RANK k VECTORS IN SYMMETRY CLASSES OF TENSORS*

BY
MING-HUAT LIM

1. Introduction. Let F be a field, G a subgroup of S_{m}, the symmetric group of degree m, and χ a linear character on G, i.e., a homomorphism of G into the multiplicative group of F. Let V_{1}, \ldots, V_{m} be vector spaces over F such that $V_{i}=V_{\sigma(i)}$ for $i=1, \ldots, m$ and for all $\sigma \in G$. If W is a vector space over F, then a m-multilinear function $f: \mathrm{X}_{i=1}^{m} V_{i} \rightarrow W$ is said to be symmetric with respect to G and χ if

$$
f\left(x_{\sigma(1)}, \ldots, x_{\sigma(m)}\right)=\chi_{(\sigma)} f\left(x_{1}, \ldots, x_{m}\right)
$$

for any $\sigma \in G$ and for arbitrary $x_{i} \in V_{i}$. A pair (P, μ) consisting of a vector space P over F and a m-multilinear function $\mu: \mathrm{X}_{i=1}^{m} V_{i} \rightarrow P$, symmetric with respect to G and χ, is a symmetry classes of tensors over V_{1}, \ldots, V_{m} associated with G and χ if the following universal factorization property is satisfied: for any vector space U over F and any m-multilinear function $f: \mathrm{X}_{i=1}^{m} V_{i} \rightarrow U$, symmetric with respect to G and χ, there exists a unique linear mapping $g: P \rightarrow U$ such that $f=g \mu$.
The symmetry class over V_{1}, \ldots, V_{m} associated with G and χ always exists and is unique up to vector space isomorphism (see [11], [12]). We shall denote such a space by $\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)$. If $V_{1}=\cdots=V_{m}=V$, then such a space is usually denoted by $V_{x}^{m}(G)$ [11]. The vector $\mu\left(x_{1}, \ldots, x_{m}\right)$ is called decomposable and is denoted by $x_{1} * \cdots * x_{m}$. The most familiar symmetry classes are the tensor, Grassmann and symmetric spaces.

Let $T_{i}: V_{i} \rightarrow V_{i}$ be linear mappings such that $T_{i}=T_{\sigma(i)}$ for $i=1, \ldots, m$ and for all $\sigma \in G$. Then

$$
\phi:\left(x_{1}, \ldots, x_{m}\right) \rightarrow T_{1} x_{1} * \cdots * T_{m} x_{m}
$$

is symmetric with respect to G and χ and hence induces a unique linear mapping $K\left(T_{1}, \ldots, T_{m}\right)$ on $\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)$ such that

$$
K\left(T_{1}, \ldots, T_{m}\right) x_{1} * \cdots * x_{m}=T_{1} x_{1} * \cdots * T_{m} x_{m} .
$$

$K\left(T_{1}, \ldots, T_{m}\right)$ is called the associated transformation of T_{1}, \ldots, T_{m}. When $T_{1}=\cdots=T_{m}=T$, we shall denote $K\left(T_{1}, \ldots, T_{m}\right)$ simply by $K(T)[9,11]$.

A non-zero vector in $\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)$ is said to have rank k if it is the sum of k but not less than k non-zero decomposable elements in $\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$. The set of all rank k vectors in $\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$ is denoted by $R_{k}\left(\left(V_{1}, \ldots, V_{m}\right)_{x}(G)\right)$.

[^0]In this paper we prove that (i) the rank of each vector in $\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$ is unchanged if we extend V_{1}, \ldots, V_{m}; (ii) for each rank k vector in (V_{1}, \ldots, $\left.V_{m}\right)_{\chi}(G)$ and each orbit 0 of G there associates a unique subspace of V_{i} where $i \in 0$; (iii) if there is an orbit 0 of G such that $|0| \geq 2, \operatorname{dim} V_{j} \geq|0|+2(k-1)$ where $j \in 0$, then $\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$ has a basis consisting of rank k vectors. (i) and (ii) generalize two results of Lim [8]. We also give some criteria for determining the rank of a vector in $\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$. From (i) and (ii) we obtain an application on intersections of symmetry classes and an application on equalities of two associated transformations.
2. Properties of rank k vectors. Throughout this section, let $\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$ denote a symmetry class of tensors over V_{1}, \ldots, V_{m} associated with a subgroup G of S_{m} and a linear character χ on G.

For any vectors z_{1}, \ldots, z_{n} in a vector space Z, let $\left\langle z_{1}, \ldots, z_{n}\right\rangle$ denote the subspace of Z spanned by z_{1}, \ldots, z_{n}.

