Transport of cations and anions across forestomach epithelia: conclusions from in vitro studies

S. Leonhard-Marek1†, F. Stumpff2 and H. Martens2

1Department of Physiology, School of Veterinary Medicine Hannover, Bischfsholer Damm 15, 30173 Hannover, Germany; 2Department of Veterinary Physiology, Free University of Berlin, Oertzenweg 19b, 14163 Berlin, Germany

(Received 10 September 2009; Accepted 8 January 2010; First published online 26 February 2010)

Secretion of saliva as well as absorptive and secretory processes across forestomach epithelia ensures an optimal environment for microbial digestion in the forestomachs. Daily salivary secretion of sodium (Na+) exceeds the amount found in plasma by a factor of 2 to 3, while the secretion of bicarbonate (HCO3−) is 6 to 8 times higher than the amount of HCO3− in the total extracellular space. This implies a need for efficient absorptive mechanisms across forestomach epithelia to allow for an early recycling. While Na+ is absorbed from all forestomachs via Na+/H+ exchange and a non-selective cation channel that shows increased conductance at low concentrations of Mg2+, Ca2+ or H+ in the luminal microclima and at low intracellular Mg2+, HCO3− is secreted by the rumen for the buffering of ingesta but absorbed by the omasum to prevent liberation of CO2 in the abomasum. Fermentation provides short chain fatty acids and ammonia (NH3) that have to be absorbed both to meet nutrient requirements and maintain ruminal homeostasis of pH and osmolarity. The rumen is an important location for the absorption of essential minerals such as Mg2+ from the diet. Other ions can be absorbed, if delivered in sufficient amounts (Ca2+, P, K+, Cl− and NH4+). Although the presence of transport mechanisms for these electrolytes has been described earlier, our knowledge about their nature, regulation and crosstalk has increased greatly in the last years. New transport pathways have recently been added to our picture of epithelial transport across rumen and omasum, including an apical non-selective cation conductance, a basolateral anion conductance, an apical H+-ATPase, differently expressed anion exchangers and monocarboxylate transporters.

Keywords: ruminants, sodium potassium magnesium and calcium, short chain fatty acids, chloride and bicarbonate, channels transporters and exchangers

Implications

The improved knowledge of ruminal ion transport clearly underlines its physiological meaning for the whole animal. For example, magnesium absorption is markedly reduced at low Mg and high K intake and the effect of potassium is diminished at high Mg intake. This variable interaction has been quantified recently permitting the prediction of Mg absorption. Great progress has also been made in understanding the interactions between the absorptive pathways for Na, short chain fatty acids and ammonium. The new findings on structure and regulation of various ion transporters will allow a better understanding of the challenges that different diets pose to the maintenance of homeostatic conditions within the rumen and within the cells of the surrounding epithelium, with the implications for the investigation of ruminal adaptation to different diets. Future studies on transport pathways should include the barrier function of rumen epithelium and its possible impairment under harsh feeding conditions.

Introduction

An efficient digestion of plant material by ruminants requires a large community of microorganisms within the forestomachs, with an ample secretion of saliva ensuring an optimal environment. Within the large volume of saliva (>10 l in sheep and up to 300 l in cows; Kay, 1960; Erdmann, 1988; Allen, 1997; Maekawa et al., 2002) sodium (Na+) and bicarbonate (HCO3−) represent the main cation and anion, respectively. Daily salivary secretion of Na+ can exceed the Na+ content of the whole animal by a factor of 2 to 3 (Silanikove, 1994), and salivary secretion is a major factor leading to a rapid reduction of plasma volume after feeding (Blair-West and Brook, 1969). Secretion of HCO3− via saliva is 6 to 8 times as high as the amount in the extracellular space (Erdmann, 1988) and thus poses a significant challenge.
to the acid-base balance of the ruminant. As the requirements of the fermentational processes in the rumen only allow a slow release of ruminal material into the lower parts of the digestive tract, efficient absorptive mechanisms across forestomach epithelia are essential to allow for an early recycling of these essential electrolytes and water from the gastrointestinal cavity to the blood. Thus, 80% of the sodium that is secreted by saliva is absorbed by the forestomachs (Dobson, 1959), with the rumen alone absorbing an amount that exceeds the sodium content of the body (Silanikove, 1994). Fermentation releases additional cations and anions from organic matter that have to be absorbed to meet the requirements of ruminal homeostasis in terms of regulating osmotic pressure (Lang and Martens, 1999) and pH (Gäbel and Aschenbach, 2006). Thus, large amounts of short chain fatty acids (SCFAs) and ammonia (NH$_3$/NH$_4^+$) are absorbed by the ruminal epithelium. Ruminal absorption is also essential for the uptake of minerals such as Mg$^{2+}$. Other substrates can be absorbed across forestomach epithelia if delivered in high amounts (Ca$^{2+}$, P$_i$ and K$^+$), with movements of Cl$^-$ and HCO$_3^-$ via anion exchange depending on the gradients present. Although the presence of transport mechanisms for these electrolytes has been described earlier, our knowledge about their nature, regulation and crosstalk has increased greatly in the last years (Leonhard-Marek et al., 2005 and 2006; Abdoun et al., 2006; Ali et al., 2006; Gäbel and Aschenbach, 2006; Schweigel et al., 2006; Etschmann et al., 2009; Stumpff et al., 2009a).

