0X. 
(ii) There are two orbits 0t and 02 such that 

dimF r > IOil+fc-1, reOl9 

dim Vs > | 0 2 | + fc - l , s e 0 2 . 

Proof. Case (i). The result is trivial when k=l. Let k>2. Let / b e the set of all 
decomposable elements v such that dim 0(V)=|0| for each orbit 0. Let x=x1* • • • * 
xm be an element of / . We shall show that there are two rank k vectors A and B 
such that x=A—B. 

Let 01={jl9. . . , / , } • Then xji9 . . . , xj are linearly independent vectors. Choose 
vectors ul9... , W2(*-D

 s u c ^ that 

Xjl9 . . . , X i s , M l9 . . . , W2(fc_i) 

are linearly independent. Let y=yx * • • • * ym such that 7t-=xf for i^j29 yj = 
Xj2+ux. Let z=z1 * - - - * zm where z~x,- for i^j29 ^ 2 = w i - Then x=j—z . Let w= 
Wj * • • •* wm where w~Xi for iVji, z ? ^ and w5 =Xj , ŵ  =w2. If k>39 then 
for each positive integer/?<k—2, let 1^=1^1 * • • • * t^m such that vpi=Xi for J V / I , 
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zV;2 and Vj)ji=u2p+l9 v^=u2p+2. Finally let 
fc-2 

A = y+w+^vp9 

fc-2 

Then x=A-B. 
In view of Lemma 2 and Theorem 4, A and i? are both of rank k. Since / spans 

(Vl9... , ^W)X(G) (Lemma 4), it follows that the set of all rank k vectors spans 
(Vi> • • • > Vm)x(G)- This proves case (i). 

Case (ii) can be proved similarly by applying Lemma 4 and Theorem 5. 
Corollary 2 was proved by Brawley [2] using matrix language. 

COROLLARY 2. Let U and V be two vector spaces over the same field. Then U®V 
has a basis consisting of rank k vectors for each A:<min{dim U, dim V}. 

COROLLARY 3. Let A2U be the second Grassmann space over a vector space U. 
Then A2U has a basis consisting of rank k vectors if2k <dim U. 

EXAMPLE. Let U be a finite dimensional vector space over an algebraically 
closed field of characteristic 0. Let U(m) be the mth symmetric product space of 
U with decomposable elements denoted by ux... um9 u{ e U. For each ueU, 

m times 

let um=u . . . u. Let yl9... , yn be n linearly independent vectors in U. In view 
of Propositions 9 and 10 of [5], 

y?+y? = zi---zm 

for some zi where (zl9. . . , zm)=(yl9 y2). Hence Theorem 4 and Theorem 5 imply 
that j>r+* ' 9+y™ i s of rank [(/i+l)/2]. Since {um:u e U} spans £/<m> [1; p. 131,] 
it is easily shown that U{m) has a basis consisting of rank k vectors if dim U>2k—l. 

THEOREM 8. Let x9 y and z be three non-zero decomposable elements of 
(Vi> • • • > Vm)x(G)- Let 0 l 5 . . . , 0É be all the orbits ofG. Ifx+y=z9 then for all /, 
0a(x)=0i(>y), except possibly for one value j ofi, in which case 

dim 0,O) < d i m ^ O ) n O,O0)+l. 

Proof. Suppose that there exist distinct s and q such that 

0.(x) * 0s(y)9 0Q(x) * 0Q(y). 

We may assume Os(x)$Os(}0- Let x=x± * • • • * xm. Choose de0s such that 

*«*0.(y). 
Let Td: Vd->Vd be a linear mapping such that Td(xd)=0 and Td 10siy) is the iden

tity mapping. Let Tn:Vn->Vn be the identity mapping if n<£0s and Tn=Td if 
n e 0S. Then 

K(T19. . . , Tm)(x+y) = K(T19. . . , Tjz = y. 
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Since Tn is the identity mapping if n £ Os, by Theorem 1, 0a(y)=0g(z). In view of 
Lemma 1, 

0ff(x) s 0 , ( J O + 0 , ( Z ) = 0q(y) 

Therefore 0q(y)^0q(x). Let z=z1 * • • • * zm. Choose r eOq such that zr $ 0q(x). 
Let / r : Vr-+Vr be a linear mapping such that / r (z r )=0 a n d / . | 0 {x) is the identity 
mapping. Let/n : Vn->Vn be the identity mapping if n $ 0q andfn=fr ifneOq. Then 

K(fi, • • • ,/*)(*+JO = *+K(fl9... , / J y = K(fl9... , / J z = 0. 

Therefore i5T(/i,... ,fm)y= —x. Since / n is the identity mapping for n e 0S, it 
follows from Theorem 1 that 0s(x)=0s(y)9 which is impossible. 

Hence there is possibly only one/ such that O^xj^O^j). 
Now assume that such a / exists and 

dim 0,(x) > l+dim(0,(x) n 0,(j;)). 

