# A QUEUEING SYSTEM WITH MOVING AVERAGE INPUT PROCESS AND BATCH ARRIVALS 

C. PEARCE

(Received 1 December 1964)

## 1. Introduction

In a recent paper by P. D. Finch and myself [1], the solution for the limiting distribution of a moving average queueing system was obtained. In this paper the system is generalised to the case of batch arrivals in batches of size $r>1$.

The queueing system considered is a single server queue in which
(i) batches arrive at the instants $0=A_{0}<A_{1}<A_{2}<\cdots$, with time interval between the $m$ th and $(m+1)$ th batches

$$
\begin{equation*}
A_{m}-A_{m-1}=U_{m}+\beta U_{m-1}, \quad m \geqq 1, \beta \geqq 0 \tag{1.1}
\end{equation*}
$$

where $\left\{U_{m}\right\}$ is a sequence of identically and independently distributed non-negative random variables with common distribution function

$$
A(x)=P\left(U_{m} \leqq x\right), \quad m \geqq 0, x \geqq 0,
$$

such that

$$
\int_{0}^{\infty} x d A(x)<\infty,
$$

and
(ii) the service time of the $p$ th customer, $1 \leqq p \leqq r$, in the $q$ th batch is $s_{a r+p}$, where $\left\{s_{m}\right\}$ is a sequence of identically and independently distributed non-negative random variables, distributed independently of the sequence $\left\{U_{m}\right\}$, with common distribution function

$$
P\left(S_{m} \leqq x\right)=1-\exp (-\mu x), \quad x \geqq 0, \mu \geqq 0
$$

If $P_{j}^{m}, j \geqq 0, m \geqq 1$, is the probability that the batch arriving at $A_{\cdot m}$ finds exactly $j$ customers in the system, then it follows from the results of Finch [2] that

$$
P_{j}=\lim _{m \rightarrow \infty} P_{j}^{m}
$$

$$
j \geqq 0
$$

exists provided that

$$
\begin{equation*}
\mu(1+\beta) \int_{0}^{\infty} x d A(x)>r \tag{1.2}
\end{equation*}
$$

The system can be considered as one with individual arrivals at the instants $A_{m}$ and an Erlang service distribution of order $r$. The probabilities $Q_{0}^{m}$ and $Q_{j}^{m}, j>0, m \geqq 1$, of the individual arriving at $A_{m}$ finding 0 or $j$ customers in the system then correspond to $P_{0}^{m}$ and $P_{(j-1) r+1}^{m}+\cdots+P_{j r}^{m}$ of this paper, and similarly for the limiting probabilities.

## 2. Definitions and notation

We use capital letters to denote random variables and corresponding lower case letters to denote particular values taken by random variables. We denote the $(n+1)$-tuple $\left(u_{0}, u_{1}, \cdots, u_{n}\right)$ by $u^{(n)}$ and the corresponding vector random variable $\left(U_{0}, U_{1}, \cdots, U_{n}\right)$ by $U^{(n)}$.
$P_{i}\left(u^{(n)}\right), j \geqq 0$, denotes the conditional probability, given $U^{(n)}=u^{(n)}$, that the batch arriving at $A_{n}$ finds exactly $j$ customers in the system. Thus $E P_{f}\left(U^{(n)}\right)$, where $E$ denotes expectation, is the (unconditional) probability that the $(n+1)$ th batch finds exactly $j$ customers in the system.

We use the following notation:

$$
\begin{array}{rlrl}
\psi(\alpha) & =E \exp \left(-\mu \alpha U_{m}\right)=\int_{0}^{\infty} \exp (-\mu \alpha u) d A(u), & & \\
k_{j}(x, y) & =\left[\{\mu(y+\beta x)\}^{j} / j!\right] \exp \{-\mu(y+\beta x)\}, & & j \geqq 0, \\
K_{j}(x, y) & =\sum_{i=j}^{\infty} k_{i}(x, y), & & \\
P\left(u^{(n)} ; z\right) & =\sum_{i=0}^{\infty} P_{i}\left(u^{(n)}\right) z^{i}, & & \\
k(x, y ; z) & =\sum_{i=0}^{\infty} k_{i}(x, y) z^{i}=\exp \{-(1-z) \mu(y+\beta x)\}, & & \\
c_{i}\left(u^{(n+1)}\right) & =\sum_{j=0}^{\infty} P_{j}\left(u^{(n)}\right) k_{j+i+r}\left(u_{n}, u_{n+1}\right), & & \\
P^{*}(s ; z ; n) & =E\left[P\left(U^{(n)} ; z\right) \exp \left(-s U_{n}\right)\right] & & \\
& =\sum_{i=0}^{\infty} P_{i}^{*}(s, n) z^{i}, & & \operatorname{Re} s \geqq 0, \\
c_{i}^{*}(s ; n) & =E\left[c_{i}\left(U^{(n)}\right) \exp \left(-s U_{n}\right)\right], & \operatorname{Re} s \geqq 0 .
\end{array}
$$

Under the assumption (1.2), it follows from Rouche's theorem that the equation

$$
\begin{equation*}
z^{r}=\psi[(1+\beta)(1-z)] \tag{2.1}
\end{equation*}
$$

has exactly $r$ roots $T_{i}, j=1,2, \cdots, r$, inside the unit circle. We shall assume that these $r$ roots are distinct.

## 3. Fundamental equations

It follows from the exponential form of the service time distribution that the queue lengths at the instants $A_{m}-0, m=0,1,2, \cdots, n+1$ form a Markov chain, and that

$$
\begin{array}{rlrl}
P_{1}\left(u^{(n+1)}\right) & =\sum_{i=0}^{\infty} P_{i}\left(n^{(n)}\right) k_{r-1+i}\left(u_{n}, u_{n+1}\right), & & n \geqq 0, \\
P_{2}\left(u^{(n+1)}\right) & =\sum_{i=0}^{\infty} P_{i}\left(u^{(n)}\right) k_{r-2+i}\left(u_{n}, u_{n+1}\right) . & & n \geqq 0 \\
\ldots & & n \geqq 0,  \tag{3.1}\\
P_{r-1}\left(u^{(n+1)}\right) & =\sum_{i=0}^{\infty} P_{i}\left(u^{(n)}\right) k_{i+1}\left(u_{n} u_{n+1}\right) . & & n \geqq 0, j \geqq r . \\
P_{s}\left(u^{(n+1)}\right) & =\sum_{i=0}^{\infty} P_{j-r+i}\left(u^{(n)}\right) k_{i}\left(u_{n}, u_{n+1}\right), & & n \geqq 0
\end{array}
$$

Since $\left.P\left(u^{(n+1)}\right) ; 1\right)=1=k(x, y ; 1)$, it follows at once that

$$
P_{0}\left(u^{(n+1)}\right)=\sum_{i=0}^{\infty} P_{i}\left(u^{(n)}\right) K_{r+i}\left(u_{n}, u_{n+1}\right), \quad n \geqq 0
$$

Forming $z^{r} k\left(u_{n}, u_{n+1} ; z\right) P\left(u^{(n)} ; z\right)$ and noting that

$$
\begin{equation*}
\sum_{i=0}^{\infty} c_{i}\left(u^{(n+1)}\right)=P_{0}\left(u^{(n+1)}\right) \tag{3.2}
\end{equation*}
$$

we obtain from the above equations
$P\left(u^{(n+1)} ; z\right)=\sum_{i=0}^{\infty}\left(1-z^{-i}\right) c_{i}\left(u^{(n+1)}\right)+z^{r} P\left(u^{(n)} ; z\right) \exp \left[-\left(1-z^{-1}\right) \mu\left(u_{n+1}+\beta u_{n}\right)\right]$ for $|z| \leqq 1, z \neq 0$. Hence

$$
\begin{align*}
& P^{*}(s ; z ; n+1)  \tag{3.3}\\
& \quad=\sum_{i=0}^{\infty}\left(1-z^{-i}\right) c_{i}^{*}(s ; n+1)+z^{r} P^{*}\left\{\left(1-z^{-1}\right) \mu \beta ; z ; n\right\} \psi\left(1-z^{-1}+s / \mu\right)
\end{align*}
$$

for $|z| \leqq 1, z \neq 0, \operatorname{Re} s \geqq 0, \operatorname{Re}\left[\left(1-z^{-1}\right) \mu \beta\right] \geqq 0$. The restrictions on $z$ require it to lie in or on the unit circle and on or outside the circle with centre ( $\frac{1}{2}, 0$ ) and radius $\frac{1}{2}$, with the point $z=0$ deleted. We denote this domain of the $z$-plane by $R$.