Lemma 1. Let $x_{1}+\cdots+x_{k}=y_{1}+\cdots+y_{q} \in R_{k}\left(\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)\right)$ where $x_{i}=$ $x_{i 1} * \cdots * x_{i m}, y_{n}=y_{n 1} * \cdots * y_{n m}$ for each $i=1, \ldots, k$ and $n=1, \ldots, q$. Then for each orbit 0 of G,

$$
\sum_{i=1}^{k}\left\langle x_{i d}: d \in 0\right\rangle \subseteq \sum_{n=1}^{q}\left\langle y_{n d}: d \in 0\right\rangle
$$

Proof. Suppose that for some $j, 1 \leq j \leq k$,

$$
\left\langle x_{j d}: d \in 0\right\rangle \nsubseteq \sum_{n=1}^{q}\left\langle y_{n d}: d \in 0\right\rangle .
$$

Then for some $s \in 0, x_{j s} \notin \sum_{n=1}^{d}\left\langle y_{n d}: d \in 0\right\rangle$.
Consider the associated transformation $K\left(T_{1}, \ldots, T_{m}\right)$ on $\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)$ where $T_{i}=T_{\sigma(i)}$ for all $\sigma \in G, i=1, \ldots, m$ and $T_{1} \ldots, T_{m}$ are defined as follows:

If $i \in 0, T_{i}: V_{i} \rightarrow V_{i}$ is a linear mapping such that $T_{i}\left(x_{j s}\right)=0$ and $T_{i} \mid \sum_{n=1}^{d}\left\langle y_{n d}\right.$: $d \in 0\rangle$ is the identity mapping.

If $i \notin 0, T_{i}: V_{i} \rightarrow V_{i}$ is the identity mapping.
We have $K\left(T_{1}, \ldots, T_{m}\right)\left(\sum_{i=1}^{k} x_{i}\right)=K\left(T_{1}, \ldots, T_{m}\right)\left(\sum_{n=1}^{q} y_{n}\right)$. Since $K\left(T_{1}, \ldots\right.$, $\left.T_{m}\right) y_{n}=y_{n}$ for $n=1, \ldots, q$ and

$$
K\left(T_{1}, \ldots, T_{m}\right) x_{j}=T_{1} x_{j 1} * \cdots * T_{m} x_{j m}=0
$$

it follows that

$$
\begin{aligned}
K\left(T_{1}, \ldots, T_{m}\right)\left(x_{1}+\cdots+x_{j-1}+x_{j+1}+\cdots\right. & \left.+x_{k}\right) \\
& =y_{1}+\cdots+y_{q} \in R_{k}\left(\left(V_{1}, \ldots, V_{m}\right)_{x}(G)\right) .
\end{aligned}
$$

This is a contradiction since the left hand side is a vector of rank less than k or the zero vector. Hence

$$
\left\langle x_{j d}: d \in 0\right\rangle \subseteq \sum_{n=1}^{q}\left\langle y_{n d}: d \in 0\right\rangle
$$

for each $j=1, \ldots, k$. Hence

$$
\sum_{i=1}^{k}\left\langle x_{i d}: d \in 0\right\rangle \subseteq \sum_{n=1}^{q}\left\langle y_{n d}: d \in 0\right\rangle
$$

Theorem 1. Let $x_{1}+\cdots+x_{k}=y_{1}+\cdots+y_{k} \in R_{k}\left(\left(V_{1}, \ldots, V_{m}\right)_{x}(G)\right)$ where $x_{j}=$ $x_{j 1} * \cdots * x_{j m}$ and $y_{j}=y_{j i} * \cdots * y_{j m}$ for each $j=1, \ldots, k$. Then for each orbit 0 of G,

$$
\sum_{j=1}^{k}\left\langle x_{j d}: d \in 0\right\rangle=\sum_{j=1}^{k}\left\langle y_{j d}: d \in 0\right\rangle
$$

Proof. This follows immediately from Lemma 1.
Corollary 1. Suppose that $x_{1} * \cdots * x_{m}=y_{1} * \cdots * y_{m} \in V_{x}^{m}(G)$ and $x_{1} * \cdots *$ $x_{m} \neq 0$. Then $\left\langle x_{1}, \ldots, x_{m}\right\rangle=\left\langle y_{1}, \ldots, y_{m}\right\rangle$.

This corollary generalizes a lemma of Marcus and Minc [11].
Example. Let $\otimes^{m} V$ denote the m th tensor product space of a vector space V. Let $z \in \otimes^{m} V$ be a rank k vector. Then for any non-zero vector $v \in V, v \otimes z$ is of rank k in $\otimes^{m+1} V$. To prove this, we first note that $v \otimes z \neq 0$. Suppose $v \otimes z=$ $y_{1}+\cdots+y_{n} \in R_{n}\left(\otimes^{m+1} V\right)$ where $y_{i}=y_{i 1} \otimes \cdots \otimes y_{i(m+1)}, \quad 1 \leq i \leq n$. Clearly $n \leq k$. By Lemma $1,\langle v\rangle \supseteq\left\langle y_{11}, \ldots, y_{n 1}\right\rangle$. This implies that $y_{i 1}=\lambda_{i} v$ for some non-zero scalars λ_{i}. Hence $v \otimes z=v \otimes\left(\sum_{i=1}^{n} \lambda_{i} y_{i 2} \otimes \cdots \otimes y_{i(m+1)}\right)$. Thus $z=\sum_{i=1}^{n} \lambda_{i} y_{i 2} \otimes \cdots \otimes$ $y_{i(m+1)} \in R_{k}\left(\otimes^{m} V\right)$. This shows that $n=k$. Hence $v \otimes z \in R_{k}\left(\otimes^{m+1} V\right)$.

Definition. Let $z=z_{1}+\cdots+z_{k}$ be a rank k vector in $\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)$ where $z_{j}=z_{j 1} * \cdots * z_{j m}, 1 \leq j \leq k$. For each orbit 0 of G, we define $0(z)$ to be the subspace $\sum_{j=1}^{k}\left\langle z_{j d}: d \in 0\right\rangle$.