The transport mechanisms generally seem to be the same in the rumen and omasum. Although the large size of the rumen facilitates a higher total absorptive capacity than that of the omasum, both the highly specialized anatomy of the omasum with its many laminae and the electrophysiological properties allow a greater efficiency of absorption by this organ. A major difference between the two organs is the handling of Cl$^-$ and HCO$_3^-$ in the rumen (Cl$^-$ is absorbed and HCO$_3^-$ is secreted, while the movements of these anions are reversed in the omasum) (see below). By the time the ingesta reach the abomasum, almost 50% of the water and 75% of the Na$^+$ have been absorbed against an electrochemical gradient, while Cl$^-$ has almost completely replaced SCFA$^-$ and HCO$_3^-$ as the major anion present (Yang and Thomas, 1965; Edrise et al., 1986). The function of the forestomachs has thus to be seen not only in terms of a chamber for fermentation of ingested matter, but also as a very major player in the systemic acid-base and electrolyte balance of the ruminant.

Anatomy and histology of the forestomachs

The macroscopic anatomy of the forestomachs underlines their important absorptive function. The surface of the reticulum is enlarged by a network-like system of ridges, which may serve to separate material, but which also increases the surface area. The surface of the rumen is coated by numerous papillae, the length of which greatly increases in response to dietary challenges (Gäbel et al., 1987; Simmons et al., 2009), thus showing a clear correlation with absorptive function. Omasal papillae are smaller, but macroscopic inspection of the organ shows an exquisite anatomy with multiple leaflets, between which ingesta with a high dry matter (DM) content can be found.

Rumen, reticulum and omasum are covered by a stratified epithelium, consisting of four cell layers: the stratum corneum, granulolus, spinosum and basale, respectively. The initial description of the rumen epithelium as a multilayered syncytium in which an apical epithelial barrier communicates with lower basal layers via gap-junctional pathways (Henrikson, 1971) has recently been re-investigated and confirmed with more specific immunohistological methods (Graham and Simmons, 2005). In these studies, the occluding junction proteins claudin-1 and zonula occludens 1 were predominantly expressed at the cell border between stratum granulosum and stratum corneum, while the expression of connexin 43 (consistent with intercellular communication) showed membrane staining at the level of the stratum granulosum, spinosum and more punctate at the stratum basale. Transepithelial transport of ions therefore depends on their uptake across the apical membrane of the stratum granulosum cells and on their exit across the basolateral membranes of deeper cell layers.

Absorption of sodium

All forestomach epithelia show a considerable absorptive capacity for Na$^+$, which is mediated by active and secondary active transport mechanisms (Gäbel and Martens, 1991).