Assuming (1.2), it can be shown by the methods of [2] that

$$
\begin{equation*}
P(u ; z)=\lim _{n \rightarrow \infty} E P\left(U_{0}, U_{1}, \cdots, U_{n-1}, u_{n} ; z\right), \quad u_{n}=u \tag{3.4}
\end{equation*}
$$

exists for $|z| \leqq 1 . \operatorname{Re} s \geqq 0$ and is the generating function of a probability distribution. In equation (3.4) we have departed momentarily from our
usual notation for $n$-tuples and the expectation is with respect to the random variables $U_{0}, U_{1}, \cdots, U_{n-1}$.

Using a natural notation we write

$$
\begin{equation*}
P^{*}(s ; z)=E[P(U ; z) \exp (-s U)], \quad|z| \leqq 1, \operatorname{Re} s \geqq 0 \tag{3.5}
\end{equation*}
$$

where $U$ is a random variable with distribution function $A(x)$. Similarly we write

$$
P^{*}(s ; z)=\sum_{i=0}^{\infty} P_{i}^{*}(s) z^{i}
$$

and

$$
c_{i}^{*}(s)=\lim _{n \rightarrow \infty} c_{i}^{*}(s ; n) .
$$

We note that (3.5) gives

$$
\begin{equation*}
P^{*}(s ; 1)=\psi(s / \mu) \tag{3.6}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (3.3) we obtain

$$
\begin{align*}
\left.P^{*}(s ; z)=c(s ; z)+z^{*} P^{*}\left[\left(1-z^{-1}\right) \mu \beta ; z\right] \psi\left(1-z^{-1}\right)+s / \mu\right) & ,  \tag{3.7}\\
z \in R, \operatorname{Re} s & \geqq 0,
\end{align*}
$$

where

$$
\begin{equation*}
c(s ; z)=\sum_{i=0}^{\infty}\left(1-z^{-i}\right) c_{i}^{*}(s), \quad|z| \leqq 1, \operatorname{Re} s \geqq 0 \tag{3.8}
\end{equation*}
$$

## 4. Evaluation of $P^{\boldsymbol{*}}(s ; z)$

Putting $s=\left(1-z^{-1}\right) \mu \beta$ in (3.7), we obtain, for $z \in R, \operatorname{Re} s \geqq 0$,

$$
P^{*}\left\lceil\left(1-z^{-1}\right) \mu \beta ; z\right]=\left[c\left\{\left(1-z^{-1}\right) \mu \beta ; z\right\}\right] /\left[1-z^{r} \psi\left\{\left(1-z^{-1}\right)(1+\beta)\right\}\right],
$$

so that for $z \in R, \operatorname{Re} s \geqq 0$,

$$
\begin{align*}
P^{*}(s ; z)=c(s ; z)+ & {\left[c\left\{\left(1-z^{-1}\right) \mu \beta ; z\right\}\right] z^{r} \psi\left[1-z^{-1}+s / \mu\right] }  \tag{4.1}\\
\cdot & {\left[1-z^{\dagger} \psi\left\{\left(1-z^{-1}\right)(1+\beta)\right\}\right]^{-1} . }
\end{align*}
$$

Consider the function

$$
F(s ; z)=\left[\prod_{j=1}^{\tau}\left(1-T_{j} z\right)\right] P^{*}(s ; z), \quad|z| \leqq 1, \operatorname{Re} s \geqq 0
$$

As $P^{*}(s ; z)$ is the generating function of a probability distribution, $P^{*}(s ; z)$ and hence $F(s ; z)$ must be a regular function of $z$ for $|z| \leqq 1, \operatorname{Re} s \geqq 0$.