Theorem 2. Let U_{1}, \ldots, U_{m} be subspaces of V_{1}, \ldots, V_{m} respectively such that $U_{i}=U_{\sigma(i)}$ for $i=1, \ldots, m$ and for all $\sigma \in G$. Then

$$
R_{k}\left(\left(U_{1}, \ldots, U_{m}\right)_{\chi}(G)\right) \subseteq R_{k}\left(\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)\right)
$$

Proof. Let $y \in R_{k}\left(\left(U_{1}, \ldots, U_{m}\right)_{x}(G)\right)$. For each orbit 0 of G and each $r \in 0$, $0(y) \subseteq U_{r}$. Suppose

$$
y=\sum_{j=1}^{n} y_{j} \in R_{n}\left(\left(V_{1}, \ldots, V_{m}\right)_{x}(G)\right)
$$

where y_{j} is a decomposable element for each j. Then $n \leq k$. According to Lemma 1, we have for each 0 of G,

$$
\sum_{j=1}^{n} 0\left(y_{j}\right) \subseteq 0(y) \subseteq U_{r}
$$

where $r \in 0$. If $n<k$, then the rank of y is less than k in $\left(U_{1}, \ldots, U_{m}\right)_{x}(G)$ which is a contradiction. Therefore $n=k$ and $y \in R_{k}\left(\left(V_{1}, \ldots, V_{m}\right)_{x}(G)\right)$.

Theorem 3. Let $x \in R_{k}\left(\left(V_{1}, \ldots, V_{m}\right)_{x}(G)\right)$. Let $y=y_{1} * \cdots * y_{m} \neq 0$. If for some orbit 0 , there is a $s \in 0$ such that $y_{s} \notin 0(x)$, then $x+y$ is of rank k or $k+1$.

Proof. If $x+y=0$, then $x=-y$. This implies $k=1$. By Theorem 1, $y_{s} \in 0(x)$, a contradiction.

If $x+y=\sum_{j=1}^{n} z_{j}$ is of rank n where $1 \leq n<k$, then $x=\sum_{j=1}^{n} z_{j}-y$. This implies that $n=k-1$ since x is of rank k. By Theorem 1 ,

$$
0(x)=0\left(z_{1}\right)+\cdots+0\left(z_{k-1}\right)+0(y)
$$

Hence $y_{s} \in 0(x)$ which is a contradiction.
Therefore $x+y$ is of rank k or $k+1$.
Theorem 4. Let x be a rank k vector in $\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)$. Let $y=y_{1} * \cdots *$ $y_{m} \neq 0$. If for some orbit 0 of G, there are $d, q \in 0$ such that y_{d}, y_{q} are linearly independent and

$$
\left\langle y_{d}, y_{q}\right\rangle \cap 0(x)=\{0\},
$$

then $x+y$ is of rank $k+1$.
Proof. By Theorem 3, $x+y$ is of rank k or $k+1$. Assume that $x+y=z$ is of rank k where $z=\sum_{j=1}^{k} z_{j}$ and $z_{j}=z_{j 1} * \cdots * z_{j m}, 1 \leq j \leq k$. Since $y=-x+z$, it follows from Lemma 1 that

$$
0(y) \subseteq 0(x)+0(z)
$$

If $0(z) \subseteq 0(x)$, then $0(y) \subseteq 0(x)$, which is a contradiction to the hypothesis. Hence $0(z) \nsubseteq 0(x)$. Thus for some $s \in 0$ and some $1 \leq r \leq k, z_{r s} \notin 0(x)$. We have either $\left\langle y_{d}\right\rangle+\left(\left\langle z_{r s}\right\rangle+0(x)\right)$ or $\left\langle y_{a}\right\rangle+\left(\left\langle z_{r s}\right\rangle+0(x)\right)$ is a direct sum. We may assume that $\left\langle y_{d}\right\rangle+\left(\left\langle z_{r s}\right\rangle+0(x)\right)$ is a direct sum.

Let $g_{s}: V_{s} \rightarrow V_{s}$ be a linear mapping such that

$$
g_{s}\left(y_{d}\right)=0, \quad g_{s}\left(z_{r s}\right)=0
$$

and

$$
\left.g_{s}\right|_{o(x)}=\text { identity mapping. }
$$

Let $g_{i}: V_{i} \rightarrow V_{i}$ be the identity mapping if $i \notin 0$ and $g_{i}=g_{s}$ if $i \in 0$. Then

$$
K\left(g_{1}, \ldots, g_{m}\right)(x+y)=K\left(g_{1}, \ldots, g_{m}\right) z=x=K\left(g_{1}, \ldots, g_{m}\right)\left(\sum_{j \neq r} z_{j}\right)
$$

Since x is of rank k and $K\left(g_{1}, \ldots, g_{n}\right)\left(\sum_{j \neq r} z_{j}\right)$ is either the zero vector or of rank $<k$, we obtain a contradiction. Hence $x+y$ is of rank $k+1$.

Theorem 5. Let x be a rank k vector in $\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$. Let y be a non-zero decomposable element. If there are two orbits 0_{1} and 0_{2} of G such that

$$
0_{1}(y) \nsubseteq 0_{1}(x) \quad \text { and } \quad 0_{2}(y) \nsubseteq 0_{2}(x)
$$

then $x+y$ is of rank $k+1$.
Proof. Let $y=y_{1} * \cdots * y_{m}$. Choose $d \in 0$ such that $y_{d} \notin 0_{1}(x)$. Let $x+y=z$. By Theorem 3, z is of rank k or $k+1$. Suppose $z=\sum_{j=1}^{k} z_{j}$ is of rank k where z_{j} is a decomposable element for each j.

