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ON LINEAR FUNCTIONAL EQUATIONS WITH 
NONPOLYNOMIAL C° SOLUTIONS 

BY 

HALINA SWIATAK 

It is known (cf. M. A. McKiernan [6]) that the only measurably bounded solu
tions/of the equations 

m 

(1) ?, Ikftx+afi = Ax), 
i = l 

where x e Rn, t eR, a{ (/= 1, . . . , ni) span the space Rn, 2f=i ft4 = 1, and 2IG/ fa^O 
for any / <= {1 , . . . , m}, are polynomials. The degree of these polynomials and the 
dimension of the solution space can be estimated by numbers depending on m and 
n. (For estimates and other details concerning equations (1) see [1], [2], [3], [4], 
[5], [6].) 

A natural generalization of equations (1) are the equations 

m 

(2) 2 mfix+nit)) =/(*) 
f = l 

which, similarly to equations (1), can be considered as mean value conditions for 
the function/. In some special cases when ^ ( O T W also all the continuous solu
tions of equations (2) are polynomials (cf. [7]). 

Now, the question arises whether continuous solutions / of equations (2) are 
always polynomials. The answer to this question is negative as the example of the 
equation 

(3) 5/(«+ln ( l - j exp J j L ) +ln 2, t,) + i / ( n , v+ ^ = f(u, v) 

which is satisfied by the function/(w, v)=eu+v, and the following theorem show.O 

THEOREM. Suppose that 

(1) x(0> v(0 G C2 in an °Pen interval A cz R9 

(2) there exists an a e A such that x(<*) = v{a) = 0 and x'v =dfX'(a)v'(a) ̂  0. 

Received by the editors January 20, 1970 and, in revised form, May 11, 1970. 
(*) Obviously, to answer our question, it suffices to show only one equation of the form (2) 

possessing a noncontinuous polynomial solution / . However, there exists another reason to 
formulate a theorem like this one presented here: to show an example of a functional equation 
with several unknown functions such that one of them characterizes an elementary function of 
two variables although the choice of the others is almost arbitrary. 

239 

https://doi.org/10.4153/CMB-1971-041-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1971-041-x


240 HALINA SWIATAK [June 

tf x'v"~%"v =df xXa)v"(a)~x"(a)v'(a) = Q> then nonconstant continuous solutions 
f of the equation 

(4) ixjiu+x(t), v) + fx2f(u, v + v(t)) = f(u, v\ 

wherein /xx+/x2 = 1, ^ > 0, ̂ 2 > 0, can exist if and only if 

(5) v{i) = Ax(t), 

where A^O. 
If (5) holds, then the most general continuous solution f of equation (4) has the 

form 

(6) /(„,„) = «(„_ JfL^+y, 

where a, y are arbitrary constants and A is the same as in (5). 
i f ^ T - f u V O , nonconstant continuous solutions f of equation (4) exist if and 

only if 

(7) x(0 = ^[ ln( l - f x 2 ^>)- ln / x 1 ] , 

where A is a constant different from zero and the function v(t) and the constant 
B^O satisfy the condition 

(8) Bv(t) < — In IJL2 for every t e A. 

In this case the most general continuous solution f of equation (4) has the form 

(9) f(u,v) = Kea'A)u+Bv+L, 

where K, L are arbitrary constants and A, B are the same as in (7). 

Proof. It is easy to see that condition (5) implies that x'#"—x"v=0 and ele
mentary computations allow us to verify that the functions (6) satisfy equation (4). 

Similarly, condition (7) implies that 

X'(*)=-AB^v'(a), 
M l 

and therefore 

MÏ 

a tan a it at A r>2 M2 tf \.q / t\ 
p - p = AB* —g v (ay ^ o, 

Mi 

(In fact, the constants A, Bin condition (7) are different from zero and assump
tion (2) guarantees that i/(a)=£0.) Elementary computations verify that the func
tions (9) satisfy equation (4). 

Now, we have to show that, under assumptions (1), (2), nonconstant continuous 
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solutions/of equation (4) exist only if either (5) or (7) holds and that in the first 
case the only possible continuous solutions/of equation (4) are given in (6) and in 
the second case the only possible continuous solutions/of equation (4) are those 
given in (9). 

We shall establish first the fact that every continuous solution/of equation (4) 
is a function of class C00. To do this we apply the following theorem, being a simple 
consequence of the results of [8]: 

If <pt(t) G C2 in an open interval A c: R(i=l9..., m), there exists an as A such 
that <Pi(a) = Ofor i — 1, . . . , m and if the vectors fyl=yl (a) (i = 1, . . . , m) span the space 
Rn, then all the continuous solutions f of equation (2), where 2f=i ^=1? fJ<i>0for 
i= 1 , . . . , m and x e Rn, are functions of class C00. 

Assumptions (1) and (2) guarantee that the assumptions of the above theorem 
are satisfied and therefore every continuous solution/of equation (4) is a function 
of class C00. 

Differentiating equation (4) with respect to t and setting t=a yields 

(10) ^ixïu+^% = 0. 