If we define

$$
\begin{gathered}
F(s ; z)=\left[\prod_{j=1}^{r}\left(1-T_{s} z\right)\right]\left\{c(s ; z)+\left[c\left\{\left(1-z^{-1}\right) \mu \beta ; z\right\}\right] z^{r} \psi\left(1-z^{-1}+s / \mu\right)\right. \\
\left.\times\left(1-z^{r} \psi\left[\left(1-z^{-1}\right)(1+\beta)\right]\right)^{-1}\right\}
\end{gathered}
$$

for $|z| \geqq 1, \operatorname{Re} s \geqq 0$, then as the zeros of $1-z^{+} \psi\left[\left(1-z^{-1}\right)(1+\beta)\right]$ outside the unit circle are those of $\prod_{j=1}^{r}\left(1-T_{j} z\right), F(s ; z)$ must be a regular function of $z$ for $\operatorname{Re} s \geqq 0$. Hence, by analytic continuation, $F(s ; z)$ is a regular function of $z$ for all finite $z$ for $\operatorname{Re} s \geqq 0$.

Also, using (3.2) and (3.8), we can show by Abel's theorem that $\lim _{z \rightarrow \infty} c(s ; z)$ exists and equals $\sum_{i=1}^{\infty} c_{i}^{*}(s)$, and it can also be shown that $c\left\{\left(1-z^{-1}\right) \mu \beta ; z\right\}$ and $c\{\mu \beta ; z\}$ converge to the same limit $\sum_{i=1}^{\infty} c_{i}^{*}(\mu \beta)$ as $z \rightarrow \infty$.

Thus $\lim _{z \rightarrow \infty} F(s ; z) / z$ exists, and by (4.1), is given by

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \frac{F(s ; z)}{z}=\left[\prod_{j=1}^{+}\left(-T_{s}\right)\right]\left\{\sum_{i=1}^{\infty} c_{i}^{*}(s)-\psi(1+s / \mu) \sum_{i=1}^{\infty} c_{i}^{*}(\mu \beta)(\psi[1+\beta])^{-1}\right\} \tag{4.2}
\end{equation*}
$$

Since a function which is analytic for all finite values of $z$ and $O\left(|z|^{k}\right), k$ a non-negative integer, as $z \rightarrow \infty$ is a polynomial in $z$ of degree less than or equal to $k$, it follows that

$$
F(s ; z)=A_{r}(s) z^{r}+A_{r-1}(s) z^{r-1}+\cdots+A_{0}(s), \quad \operatorname{Re} s \geqq 0
$$

where $A_{r}(s), A_{r-1}(s), \cdots, A_{0}(s)$ are functions of $s$ alone. Thus

$$
\begin{align*}
P^{*}(s ; z)+\left[\prod_{j=1}^{r}\left(1-T_{j} z\right)\right]^{-1}\left[A_{r}(s) z^{r}+A_{r-1}(s) z^{r-1}+\cdots+A_{0}(s)\right]  \tag{4.3}\\
|z| \leqq 1, \operatorname{Re} s \geqq 0
\end{align*}
$$

Hence if we define $\alpha_{j}, j=1,2, \cdots, r$ by

$$
\begin{equation*}
\prod_{j=1}^{r}\left(1-T_{j} z\right)^{-1} \equiv \sum_{j=1}^{r} \alpha_{j}\left(1-T_{j} z\right)^{-1} \tag{4.4}
\end{equation*}
$$

legitimate since the $T_{j}$ are all distinct, we obtain

$$
\begin{align*}
& P_{0}^{*}(s)=A_{0}(s) \sum_{t=1}^{+} \alpha_{t} \\
& P_{1}^{*}(s)=A_{0}(s) \sum_{t=1}^{r} \alpha_{t} T_{t}+A_{1}(s) \sum_{t=1}^{r} \alpha_{t} \tag{4.5}
\end{align*}
$$

$$
\begin{aligned}
& P_{r-1}^{*}(s)=A_{0}(s) \sum_{t=1}^{r} \alpha_{t} T_{t}^{r-1}+A_{1}(s) \sum_{t=1}^{r} \alpha_{t} T_{t}^{r-2}+\cdots+A_{r-1}(s) \sum_{t=1}^{r} \alpha_{t} \\
& P_{j}^{*}(s)=A_{0}(s) \sum_{t=1}^{r} \alpha_{t} T_{t}^{j}+A_{1}(s) \sum_{i=1}^{r} \alpha_{t} T_{t}^{j-1}+\cdots+A_{r}(s) \sum_{t=1}^{r} \alpha_{t} T_{t}^{j-r}, j \geqq r
\end{aligned}
$$

It follows readily from (4.4) that $\alpha_{i} \neq 0, t=1,2, \cdots, r$.