Let $g_{d}: V_{d} \rightarrow V_{d}$ be a linear mapping such that $g_{d}\left(y_{d}\right)=0$ and $\left.g_{d}\right|_{0_{1}(x)}=$ identity mapping. Let $g_{s}: V_{s} \rightarrow V_{s}$ be the linear mapping such that $g_{s}=g_{d}$ if $s \in 0_{1}$, and g_{s} is the identity mapping if $s \notin 0_{1}$. Let $K\left(g_{1}, \ldots, g_{m}\right) z_{j}=z_{j}^{\prime}, 1 \leq j \leq k$. Then

$$
K\left(g_{1}, \ldots, g_{m}\right)(x+y)=x=K\left(g_{1}, \ldots, g_{m}\right) z=\sum_{j=1}^{k} z_{j}^{\prime}
$$

In view of Theorem $1,0_{2}(x)=\sum_{j=1}^{k} 0_{2}\left(z_{j}^{\prime}\right)$. Since $g_{s}: V_{s} \rightarrow V_{s}$ is the identity mapping if $s \in 0_{2}$, it follows that $0_{2}\left(z_{j}\right)=0_{2}\left(z_{j}^{\prime}\right), 1 \leq j \leq k$. Hence

$$
0_{2}(x)=\sum_{j=1}^{k} 0_{2}\left(z_{j}\right)=0_{2}(z)
$$

Since $y=-x+z$, it follows from Lemma 1 that

$$
0_{2}(y) \subseteq 0_{2}(x)+0_{2}(z)=0_{2}(x)
$$

This contradicts the hypothesis. Hence $x+y$ is of rank $k+1$.
Lemma 2. Let $x=x_{1} * \cdots * x_{m} \in\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$. If $x=0$ then $\operatorname{dim}\left\langle x_{i}\right.$: $i \in 0\rangle<|0|$ for some orbit 0 of G where $|0|$ denotes the number of elements in 0 .

Proof. Suppose that $\operatorname{dim}\left\langle x_{i}: i \in 0\right\rangle=|0|$ for all orbits 0 of G. For each j, let $f_{j}: V_{j} \rightarrow F$ be a linear map such that $f_{j}\left(x_{j}\right)=1, f_{j}\left(x_{d}\right)=0$ for all d where $j \neq d$ and j, d belong to the same orbit of G. Since

$$
f:\left(w_{1}, \ldots, w_{m}\right) \rightarrow \sum_{\sigma \in \mathrm{G}} \chi(\sigma) \prod_{i=1}^{m} f_{\sigma(i)}\left(w_{i}\right), \quad w_{i} \in V_{i},
$$

is symmetric with respect to G and χ, there exists a linear mapping $h:\left(V_{1}, \ldots\right.$, $\left.V_{m}\right)_{x}(G) \rightarrow F$ such that

$$
h\left(w_{1} * \cdots * w_{m}\right)=f\left(w_{1}, \ldots, w_{m}\right)
$$

Since $f_{\sigma(j)}\left(x_{i}\right)=1$ if and only if $\sigma(j)=j$, it follows that $\prod_{j=1}^{m} f_{\sigma(j)}\left(x_{j}\right)=0$ if $\sigma \neq 1$. Hence

$$
f\left(x_{1}, \ldots, x_{m}\right)=\chi(1) \prod_{j=1}^{m} f_{j}\left(x_{j}\right)=1
$$

Therefore $h\left(x_{1} * \cdots * x_{m}\right)=1$. This is a contradiction since $x_{1} * \cdots * x_{m}=0$. Hence the proof is complete.

Theorem 6. Let $x_{j}=x_{j 1} * \cdots * x_{j m}, j=1, \ldots, k$, be k decomposable elements in $\left(V_{1}, \ldots, V_{m}\right)_{\mathbf{x}}(G)$. If for each orbit 0 ,

$$
\operatorname{dim}\left(\sum_{j=1}^{k}\left\langle x_{j d}: d \in 0\right\rangle\right)=|0| k
$$

then $\sum_{j=1}^{k} x_{j}$ is of rank k.
Proof. This follows from Lemma 2, Theorem 4 and Theorem 5 by induction.
Remark. Taking $G=S_{m}, \chi=$ "sign of permutation" character in Theorem 1, Theorem 2 and Theorem 6 we obtain Theorem 3, Theorem 5 and Theorem 6 in [8] respectively.

Lemma 3. Let U_{1}, \ldots, U_{t} be vector spaces over the same field such that $\operatorname{dim} U_{i} \geq$ m_{i} where m_{i} is a positive integer for each i. Then $\left(\otimes^{m_{1}} U_{1}\right) \otimes \cdots \otimes\left(\otimes^{m_{t}} U_{t}\right)$ has a basis consisting of decomposable elements of the form

$$
\left(x_{11} \otimes \cdots \otimes x_{1 m_{1}}\right) \otimes \cdots \otimes\left(x_{t 1} \otimes \cdots \otimes x_{t m_{t}}\right)
$$

in which $x_{i 1}, \ldots, x_{i m_{\boldsymbol{i}}}$ are linearly independent for each i.
Proof. It suffices to show that the set of all decomposable elements $x_{i 1} \otimes \cdots \otimes x_{i m_{i}}$ such that $x_{i 1}, \ldots, x_{i m_{i}}$ are linearly independent in U_{i} spans $\otimes^{m_{i}} U_{i}$. This can be shown easily by induction on m_{i}.