In lactating cows, total daily secretion of saliva can be as high as 310 l/day (Cassida and Stokes, 1986; Erdmann, 1988; Bowman et al., 2003). As salivary concentration of Na$^+$ is about 150 to 165 mmol/l saliva (Silanikove and Tadmor, 1989), secretion of Na$^+$ can easily exceed 50 mol/day Na$^+$ (or more than 1 kg Na$^+$, Erdmann, 1988). Of this amount, less than 200 g/day (or less than 10 mol/day) reaches the duodenum (Rahmema et al., 1994; Khorasani et al., 1997). Even if the amount of Na$^+$ secreted by the abomasum is neglected (Yang and Thomas, 1965; Edrise et al., 1986), this suggests that 80% of the total amount of sodium secreted with saliva has been absorbed by the forestomachs. The amount actively absorbed by the epithelium will be even higher, because a backflow of Na is very likely according to the in vitro data, but the exact magnitude is unknown.

Functional studies with isolated epithelia have shown that Na$^+$ transport across the rumen, reticulum and omasum exhibits electroneutral and electrogenic components. At high concentrations and low pH, Na$^+$ is mainly transported via the electroneutral pathway, whereas at low Na$^+$ concentrations and alkaline pH the electrogenic pathway predominates (Gäbel et al., 1991b; Martens, 1994; Abdoun et al., 2005).

Active transepithelial Na$^+$ transport implies an asymmetric distribution of different sodium transport proteins to the apical and basolateral membranes. As, in other epithelia, the driving force for active transport across the forestomachs is
Figure 1 Model of ruminal Na\(^+\) transport. Large amounts of sodium (up to 50 mol/day in cows) enter the rumen via saliva and are absorbed locally for recirculation. Apical uptake of Na\(^+\) occurs via two pathways. The major proportion of Na\(^+\) is taken up in exchange for protons via sodium-proton exchange. This pathway is stimulated by fermentation products and ensures cellular pH homeostasis by a rapid extrusion of protons entering the cytosol with short chain fatty acids, CO\(_2\) and – to a lesser extent – NH\(_4\)\(^+\). The pathway is blocked by amiloride but not affected by voltage. A smaller proportion of Na\(^+\) enters via a non-selective cation channel that is blocked by divalent cations (Ca\(^{2+}\) and Mg\(^{2+}\)) in a voltage dependent manner. At the negative potentials normally found between the cytosol and the rumen, these positively charged ions are pushed into the mouth of the channel from the outside, driven by the potential, reducing channel conductance. Depolarization of the tissue alleviates the block and thus, stimulates channel mediated, electrogenic uptake of Na\(^+\). After crossing the multilayered functional syncytium, sodium is driven out basolaterally by the ATP dependent sodium pump (Na\(^+/K\)^+\(_{-}\)-ATPase), which provides the energy for the net uptake of Na\(^+\) against sizable electrochemical gradients. Depending on both the conductance of the apical non-selective channel and the activity of the pump, a transepithelial potential is generated that can be measured both in vivo and in vitro. Fluxes of Na\(^+\) from the serosal to the mucosal side of the epithelium are much smaller, and may involve both a paracellular route and a basolateral cotransport.

Electroneutral Na\(^+\) absorption

Electroneutral absorption of Na\(^+\) is mainly performed via Na\(^+\)/H\(^+\) exchange (NHE) as suggested by the inhibitory effect of high doses (1 mmol/l) of amiloride on Na\(^+\) absorption across ruminal, reticular and omasal epithelia (Gäbel and Martens, 1991). To date, nine isoforms of NHE have been identified in different tissues (Lam et al., 2009). Experiments with isolated sheep rumen epithelial cells (RECs) have shown that the specific inhibitors HOE 694 and S3226 of NHE-1 and NHE-3, respectively, are able to inhibit an acid-induced pH\(_{r}\) recovery in these cells (Schweigel et al., 2005). In the same study, the mRNA of NHE-3 and NHE-1 was detected in samples of sheep rumen epithelium by reverse transcription-PCR. Studies of bovine rumen epithelium (and attached smooth muscle) showed the presence of mRNA from NHE1, NHE2, NHE3 and NHE8 isoforms (Graham et al., 2007). Immunohistochemical experiments revealed a prominent staining for Na\(^+\)/H\(^+\) exchanger type 1 at the lumen facing membrane of the stratum granulosum with decreasing intensity across the stratum spinosum and stratum basale (Graham et al., 2007). The unusual finding of NHE1 in the apical membrane of the bovine rumen could not be confirmed in functional studies of Na\(^+\) transport across the sheep omasum (Dolle, 2008) and sheep rumen (H. Martens, unpublished data). Functionally, at least, expression of NHE isoforms by sheep forestomachs resembles that found in other gastrointestinal epithelia, with NHE3 localized apically, while NHE1 is basolaterally expressed (Zachos et al., 2005; Donowitz and Li, 2007).