## 5. Determination of $A_{j}(s), j=0,1, \cdots, r$

From (3.1),

$$
\begin{aligned}
P_{s}\left(u^{(n+1)}\right) & =\sum_{i=0}^{\infty} P_{s+i \rightarrow r}\left(u^{(n)}\right)\left[\exp \left\{-\mu\left(u_{n+1}+\beta u_{n}\right)\right\}\right]\left\{\mu\left(u_{n+1}+\beta \mu_{n}\right)\right\}^{i} / i!, \quad j \geqq r \\
& =\sum_{i=0}^{\infty} \sum_{l=0}^{i} P_{j+i \rightarrow r}\left(u^{(n)}\right) \exp \left(-\mu \beta u_{n}\right) \frac{\left(\mu \beta u_{n}\right)^{i-l}}{(i-l)!} \exp \left(-\mu u_{n+1}\right) \frac{\left(\mu n_{n+1}\right)^{l}}{l!},
\end{aligned}
$$

whence

$$
P *(s, n+1)=\sum_{i=0}^{\infty} \frac{\partial^{i}}{\partial \sigma^{i}}\left[P_{\jmath+i-r}^{*}(\sigma \beta, n) \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu}, \quad j \geqq r
$$

Letting $n \rightarrow \infty$ and using (4.5) we see that for $j \geqq 2 r$

$$
\begin{aligned}
A_{0}(s) & \sum_{i=1}^{r} \alpha_{t} T_{t}^{j}+A_{1}(s) \sum_{i=1}^{r} \alpha_{t} T_{t}^{j-1}+\cdots+A_{r}(s) \sum_{t=1}^{r} \alpha_{t} T_{t}^{j-r} \\
& =\sum_{t=1}^{r} \alpha_{t} \sum_{i=0}^{\infty} \frac{\left(-\mu T_{t}\right)^{i}}{i!} \frac{\partial^{i}}{\partial \sigma^{i}}\left[\left\{A_{0}(\sigma \beta) T_{t}^{j-r}+\cdots+A_{r}(\sigma \beta) T_{t}^{j-2 r}\right\} \varphi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu} \\
& =\sum_{t=1}^{r} \alpha_{t}\left[\left\{A_{0}\left(\mu\left[1-T_{t}\right] \beta\right) T_{t}^{j \rightarrow r}+\cdots+A_{r}\left(\mu\left[1-T_{t}\right] \beta\right) T_{t}^{j-2 r}\right\} \varphi\left\{1-T_{t}+s / \mu\right\}\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{t=1}^{r} \alpha_{t} T_{t}^{k}\left[A_{0}(s) T_{t}^{2 r}+A_{1}(s) T_{t}^{2 r-1}+\cdots+A_{r}(s) T_{t}^{r}-\psi\left\{1-T_{t}+s / \mu\right\}\right. \\
& \cdot\left.\left\{A_{0}\left(\mu \beta\left[1-T_{t}\right]\right) T_{t}^{r}+\cdots+A_{r}\left(\mu \beta\left[1-T_{t}\right]\right)\right\}\right] \\
&= 0 \text { for } k \geqq 0
\end{aligned}
$$