Lemma 4. $\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)$ has a basis consisting of decomposable elements v such that $\operatorname{dim} 0(v)=|0|$ for each orbit 0 of G provided $\operatorname{dim} V_{j} \geq|0|$ for $j \in 0$.

Proof. Let $0_{1}, \ldots, 0_{t}$ be all the orbits of G. In view of Lemma 3 and the canonical isomorphism between $V_{1} \otimes \cdots \otimes V_{m}$ and $\left(\otimes^{101 \mid} V_{j_{1}}\right) \otimes \cdots \otimes\left(\otimes^{10_{t} \mid} V_{j_{i}}\right)$ where $j_{1} \in 0_{1}, \ldots, j_{t} \in 0_{t}, V_{1} \otimes \cdots \otimes V_{m}$ has a basis consisting of decomposable elements $v_{1} \otimes \cdots \otimes v_{m}$ in which $\operatorname{dim}\left\langle v_{j}: j \in 0\right\rangle=|0|$ for each orbit 0 .
Since the mapping $f: V_{1} \otimes \cdots \otimes V_{m} \rightarrow\left(V_{1}, \cdots, V_{m}\right)_{x}(G)$ such that

$$
f\left(v_{1} \otimes \cdots \otimes v_{m}\right)=v_{1} * \cdots * v_{m}, \quad v_{i} \in V_{i}
$$

is onto, it follows that $\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)$ has a basis consisting of decomposable elements v such that $\operatorname{dim} 0(v)=|0|$ for each orbit 0 .

Theorem 7. Suppose for each orbit 0 of $G, \operatorname{dim} V_{j} \geq|0|$ where $j \in 0$. Then $\left(V_{1}, \ldots\right.$, $\left.V_{m}\right)_{\chi}(G)$ has a basis consisting of rank k vectors if one of the following conditions holds:
(i) There is an orbit 0_{1} such that $\left|0_{1}\right| \geq 2$ and $\operatorname{dim} V_{r} \geq\left|0_{1}\right|+2(k-1), r \in 0_{1}$.
(ii) There are two orbits 0_{1} and 0_{2} such that

$$
\begin{array}{ll}
\operatorname{dim} V_{r} \geq\left|0_{1}\right|+k-1, & r \in 0_{1} \\
\operatorname{dim} V_{s} \geq\left|0_{2}\right|+k-1, & s \in 0_{2} .
\end{array}
$$

Proof. Case (i). The result is trivial when $k=1$. Let $k \geq 2$. Let J be the set of all decomposable elements v such that $\operatorname{dim} 0(v)=|0|$ for each orbit 0 . Let $x=x_{1} * \cdots *$ x_{m} be an element of J. We shall show that there are two rank k vectors A and B such that $x=A-B$.

Let $0_{1}=\left\{j_{1}, \ldots, j_{s}\right\}$. Then $x_{j_{1}}, \ldots, x_{j_{s}}$ are linearly independent vectors. Choose vectors $u_{1}, \ldots, u_{2(k-1)}$ such that

$$
x_{j_{1}}, \ldots, x_{j_{s}}, u_{1}, \ldots, u_{2(k-1)}
$$

are linearly independent. Let $y=y_{1} * \cdots * y_{m}$ such that $y_{i}=x_{i}$ for $i \neq j_{2}, y_{j_{2}}=$ $x_{j_{2}}+u_{1}$. Let $z=z_{1} * \cdots * z_{m}$ where $z_{i}=x_{i}$ for $i \neq j_{2}, z_{j_{2}}=u_{1}$. Then $x=y-z$. Let $w=$ $w_{1} * \cdots * w_{m}$ where $w_{i}=x_{i}$ for $i \neq j_{1}, i \neq j_{2}$ and $w_{j_{1}}=x_{j_{2}}, w_{j_{2}}=u_{2}$. If $k \geq 3$, then for each positive integer $p \leq k-2$, let $v_{p}=v_{p 1} * \cdots * v_{p m}$ such that $v_{p i}=x_{i}$ for $i \neq j_{1}$,
$i \neq j_{2}$ and $v_{p j_{1}}=u_{2 p+1}, v_{p j_{2}}=u_{2 p+2}$. Finally let

$$
\begin{aligned}
& A=y+w+\sum_{p=1}^{k-2} v_{p}, \\
& B=z+w+\sum_{p=1}^{k-2} v_{p} .
\end{aligned}
$$

Then $x=A-B$.
In view of Lemma 2 and Theorem $4, A$ and B are both of rank k. Since J spans $\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$ (Lemma 4), it follows that the set of all rank k vectors spans $\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$. This proves case (i).

Case (ii) can be proved similarly by applying Lemma 4 and Theorem 5.
Corollary 2 was proved by Brawley [2] using matrix language.
Corollary 2. Let U and V be two vector spaces over the same field. Then $U \otimes V$ has a basis consisting of rank k vectors for each $k \leq \min \{\operatorname{dim} U, \operatorname{dim} V\}$.