Then it is not hard to see that there are linearly independent vectors xd9 xv, where 
d,p eOj such that 0^(y) n (xd, xp)={0}. By Theorem 4, x + j is of rank 2. This 
contradicts the hypothesis. Hence the proof is complete. 

The above theorem contains the known facts in tensor, Grassmann and sym
metric spaces as special cases. See Lemma 3.1 [14], Lemma 5 [3] and Theorem 1.14 
[4]. 

3. Applications. As an application of Theorem 1 and Theorem 2, we prove 
the following theorem which generalizes the result concerning intersection of tensor 
products in [6, section 1.15]. 

THEOREM 9. Let U{ and Wt be subspaces of V€ where U~Ua{i)i W~W^i)9 

V~ VaH) for i= 1, . . . , m and for all a e G. Then 

(ul9..., ujx(G) n(wl9...9 wjx(G) = (u1nwl9...9umn wjx(G). 

Proof. Clearly 

(U± nwl9...9Umn wm\(G) s (ul9...9 Um\(G) n(Wl9...9 WJX(G). 
Let z be a non-zero vector of (Ul9... 9 UJX(G) n (Wl9... 9 Wm)x(G). Then 
z e Rk((Vl9... , Vm)x(G)) for some positive integer k. By Theorem 2, 

z G Rk((Ul9 ...9 UJX(G)) n Rk((Wl9 ...9 WJX(G)). 
Hence 

z = xx+- • -+xk = yx+- - -+yk 

for some Xi e Rx{{Ul9... , UJX(G)) and some j , e R1((Wl9 ...9 WJX{G))9 

\<i<m. By Theorem 1, for each orbit 0 of G9 we have 

| o ( x ; ) = | o ( y , ) ç : TT a nU a , ^ G 0 . 

Therefore z e (6^ n J F l 5 . . . , Um n FFJ^G). This completes the proof. 
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As an application of Theorem 1, we prove the following generalization of a 
result of Marcus [9]. 

THEOREM 10. Let K(fl9... , /m) , K(gl9... ,gm) be two non-zero associated 
transformations on (Vl9... , Vm)x(G). Suppose that (i) for each orbit 0 of G and 
each i eO, rank f>\0\ or (ii) ^ = 1 . Then K(fl9... ,fJ=K(gl9 ...,gm) if and 
onty îffi=^igifor some scalar s At with XXX2... Am=l. 

Proof. The sufficiency of the theorem is trivial. We proceed to prove the necessity. 
Case (i). Let 01={jl9j29... 9jk} be any orbit of G and s e 0lm Let v1 e Vs such that 

/s(y1)=z17é0. Let zl9... , zk+1 be k+1 linearly independent vectors in the range 
space of/s. Choose v{ e Vs such that/s(t?t-)=zf, i>2. 

By the hypothesis on the rank offj9 we are able to choose for each \<i<k a 
decomposable element ya * • • • * yim such that 

bin* • • • > yuù = K> • • > %u}~Ru} 
and 

dim(fl(yil):le0r) = \0r\9 r > 2, 

where 02,. . . , 0̂  are the other orbits of G. In view of Lemma 2, 

K(fi> • • • >fJ(ya * ' • • * ttJ = ^(gi> • • • » gJGh * ' " ' * ttm) 5e 0. 
By Theorem 1, 

0i(/i0>ii) * ' • • *fm(yiJ) = OiCgiOa) * • • • * gm(^J). 
Hence 

<Zl, • • > 4f l> • • • , ZJc+l) = <gSOl)> • • • » gS<X+l)> • • • > g.0>*+l)\ Î = 1, . . . , fe. 

This implies that 

(i) n < z i , . . . , f i + i , . . . , zfc+1> = n (g s(t^i) , . . . , g s o * + i ) , . . . , gs(^+i)> 
Since zl9. . . , z&+1 are linearly independent, the left hand side of (1) is (zx). Since 
the right hand side of (1) contains (g8(t?i)) and gs(v1)9

£09 it follows that (z1>= 
(/s(l?i))=(^s(î;i))- This shows that the rank of gs>k+l. By symmetry, gs(u)j£§ 
implies that (gs(u))=(fs(u)). Hence (f8(v))=(g8(v)) for all ve Vs. This implies 
that/s=Asgs for some scalar As. Clearly Xx... Am=l. 

Case (ii). #=1. Let « 1 e F 1 , . . . , i / m e F m such that/^w^^O and Ui=ua{i) for 
all / and for all <r e G. Then 

^(/ l> • • • >/m)(Wl * ' * * * W J = # ( g i , • • > gm)("l * ' • * * "m)-

Since z s l f fx{u^ * • • • */«.(« J=gi(*i) * • • • « gm(ww)^0. Theorem 1 implies 
that (fi(ui))=(gi(ut))9 / = 1 , . . . , w. Similarly if w, e K,,g<(Hv)?*0and w,=wa(<) for 
all i and oeG9 then (g,(wi))=(/i(wt.)). Hence </,(»,)>=<&(!><)> for all VieV4. 
This implies that/i=Atgi for some scalar Xi9 \<,i<m. Clearly Xx... Am=l. 
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