Ruminal electroneutral Na\(^+\) absorption via NHE (Figure 1) can be stimulated by acidifying intracellular pH, with protons being provided by dissociation of protonated SCFA (HSFA), NH\(_3\) and conversion of CO\(_2\) (Gäbel et al., 1991b; Abdoun et al., 2005). Conversely, electroneutral Na absorption is minimized by the removal of stimulatory anions such as Cl\(^-\), HCO\(_3\)^-\(^-\), and SCFA\(^-\) (Chien and Stevens, 1972; Henseleit, 1991).

Interestingly, in ruminants, the amount of Na\(^+\) absorbed by the rumen in vitro shows a very robust correlation to the amount of SCFA absorbed, as has been shown in the rumen not just of sheep (Gäbel et al., 1991b), but also of cows (Sehested et al., 1993 and 1999) and reindeer (Storeheier et al., 2003). This suggests an important function of Na\(^+\) as a counterion accompanying the absorption of SCFA\(^-\) from the rumen.

In omasum, Na\(^+\) absorption is not only blocked by amiloride (1 mmol/l mucosal). The mucosal addition of hydrochlorothiazide reduced Na\(^+\) and Cl\(^-\) absorption in...
parallel, suggesting the presence of an apically localized Na+Cl- cotransport in addition to NHE (Ali, 2005; Ali \textit{et al.}, 2006).

However, even in the presence of amiloride (and hydrochlorothiazide), Na+ absorption cannot be reduced to 0. The persisting net transport of Na+ in the presence of amiloride is still slightly higher than the short circuit current (Isc) which can be measured across isolated forestomach epithelia under all experimental conditions and, together with unequal K+ diffusion potentials across apical and basolateral membranes, gives rise to a transruminal potential difference of 20 to 60 mV (blood side positive) that can be observed not only \textit{in vitro} but also \textit{in vivo} (Dobson, 1959; Ferreira \textit{et al.}, 1966a and 1966b). The presence of this Na+ current points to an (additional) electrolytic pathway for the uptake of Na+.

At alkaline pH or high ruminal NH\textsubscript{3}, an uptake via NHE is low (Martens \textit{et al.}, 2004; Abdoun \textit{et al.}, 2005), which also shows that absorption of Na+ must be maintained by additional pathways under these conditions to prevent an alkalinization of the cytosol.

\textbf{Electrogenic Na+ absorption}

Ruminal electrogenic Na+ transport differs from that of classical Na+ absorbing epithelia, as it is not blocked by low doses of amiloride (<0.1 mmol/l; Martens \textit{et al.}, 1991), but varies with the luminal concentration of divalent cations (Figure 1). Both in the rumen and in the omasum, net Na+ absorption and Isc as a measure of total electrolytic ion transport across a tissue are markedly increased when the mucosal concentrations of free divalent cations such as Ca2+ and Mg2+ are decreased (Leonhard-Marek \textit{et al.}, 1990; Rübbelke, 1998; Schultheiss and Martens, 1999). In further experiments with isolated rumen epithelia, a divalent sensitive current and conductance could also be shown when Na+ was replaced by K+ or Rb+, but not in the presence of the bigger cation n-methyl-D-glucoside+ (Leonhard-Marek, 2002). In omasum, K+, Rb+, Cs+ and Li+ ions carried a divalent sensitive conductance current, which reached about half the magnitude of the respective Na+ current (Schultheiss and Martens, 1999). Microelectrode experiments revealed that the removal of divalent cations from the mucosal solution depolarized the apical membrane and reduced its fractional resistance (Lang and Martens, 1999; Schultheiss and Martens, 1999). All these observations pointed to a non-selective cation conductance (NSCC) in the apical membrane of ruminal and omasal epithelium that may resemble certain amiloride insensitive conductances found in esophagus (Awaysa \textit{et al.}, 2004) or lung (Kemp and Kim, 2004), but clearly distinct from the classical epithelial Na+ channel found in most mammalian epithelia as distal colon and collecting tubule of the kidney (Rossier, 2003).