Corollary 3. Let $\Lambda^{2} U$ be the second Grassmann space over a vector space U. Then $\Lambda^{2} U$ has a basis consisting of rank k vectors if $2 k \leq \operatorname{dim} U$.

Example. Let U be a finite dimensional vector space over an algebraically closed field of characteristic 0 . Let $U^{(m)}$ be the m th symmetric product space of U with decomposable elements denoted by $u_{1} \ldots u_{m}, u_{i} \in U$. For each $u \in U$, $\overbrace{}^{\mathrm{m} \text { times }}$
let $u^{m}=\overbrace{u \ldots u}$. Let y_{1}, \ldots, y_{n} be n linearly independent vectors in U. In view of Propositions 9 and 10 of [5],

$$
y_{1}^{m}+y_{2}^{m}=z_{1} \cdots z_{m}
$$

for some z_{i} where $\left\langle z_{1}, \ldots, z_{m}\right\rangle=\left\langle y_{1}, y_{2}\right\rangle$. Hence Theorem 4 and Theorem 5 imply that $y_{1}^{m}+\cdots+y_{n}^{m}$ is of rank $[(n+1) / 2]$. Since $\left\{u^{m}: u \in U\right\}$ spans $U^{(m)}[1 ;$ p. 131,] it is easily shown that $U^{(m)}$ has a basis consisting of rank k vectors if $\operatorname{dim} U \geq 2 k-1$.

Theorem 8. Let x, y and z be three non-zero decomposable elements of $\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)$. Let $0_{1}, \ldots, 0_{t}$ be all the orbits of G. If $x+y=z$, then for all i, $0_{i}(x)=0_{i}(y)$, except possibly for one value j of i, in which case

$$
\operatorname{dim} 0_{j}(x) \leq \operatorname{dim}\left(0_{j}(x) \cap 0_{j}(y)\right)+1
$$

Proof. Suppose that there exist distinct s and q such that

$$
0_{s}(x) \neq 0_{s}(y), \quad 0_{q}(x) \neq 0_{q}(y)
$$

We may assume $0_{s}(x) \nsubseteq 0_{s}(y)$. Let $x=x_{1} * \cdots * x_{m}$. Choose $d \in 0_{s}$ such that $x_{d} \notin 0_{s}(y)$.

Let $T_{d}: V_{d} \rightarrow V_{d}$ be a linear mapping such that $T_{d}\left(x_{d}\right)=0$ and $\left.T_{d}\right|_{0_{s}(y)}$ is the identity mapping. Let $T_{n}: V_{n} \rightarrow V_{n}$ be the identity mapping if $n \notin 0_{s}$ and $T_{n}=T_{d}$ if $n \in 0_{s}$. Then

$$
K\left(T_{1}, \ldots, T_{m}\right)(x+y)=K\left(T_{1}, \ldots, T_{m}\right) z=y
$$

Since T_{n} is the identity mapping if $n \notin 0_{s}$, by Theorem $1,0_{q}(y)=0_{q}(z)$. In view of Lemma 1,

$$
0_{q}(x) \subseteq 0_{q}(y)+0_{q}(z)=0_{q}(y)
$$

Therefore $0_{q}(y) \nsubseteq 0_{q}(x)$. Let $z=z_{1} * \cdots * z_{m}$. Choose $r \in 0_{q}$ such that $z_{r} \notin 0_{q}(x)$. Let $f_{r}: V_{r} \rightarrow V_{r}$ be a linear mapping such that $f_{r}\left(z_{r}\right)=0$ and $\left.f_{r}\right|_{o_{q}(x)}$ is the identity mapping. Let $f_{n}: V_{n} \rightarrow V_{n}$ be the identity mapping if $n \notin 0_{q}$ and $f_{n}=f_{r}$ if $n \in 0_{q}$. Then

$$
K\left(f_{1}, \ldots, f_{m}\right)(x+y)=x+K\left(f_{1}, \ldots, f_{m}\right) y=K\left(f_{1}, \ldots, f_{m}\right) z=0 .
$$

Therefore $K\left(f_{1}, \ldots, f_{m}\right) y=-x$. Since f_{n} is the identity mapping for $n \in 0_{s}$, it follows from Theorem 1 that $0_{s}(x)=0_{s}(y)$, which is impossible.

Hence there is possibly only one j such that $0_{j}(x) \neq 0_{j}(y)$.
Now assume that such a j exists and

$$
\operatorname{dim} 0_{j}(x)>1+\operatorname{dim}\left(0_{j}(x) \cap 0_{j}(y)\right) .
$$

Then it is not hard to see that there are linearly independent vectors x_{d}, x_{p}, where $d, p \in 0_{j}$ such that $0_{j}(y) \cap\left\langle x_{d}, x_{p}\right\rangle=\{0\}$. By Theorem $4, x+y$ is of rank 2. This contradicts the hypothesis. Hence the proof is complete.
The above theorem contains the known facts in tensor, Grassmann and symmetric spaces as special cases. See Lemma 3.1 [14], Lemma 5 [3] and Theorem 1.14 [4].
3. Applications. As an application of Theorem 1 and Theorem 2, we prove the following theorem which generalizes the result concerning intersection of tensor products in [6, section 1.15].