Consider this result for $k=0,1,2, \cdots, r-1$. Since $\alpha_{j} \neq 0, j=1,2, \cdots, r$, and the hypothesis that the $T_{;}$are distinct for $j=1,2, \cdots, r$ implies that the $r \times r$ matrix $\left(a_{i k}\right)=\left(T_{i}^{k-1}\right)$ is non-singular, we have that

$$
\begin{align*}
& A_{0}(s) T_{t}^{2 r}+A_{1}(s) T_{t}^{2 r-1}+\cdots+A_{r}(s) T_{t}^{r}  \tag{5.1}\\
& \quad=\psi\left\{1-T_{t}+s / \mu\right\}\left\{A_{0}\left(\mu \beta\left[1-T_{t}\right]\right) T_{t}^{r}+\cdots+A_{r}\left(\mu \beta\left[1-T_{t}\right]\right)\right\} \\
& \\
& t=1,2, \cdots, r .
\end{align*}
$$

An argument similar to the above, starting from the expression for $P_{r}\left(u^{(n+1)}\right)$ given by (3.1) yields

$$
\begin{aligned}
& A_{0}(s) \sum_{t=1}^{r} \alpha_{t} T_{i}^{r}+A_{1}(s) \sum_{t=1}^{r} \alpha_{t} T_{t}^{r-1}+\cdots+A_{r}(s) \sum_{t=1}^{r} \alpha_{t} \\
& \quad=\left[\left\{A_{0}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t}\right\} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{(-\mu)}{1!} \frac{\partial}{\partial \sigma}\left[\left\{A_{0}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}+A_{1}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t}\right\} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\beta} \\
& +\cdots \\
& +\frac{(-\mu)^{r-1}}{(r-1)!} \frac{\partial^{r-1}}{\partial \sigma^{r-1}}\left[\left\{A_{0}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{r-1}+\cdots+A_{r-1}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t}\right\} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu} \\
& \left.+\sum_{i=r}^{\infty} \frac{(-\mu)^{i}}{i!} \frac{\partial^{i}}{\partial \sigma^{i}}\left[A_{0}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{i}+\cdots+A_{r}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{i}^{i-r}\right\} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu}
\end{aligned}
$$

Using (5.1), we deduce that
(5.2)

$$
\begin{aligned}
& {\left[\left\{A_{1}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-1}+A_{2}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-2}+\cdots+A_{r}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-r}\right\} \psi\{(\sigma+s) / \mu\}\right]_{\sigma-\mu}} \\
& \quad+\frac{(-\mu)}{1!} \frac{\partial}{\partial \sigma}\left[\left\{A_{2}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-1}+\cdots+A_{r}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-r+1}\right\} \psi\{(\sigma+s) / \mu\}\right]_{\sigma-\mu} \\
& \quad+\cdots \\
& \quad+\frac{(-\mu)^{r-1}}{(r-1)!} \frac{\partial^{r-1}}{\partial \sigma^{r-1}}\left[\left\{A_{r}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-1}\right\} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu} \\
& \quad=0
\end{aligned}
$$

From (4.4),

$$
\begin{equation*}
z^{k} \prod_{t=1}^{r}\left(1-T_{t} z\right)^{-1} \equiv \sum_{t=1}^{r} \frac{\alpha_{t}}{T_{t}^{k}}\left(1-T_{t} z\right)^{-1}, \quad k=1,2, \cdots, r-1 \tag{5.3}
\end{equation*}
$$

Substitution of $z=0$ gives

$$
\begin{equation*}
\sum_{t=1}^{r} \frac{\alpha_{t}}{T_{t}^{k}}=0, \quad k=1,2, \cdots, \gamma-1 \tag{5.4}
\end{equation*}
$$

Multiplication of (5.3) by $z$, for $k=r-1$, yields, on letting $z \rightarrow \infty$,

$$
\sum_{t=1}^{r} \frac{\alpha_{t}}{T_{t}^{r}} \neq(-1)^{r+1} \prod_{t=1}^{r} T_{j}^{-1}
$$

so that

$$
\begin{equation*}
\sum_{i=1}^{r} \frac{\alpha_{t}}{T_{i}^{r}} \neq 0 \tag{5.5}
\end{equation*}
$$

By virtue of (5.4), (5.2) reduces to

$$
\left[A_{r}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-r} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu}=0
$$