The development of a divalent cation sensitive Isc in Na+ buffer requires an active Na+K+ ATPase and K+ recycling through Ba2+ sensitive K+ conductances on the basolateral side (Figure 1). Interestingly, the Na+ current was not only blocked by extracellular Ca2+ and Mg2+ ions, but also by intracellular Mg2+ ions, which points to a regulatory function of Mg2+ (Mg\textsubscript{2+}) in rumen. Thus, manoeuvres that reduce intracellular Mg2+ could be shown to open the conductance both on the level of the tissue (Leonhard-Marek, 2002), and in isolated cells (Leonhard-Marek \textit{et al.}, 2005). Data demonstrate a NSCC with \(P_{K} > P_{Cs} > P_{Na} \) sensitive to the removal of Mg2+, or both Ca2+ and Mg2+ from the external solution. Conductance increased and inward rectification decreased when internal Mg2+ was removed, allowing more influx of Na+ at higher potentials. The conductance could also be blocked by the divalent cation Ba2+. Elevation of CAMP opened the conductance, both via effects on a basolateral Na+/Mg2+ exchanger (Leonhard-Marek \textit{et al.}, 2005), and via direct mechanisms on the channel (Brinkmann, 2006).

An important feature to emerge from the patch clamp studies was the voltage dependence of the channel block by divalent cations (Leonhard-Marek \textit{et al.}, 2005; Stumpff and Martens, 2007a and 2007b). As the cytosol becomes depolarized, the external divalent cations (Ca2+ and Mg2+) blocking the external mouth of the channel are pushed out and the permeability of the channel for Na+ rises. This explains the observation that depolarization of the ruminal epithelium \textit{in vitro} leads to an increase in the electrogenic conductance for sodium across the tissue (Lang and Martens, 1999).

The increase of ruminal electrogenic Na+ transport after a depolarization of the apical membrane may be of practical importance for the ruminant \textit{in vivo}. The release of high amounts of potassium from plant material after an increase of dietary K intake results in an increased Na+ absorption from the rumen (Scott, 1967; Warner and Stacy, 1972) and keeps the sum of Na+ and K+ concentrations within the rumen almost constant. As ruminal K+ concentration rises, the potential across the ruminal tissue in toto increases (Dobson, 1959; Scott, 1966; Martens \textit{et al.}, 1987), while the apical membrane of the ruminal epithelium depolarizes (Leonhard-Marek and Martens, 1996). Albeit the electric driving force for Na+ uptake is reduced under these conditions, the conductance of the electrogenic pathway opens and mediates the influx of Na+ necessary to maintain ruminal osmolarity (Lang and Martens, 1999). It should be noted that an increase in electrogenic Na+ transport across the tissue will lead to a depolarization and thus, to a decrease in the driving force for the efflux of potassium from the rumen, as will be discussed in more detail below.

Recent structural studies have given evidence for the expression of the channels transient receptor potential vanilloid channel (TRPV6); Wilkens \textit{et al.}, 2009) and TRPM7 (Schweigel \textit{et al.}, 2008) in rumen epithelium. Although these channels are discussed in the context of Ca2+ and Mg2+ absorption, respectively (see below), it appears quite likely that they might also be responsible for the electrogenic uptake of Na+ or the permeation of other monovalent cations when the concentration of divalents is reduced or when other mediators such as CAMP are present.

Given the decreasing Na+ uptake via NHE at alkaline pH, the effect of pH on electrogenic Na+ transport was especially interesting. A higher mucosal pH decreases the
stimulatory effects of SCFA and CO₂ on ruminal NHE (Gäbel et al., 1991b) and enhances the inhibitory effects of ammonia on NHE (Abdoun et al., 2005). However, a higher pH also reduces the concentration of free Ca²⁺ and Mg²⁺ ions in rumen fluid (Johnson and Aubrey Jones, 1989). This might relieve the blocking effect of these cations on the electroneutral Na⁺ transport. Interestingly, increasing mucosal pH from 7.5 to 8.0 in vitro increased the Na⁺ current through the apical conductance in the absence of Ca²⁺ and Mg²⁺ (Leonhard-Marek et al., 2006).