Theorem 9. Let U_{i} and W_{i} be subspaces of V_{i} where $U_{i}=U_{\sigma(i)}, W_{i}=W_{\sigma(i)}$, $V_{i}=V_{\sigma(i)}$ for $i=1, \ldots, m$ and for all $\sigma \in G$. Then

$$
\left(U_{1}, \ldots, U_{m}\right)_{\chi}(G) \cap\left(W_{1}, \ldots, W_{m}\right)_{\chi}(G)=\left(U_{1} \cap W_{1}, \ldots, U_{m} \cap W_{m}\right)_{\chi}(G)
$$

Proof. Clearly

$$
\left(U_{1} \cap W_{1}, \ldots, U_{m} \cap W_{m}\right)_{\chi}(G) \subseteq\left(U_{1}, \ldots, U_{m}\right)_{\chi}(G) \cap\left(W_{1}, \ldots, W_{m}\right)_{\chi}(G)
$$

Let z be a non-zero vector of $\left(U_{1}, \ldots, U_{m}\right)_{\chi}(G) \cap\left(W_{1}, \ldots, W_{m}\right)_{\chi}(G)$. Then $z \in R_{k}\left(\left(V_{1}, \ldots, V_{m}\right)_{\chi}(G)\right)$ for some positive integer k. By Theorem 2,

$$
z \in R_{k}\left(\left(U_{1}, \ldots, U_{m}\right)_{x}(G)\right) \cap R_{k}\left(\left(W_{1}, \ldots, W_{m}\right)_{\chi}(G)\right)
$$

Hence

$$
z=x_{1}+\cdots+x_{k}=y_{1}+\cdots+y_{k}
$$

for some $x_{i} \in R_{1}\left(\left(U_{1}, \ldots, U_{m}\right)_{\chi}(G)\right)$ and some $y_{i} \in R_{1}\left(\left(W_{1}, \ldots, W_{m}\right)_{\chi}(G)\right)$, $1 \leq i \leq m$. By Theorem 1, for each orbit 0 of G, we have

$$
\sum_{i=1}^{k} 0\left(x_{i}\right)=\sum_{i=1}^{k} 0\left(y_{i}\right) \subseteq W_{Q} \cap U_{a}, \quad q \in 0
$$

Therefore $z \in\left(U_{1} \cap W_{1}, \ldots, U_{m} \cap W_{m}\right)_{\chi}(G)$. This completes the proof.

As an application of Theorem 1, we prove the following generalization of a result of Marcus [9].

Theorem 10. Let $K\left(f_{1}, \ldots, f_{m}\right), K\left(g_{1}, \ldots, g_{m}\right)$ be two non-zero associated transformations on $\left(V_{1}, \ldots, V_{m}\right)_{x}(G)$. Suppose that (i) for each orbit 0 of G and each $i \in 0$, rank $f_{i}>|0|$ or (ii) $\chi \equiv 1$. Then $K\left(f_{1}, \ldots, f_{m}\right)=K\left(g_{1}, \ldots, g_{m}\right)$ if and only if $f_{i}=\lambda_{i} g_{i}$ for some scalars λ_{i} with $\lambda_{1} \lambda_{2} \ldots \lambda_{m}=1$.

Proof. The sufficiency of the theorem is trivial. We proceed to prove the necessity.
Case (i). Let $0_{1}=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ be any orbit of G and $s \in 0_{1}$. Let $v_{1} \in V_{s}$ such that $f_{s}\left(v_{1}\right)=z_{1} \neq 0$. Let z_{1}, \ldots, z_{k+1} be $k+1$ linearly independent vectors in the range space of f_{s}. Choose $v_{i} \in V_{s}$ such that $f_{s}\left(v_{i}\right)=z_{i}, i \geq 2$.

By the hypothesis on the rank of f_{j}, we are able to choose for each $1 \leq i \leq k$ a decomposable element $y_{i 1} * \cdots * y_{i m}$ such that
and

$$
\left\{y_{i j_{1}}, \ldots, y_{i j_{k}}\right\}=\left\{v_{1}, \ldots, v_{k+1}\right\}-\left\{v_{i+1}\right\}
$$

$$
\operatorname{dim}\left\langle f_{l}\left(y_{i l}\right): l \in 0_{r}\right\rangle=\left|0_{r}\right|, \quad r \geq 2
$$

where $0_{2}, \ldots, 0_{t}$ are the other orbits of G. In view of Lemma 2 ,

$$
K\left(f_{1}, \ldots, f_{m}\right)\left(y_{i 1} * \cdots * y_{i m}\right)=K\left(g_{1}, \ldots, g_{m}\right)\left(y_{i 1} * \cdots * y_{i m}\right) \neq 0
$$

By Theorem 1,

$$
0_{1}\left(f_{1}\left(y_{i 1}\right) * \cdots * f_{m}\left(y_{i m}\right)\right)=0_{1}\left(g_{1}\left(y_{i 1}\right) * \cdots * g_{m}\left(y_{i m}\right)\right)
$$

Hence

$$
\left.\left\langle z_{1}, \ldots, \hat{z}_{i+1}, \ldots, z_{k+1}\right\rangle=\left\langle g_{s}\left(v_{1}\right), \ldots, \widehat{g_{s}\left(v_{i+1}\right.}\right), \ldots, g_{s}\left(v_{k+1}\right)\right\rangle, \quad i=1, \ldots, k .
$$