Differentiating (10) with respect to u yields 

(11') Pixfuu+wfuv = 0 

and differentiating with respect to v yields 

(110 pJl'fuv+Kfi'Av = 0. 

Differentiating equation (4) twice with respect to t and setting t=a yields 

(12) ^(Jtrfuu+^(nVvv+^ixfu+^7v = 0. 

Multiplying (12) by %' and v we obtain 

(BO vmyuu+^nmv+vixxfu+^ty» = o 
and 

(130 /*iW7™+/*2(W^ = o. 

In view of (10) and (IT) equation (13') can be written as 

i.e. in view of \i2 > 0, 

(14') ~,[-afu+bfv+sf)=:09 

where 

(is) b=dfnsr, 
„ a tan a if at 
s=dfX - X ^ -

7—C.M.B. 
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Similarly, making use of (10), (11") and the assumption /*i>0, we can write 
(130 as 

(140 ^Wu-bfv-sf] = 0. 

Now, it follows from (14') and (14") that 

(16) cifu-bfv-sf= k, 

where k is a constant. 
In the case s=0 equations (10) and (16) form a set of two linear equations with 

constant coefficients in two unknowns fU9 fv. The determinant of the coefficients 
matrix is equal to 

in view of the assumptions f^VO and /xi+^2 = 1. 
Therefore, solving our set of linear equations, one can conclude that/M = a and 

fv=p, i.e. 

(17) f(u,v) = au+pv + y9 

where a, jS, and y are constants. 
Substituting (17) into (4) we obtain the condition 

(18) /*i«x(0+J"2M0 = 0. 

Conditions (17) and (18) allow us to establish the following fact: 
If 5,=x^,,"~X,^==0, then nonconstant continuous solutions / of equation (4) 

exist if and only if condition (5) is satisfied and the most general continuous solu
tion/of equation (4) has the form (7). 

Let us consider the case s=%'d"-%"a'^0. 
Multiplying equation (16) by /x2 and taking into account (10) and (15) we obtain 

Mafu+^itf/u - / W = Pzk 

i.e. 

(19') afu-[x2sf= [L2k 

since fit + \i2 — 1 • 
Similarly, multiplying (16) by ^ and taking into account (10), (15), and the 

condition ^i+/x2 = 1, we obtain 

(190 -bA-wf-frk. 

Notice that equation (19') with a fixed v and equation (190 w^h a fixed u are 
both ordinary linear differential equations with constant coefficients. 

Since the most general solution of the equation 

pv'(u)+qv(u) = r, 
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where pq ̂  0,(2) has the form 

v(u) = -+Ke-(qlp)u, 

where Kis an arbitrary constant, equations (19') and (19") imply 

(200 f(u,v) 

and 

(200 f(u, v) -

where 

(21) c = 

and K(v), K(u) are some functions of v and w. 
By (20r) and (200 

K(v)ecsu = K(u)e~dsv. 

Setting in the last equality u = 0 and next v = 0 one can conclude that 

K(v) = K e ~ ds\ K(u) = K ecsu, 

where K is a constant, and therefore the function/(w, v) has to have the form 

(22) f(u,v) = Kes(cu~™+L9 

where c, d, s are defined by (21) and (15), and K, L are arbitrary constants (L may 
be arbitrary sinceL=—k/s and k was arbitrary). 

Substituting (22) into (4) we obtain the condition 

liie
C8XM+p2e-dm) = 1. 

Hence 

x W ^ ^ t l n a - ^ c - ^ O - l n / x a 
Co 

i.e. the function x(t) has the form 

x(t) = A[ln(l-n2c
B^)-lnn1], 

where /z2 e
Bt)(0 < 1 for every t EA. 

The last condition is equivalent to condition (8). Of necessity AB^O since if 
either A = 0 or B=0, then x(0 = c o n s tant , which contradicts to assumption (2). 

(2) The condi t ions^0 is satisfied for both considered equations since s # 0 and the assump
tion x' f lV0 implies that a^0 and 6^0. 

= — + K(v)ecsu 

s 

= — + K(u)e~dsv, 
s 

a*9 d = —> 
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Thus we have proved that in the case ^=x 'û" - fyV0 all the continuous solu
tions of equation (4) have the form (22), and the conditions (7) and (8) hold. 

To finish the proof we have to show that (22) and (9) coincide. 
It was shown in the beginning of this proof that 

Y = —An — v 
Mi 

and 

s^W-W = AB2^(&)3. 
Mi 

Therefore, taking into account (21) and (15), we obtain after simple computations 
cs—\\A and — ds = B which means that (21) and (9) really coincide. 

REMARK. The theorem gives the most general solution/, x, *> of equation (4) in 
the class of continuous / , and x> ve C2 having a zero in common and strictly 
monotonie in a neighbourhood of this zero. 

It is interesting that for any fixed v (or x) satisfying the conditions mentioned 
above one can find % (or v)so that there exist nonconstant solutions/of equation 
(4), but / i s then either linear or exponential. It is not possible to choose % a nd v 
so that equation (4) is satisfied by a linear and by an exponential function/simul
taneously. Therefore this equation can be used to characterize linear and exponen
tial functions of two variables. 
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