In this context, it should be noted that the stratum corneum forms an apical microclimate that presents a barrier between the pH of the bulk solution and that adjacent to the stratum granulosum where the apical Na⁺-conductance is localized (Leonhard-Marek et al., 2006). This pH microclimate can be measured with the aid of a fluorescent probe incorporated in the apical membrane of the outermost epithelial cells and inside epithelial cells that belong to the stratum corneum (Leonhard-Marek et al., 2006), and has recently been confirmed using ion-selective microelectrodes (Abdoun et al., 2010). An increase in luminal Cl⁻ induces a visible increase in rumen surface pH in the presence as well as in the absence of bicarbonate, pointing to an action via apical Cl⁻/HCO₃⁻ or Cl⁻/OH⁻ exchange (Leonhard-Marek et al., 2006). As seen after direct alkalinization of mucosal pH, this manoeuvre had impacts on Isc depending on the mucosal presence or absence of Ca²⁺ and Mg²⁺.

As for luminal pH, the effects of hormones and neurotransmitters acting via cAMP also seem to have different effects on electroneutral and electrogenic Na transport respectively. While an intracellular increase in cAMP or the addition of prostaglandins decreased Na absorption via NHE (Gäbel et al., 1999), cAMP stimulated the transepithelial Na⁺ current via a stimulation in Mg²⁺/Na⁺ exchange and a subsequent decrease in intracellular Mg²⁺, thereby relieving the intracellular block of the unspecific cation conductance (Leonhard-Marek et al., 2005), possibly augmented by direct effects of cAMP on the selectivity of the channel for Na⁺ (Brinkmann, 2006). Like many other tissues, the ruminal epithelium shows endogenous secretion of prostaglandins (Gäbel et al., 1999), which may inter alia serve to switch between the electroneutral and electrogenic form of Na transport across the tissue, with implications for acid-base balance.

In summary, water and electrolyte balance of the ruminant cannot be understood without taking the ruminal-portal-salivary exchanges into account. These have to be regulated to ensure adequate recirculation of sodium through the tissue under multiple different feeding conditions (Silanikove, 1994). Thus, ingestion of readily fermentable carbohydrates with an increase in the concentration of ruminal SCFA requires an increase in the uptake of Na⁺ in exchange for H⁺ via NHE. This mechanism serves to limit influx of protons into the epithelium, to recirculate Na⁺ for secretion with salivary buffering anions such as HCO₃⁻ and H₂PO₄⁻, and to provide Na⁺ as a counterion for the absorption of SCFA across the rumen. In situations where intraruminal potassium concentration rises greatly (Hyden, 1961; Stacy and Warner, 1966 and 1972; Martens and Hammer, 1981), an increase in the uptake of Na⁺ via electrogenic mechanisms is essential for both the maintenance of ruminal osmolarity and to prevent an excessive and rapid influx of K⁺ into the plasma space. Research on intracellular signaling pathways that may regulate the relative contributions of electrogenic, apical and basolateral uptake of Na⁺ with implications for ruminal homeostasis has only just begun.

Absorption of magnesium

The forestomachs are the main site of magnesium (Mg²⁺) absorption in ruminants (Tomas and Potter, 1976), which is essential for maintaining the normal blood Mg concentration (Pfeffer and Rahman, 1974). Although older studies have shown that Mg can be absorbed across all the three forestomach compartments (Martens and Rayssiguier, 1980), attempts to characterize the underlying mechanisms have only been performed with ruminal tissues. Within the rumen epithelium at least two mechanisms ensure an efficient Mg²⁺ uptake into RECs (Figure 2). One of these is electrogenic in nature, so that the uptake of Mg²⁺ depends on the potential difference across the apical cell membrane (Martens et al., 1987; Leonhard-Marek and Martens, 1996). This interdependence explains the negative impact of high ruminal K⁺ concentrations on Mg²⁺ absorption observed in vivo (e.g. Care et al., 1984; Grace et al., 1988) and in vitro (Martens et al., 1987; Leonhard-Marek and Martens, 1996) as well as part of the negative effects of NH₄⁺ (Martens and Rayssiguier, 1980). The uptake of K⁺ depolarizes the apical membrane potential and thus reduces the driving force for electrogenic uptake of Mg²⁺ (Leonhard-Marek and Martens, 1996). A comparable interaction might explain the negative effect of luminal NH₄⁺ on Mg²⁺ absorption, as ruminal potassium channels also show permeability for ammonium in its protonated form (Abdoun et al., 2005). Structural equivalents for electrogenic Mg²⁺ uptake seem to be TRPM7 and MagT1 whose expression and functional activity have recently been shown in RECs (Schweigle et al., 2008).