This implies that

$$
\begin{equation*}
\left.\bigcap_{i=1}^{k}\left\langle z_{1}, \ldots, \hat{z}_{i+1}, \ldots, z_{k+1}\right\rangle=\bigcap_{i=1}^{k}\left\langle g_{s}\left(v_{1}\right), \ldots, \widehat{g_{s}\left(v_{i+1}\right.}\right), \ldots, g_{s}\left(v_{k+1}\right)\right\rangle \tag{1}
\end{equation*}
$$

Since z_{1}, \ldots, z_{k+1} are linearly independent, the left hand side of (1) is $\left\langle z_{1}\right\rangle$. Since the right hand side of (1) contains $\left\langle g_{s}\left(v_{1}\right)\right\rangle$ and $g_{s}\left(v_{1}\right) \neq 0$, it follows that $\left\langle z_{1}\right\rangle=$ $\left\langle f_{s}\left(v_{1}\right)\right\rangle=\left\langle g_{s}\left(v_{1}\right)\right\rangle$. This shows that the rank of $g_{s} \geq k+1$. By symmetry, $g_{s}(u) \neq 0$ implies that $\left\langle g_{s}(u)\right\rangle=\left\langle f_{s}(u)\right\rangle$. Hence $\left\langle f_{s}(v)\right\rangle=\left\langle g_{s}(v)\right\rangle$ for all $v \in V_{s}$. This implies that $f_{s}=\lambda_{s} g_{s}$ for some scalar λ_{s}. Clearly $\lambda_{1} \ldots \lambda_{m}=1$.

Case (ii). $\chi \equiv 1$. Let $u_{1} \in V_{1}, \ldots, u_{m} \in V_{m}$ such that $f_{i}\left(u_{i}\right) \neq 0$ and $u_{i}=u_{\sigma(i)}$ for all i and for all $\sigma \in G$. Then

$$
K\left(f_{1}, \ldots, f_{m}\right)\left(u_{1} * \cdots * u_{m}\right)=K\left(g_{1}, \ldots, g_{m}\right)\left(u_{1} * \cdots * u_{m}\right)
$$

Since $\chi \equiv 1, f_{1}\left(u_{1}\right) * \cdots * f_{m}\left(u_{m}\right)=g_{1}\left(u_{1}\right) * \cdots * g_{m}\left(u_{m}\right) \neq 0$. Theorem 1 implies that $\left\langle f_{i}\left(u_{i}\right)\right\rangle=\left\langle g_{i}\left(u_{i}\right)\right\rangle, i=1, \ldots, m$. Similarly if $w_{i} \in V_{i}, g_{i}\left(w_{i}\right) \neq 0$ and $w_{i}=w_{\sigma(i)}$ for all i and $\sigma \in G$, then $\left\langle g_{i}\left(w_{i}\right)\right\rangle=\left\langle f_{i}\left(w_{i}\right)\right\rangle$. Hence $\left\langle f_{i}\left(v_{i}\right)\right\rangle=\left\langle g_{i}\left(v_{i}\right)\right\rangle$ for all $v_{i} \in V_{i}$. This implies that $f_{i}=\lambda_{i} g_{i}$ for some scalar $\lambda_{i}, 1 \leq i \leq m$. Clearly $\lambda_{1} \ldots \lambda_{m}=1$.

Acknowledgement. This work constitutes part of the author's doctoral thesis written at the University of Toronto under the supervision of Professor Israel Halperin. I thank Professor Halperin for his help and encouragement during my time as a Ph.D. student.

References

1. H. Boerner, Representations of groups (North Holland, Amsterdam, 1963).
2. Joel Brawley, Jr., On the ranks of bases of vector spaces of matrices, Lin. Alg. and App. 3 (1970), 51-55.
3. Wei-Liang Chow, On the geometry ot algebraic homogeneous spaces, Ann. Math. 50 (1949), 32-67.
4. L. J. Cummings, Linear transformations of symmetric tensor spaces which preserve rank 1, Ph.D. thesis, University of British Columbia, 1967.
5. L. J. Cummings, Decomposable symmetric tensors, Pac. J. Math. 35 (1970), 65-77.
6. W. H. Greub, Multilinear algebra (Springer-Verlag, New York, 1967).
7. Joel Hillel, Algebras of symmetry classes of tensors and their underlying permutation groups, J. Algebra 23 (1972), 215-227.
8. M. J. S. Lim, Rank k Grassmann products, Pac. J. Math. 29 (1969), 367-374.
9. M. Marcus, A theorem on rank with applications to mappings on symmetry classes of tensors, Bull. Amer. Math. Soc. 73 (1967), 675-677.
10. M. Marcus and W. R. Gordon, Rational tensor representations of $\operatorname{Hom}(V, V)$ and an extension of an inequality of I. Schur, Can. J. Math. 26 (1972), 686-695.
11. M. Marcus and H. Minc, Permutation on symmetry classes, J. Algebra 5 (1967), 59-71.
12. K. Singh, On the vanishing of a pure product in a (G, 6) space, Can. J. Math. 22 (1960), 363371.
13. R. Westwick, A note on symmetry classes of tensors, J. Algebra 15 (1970), 309-311.
14. R. Westwick, Transformations on tensor spaces, Pac. J. Math. 14 (1967), 613-620.

Department of Mathematics, University of Malaya, Kuala Lumpur, Malaysia.

[^0]: Received by the editors March 6, 1974.

 * This paper arises from the author's Ph.D.thesis written at the University of British Columbia under the supervision of Professor R. Westwick.