Similarly, use of the expressions for $P_{i}\left(u^{(n+1)}\right), i=1,2, \cdots, r-1$, given by (3.1) provides us with the equations

$$
\begin{aligned}
& {\left[\left\{A_{r-1}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-r}+A_{r}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-r-1}\right\} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu}} \\
& \quad+\frac{(-\mu)}{1!} \frac{\partial}{\partial \sigma}\left[A_{r}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-r} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu} \\
& \quad=0, \\
& \cdots \\
& \cdots \\
& \quad\left[\left\{A_{1}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-r}+\cdots+A_{r}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-(2 r-1)}\right\} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu} \\
& \quad+\frac{(-\mu)}{1!} \frac{\partial}{\partial \sigma}\left[\left\{A_{2}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-r}+\cdots+A_{r}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-(2 r-2)}\right\} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu} \\
& \quad+\cdots \\
& \quad+\frac{(-\mu)^{r-1}}{(r-1)!} \frac{\partial^{r-1}}{\partial \sigma^{r-1}}\left[A_{r}(\sigma \beta) \sum_{t=1}^{r} \alpha_{t} T_{t}^{-r} \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu} \\
& =0,
\end{aligned}
$$

which simplify, because of (5.5), to

$$
\begin{aligned}
& {\left[A_{r}(\sigma \beta) \psi\{(\sigma+s) / \mu\}\right]_{\sigma-\mu}=0,} \\
& {\left[A_{r-1}(\sigma \beta) \psi\{(\sigma+s\}]_{\sigma=\mu}+\frac{(-\mu)}{1!} \frac{\partial}{\partial \sigma}\left[A_{r}(\sigma \beta) \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu}=0,\right.} \\
& \cdots \\
& {\left[A_{1}(\sigma \beta) \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu}+\cdots+\frac{(-\mu)^{r-1}}{(r-1)!} \frac{\partial^{r-1}}{\partial \sigma^{r-1}}\left[A_{r}(\sigma \beta) \psi\{(\sigma+s) / \mu\}\right]_{\sigma=\mu}=0,}
\end{aligned}
$$

or, since $\psi\{1+s / \mu\}$ will not vanish if $s$ is real, to

$$
\begin{align*}
& {\left[A_{r}(\sigma \beta)\right]_{\sigma=\mu}=0,} \\
& {\left[A_{r-1}(\sigma \beta)\right]_{\sigma=\mu}+\frac{(-\mu)}{1!} \frac{\partial}{\partial \sigma}\left[A_{r}(\sigma \beta)\right]_{\sigma=\mu}=0,}  \tag{5.6}\\
& {\left[A_{1}(\sigma \beta)\right]_{\sigma=\mu}+\cdots+\frac{(-\mu)^{r-1}}{(r-1)!} \frac{\partial^{r-1}}{\partial \sigma^{r-1}}\left[A_{r}(\sigma \beta)\right]_{\sigma=\mu}=0 .}
\end{align*}
$$

Comparing (3.6), (4.3), we find that

$$
\begin{equation*}
A_{0}(s)+A_{1}(s)+\cdots+A_{r}(s)=\prod_{t=1}^{r}\left(1-T_{t}\right) \psi(s / \mu) . \tag{5.7}
\end{equation*}
$$

Since the $T_{t}, t=1,2, \cdots, r$ are distinct and lie inside the unit circle, (5.1), (5.7) form a set of $r+1$ independent linear equations in the $r+1$ variables $A_{0}(s), A_{1}(s), \cdots, A_{r}(s)$. These can be solved, the $r$ unknown constants $\left.\sum_{i=0}^{r} A_{i}(\mu \beta)\left[1-T_{t}\right]\right), t=1,2, \cdots, r$, being obtained with the aid of the relations (5.6). Equations (4.5) then give the limiting distribution of the queueing system, the $T_{t}, t=1,2, \cdots, r$ being obtained from (2.1) and the $\alpha_{t}, t=1,2, \cdots, r$ from (4.4).

## References

[1] Finch, P. D., and Pearce, C., "A second look at a queueing system with moving average input process", J. Aust. Math. Soc. 5 (1965), 100-106.
[2] Finch, P. D., "The single server queueing system with non-recurrent input-process and Erlang service time", J. Aust. Math. Soc. 3 (1963), 220-236.

The Australian National University<br>Canberra