However, even at high luminal K⁺ concentrations, absorption of Mg²⁺ ions across the rumen remains possible and can be increased by an elevation of the luminal Mg²⁺ concentration (Martens and Blume, 1986; Martens et al., 1988; Ram et al., 1998; Jittakhot et al., 2004a and 2004b, Holtenius et al., 2008). This variable interaction between K⁺ intake and Mg²⁺ absorption has been quantified, permitting the prediction of Mg absorption (Weiss, 2004). The K⁺-insensitive Mg²⁺ absorption in the presence of high ruminal potassium is due to a second, electroneutral mechanism of Mg²⁺ absorption (Leonhard-Marek and Martens, 1996; Leonhard-Marek et al., 1998b). The fact that Mg²⁺ absorption across rumen epithelium or Mg²⁺ uptake into RECs can be stimulated by the presence of different anions like Cl⁻, CO₃²⁻/HCO₃⁻ or SCFA has led to the suggestion of Mg²⁺/anion cotransporters or Mg²⁺/H⁺ exchangers coupled to anion exchangers as underlying mechanisms (Figure 2, Leonhard-Marek et al., 1998a, Leonhard-Marek, 1999;
Schweigel and Martens, 2003). More recently, a vacuolar-type H\textsuperscript+\textendash ATPase (vH\textsuperscript+\textendash ATPase) has been found in RECs which is involved in regulation of pH\textsubscript{i} and transport of Mg2+ (Schweigel and Martens, 2003; Etschmann et al., 2006).

The extrusion of Mg2+ across the basolateral membrane to the blood side is a secondary active process and depends on the presence of sodium (Figure 2). Reducing the Na+ concentration on the basolateral side of rumen epithelia decreases transepithelial Mg2+ absorption (Leonhard-Marek and Martens, 1994; Leonhard-Marek et al., 2005), while the Mg2+ efflux from Mg2+\textendash loaded RECs increases with the extracellular Na+ concentration and can be partly blocked with imipramine (Schweigel et al., 2006). These observations point to Mg2+/Na+ exchange as Mg2+ extruding mechanism on the basolateral membranes of rumen epithelium. In line with this assumption a monoclonal antibody raised against porcine red blood cell Mg2+/Na+ exchanger was able to inhibit Mg2+ extrusion from preloaded RECs and detected a specific immunoreactive band in protein lysates of these cells (Schweigel et al., 2006). Studies with isolated cells and sheets of rumen epithelium have shown that cAMP stimulates Mg2+/Na+ exchange with indirect consequences for electrogenic Na+ absorption via a reduction in intracellular Mg2+ concentration (Figure 2, Leonhard-Marek et al., 2005; Schweigel et al., 2006), pointing to a regulation of Mg2+/Na+ exchange via the PKA pathway.

Absorption of potassium

Physiologically speaking, a rapid efflux of K+ from the gastrointestinal tract of the ruminant should be undesirable, as under most dietary conditions, potassium intake is so ample that energy consuming redistribution into the cytosolic compartment with subsequent renal secretion is necessary to maintain potassium homeostasis (Rabinowitz et al., 1984; Giebisch, 1998; Stumpf and Martens, 2007b). Correspondingly, in ruminants on low intakes of K+, a net secretion of K+ occurs before the duodenum. Thus, a small net excretion of 18 g/day of K+ could be observed in cows on a K+ intake of about 200 g/day (5 mol/day, Khorasani et al., 1997), with similar results observed in lambs (with an excretion of 0.72 g/day at a K+ intake of 5.5 g/day or 140 mmol/day, Greene et al., 1983b). In cows on an somewhat higher K+ intake of 322 g/day (or 8 mol/day), net K+ absorption can be observed before the duodenum, but it is small (10%, Rahnema et al., 1994). The small intestine is thus the main site of net K+ absorption from the diet under these feeding conditions (Pfeffer et al., 1970; Rahnema et al., 1994; Khorasani et al., 1997), and efflux of K+ from the rumen is slow considering the gradients driving the element into the blood.

However, to gain a more complete understanding of the role that the rumen plays in K+ metabolism, recirculation of K+ via saliva has to be taken into account. Even in sodium

Figure 2: Model of ruminal K+ and Mg2+ transport. Ruminants ingest large amounts of potassium with the diet (approximately 12 mol/day in cows). Both dietary intake and salivary flow contribute to the influx of K+ into the rumen, which can accumulate to reach levels of 100 mmol/l in sodium-depleted animals. Both apical uptake and basolateral efflux of K+ is mediated by channels, and accordingly, transport of K+ across the rumen is passive and follows the electrochemical gradient. Transport is highest when the concentration gradient is high and drops when the transruminal potential rises. At low concentrations in the rumen, apical uptake of Mg2+ follows the electrochemical gradient across the apical membrane and is thought to occur via a channel. At higher concentrations, a second, transporter mediated pathway contributes to the total uptake. This pathway is stimulated by short chain fatty acids and CO\textsubscript{2}. Basolaterally, efflux of Mg2+ occurs coupled to the influx of Na+ via a pathway that can be stimulated by cAMP. The channel-mediated uptakes of Na+, K+ and Mg2+ are driven by potential and interact with each other in a complex fashion. Normally, the inside of the ruminal epithelium is negative v. the rumen. As the concentration of Mg2+ in the cell is similar to that of the rumen, this potential is essential to drive the uptake of this element into the epithelium. When ruminal K+ rises, the potential difference across the apical membrane drops and the channel mediated uptake of Mg2+ is reduced. The pore of these channels is now free for the passage of Na+ into the cytosol, driven by the concentration gradient, which is maintained by the basolateral Na+ pump. The rising electrogenic transport of Na+ will raise transruminal potential and thus, limit the efflux of K+ from the rumen.
replete animals, in which K\(^+\) concentration in saliva is usually around 5 mmol/l, contributions of up to 1.5 mol/day (cows) or 80 mmol/day (sheep) of K\(^+\) to the total balance are to be expected. When animals are Na\(^+\)-depleted (Scott, 1966) and under stimulation by aldosterone (Blair-West et al., 1963), both the salivary and the ruminal concentration of K\(^+\) may rise to 100 mmol/l (Kay, 1960; Blair-West et al., 1963; Scott, 1966 and 1967). Under these conditions, K\(^+\) replaces (scare) Na\(^+\) in saliva, and not surprisingly, perhaps, a sizable reabsorption of K\(^+\) from the rumen can be observed.

Provided that ruminal K\(^+\) is sufficiently high, a number of in vivo and in vitro studies have shown that preintestinal regions can contribute substantially to total recirculation of K\(^+\) in the gastrointestinal tract of ruminants. Using the technique of the isolated reticulorumen in sheep, Dobson (1959) observed a K\(^+\) absorption rate of 67 mmol/day at a ruminal K\(^+\) concentration of 23 mmol/l in sheep. When the potassium level in the diet was increased from 0.6% to 2.4% and 4.8% in steers and lambs and from 1.5% to 2.6% in lactating cows, the animals absorbed between 40% and 72% of the additional K\(^+\) intake in preintestinal regions (Greene et al., 1983a and 1983b; Khorasani et al., 1997), thus recirculating not only the entire amount of K\(^+\)secreted with saliva, but also absorbing a certain proportion of dietary K\(^+\).

Scott (1967) calculated ruminal K\(^+\) absorption with the aid of marker infusions, and found a linear increase in absorption with ruminal K\(^+\) concentrations through the range of 35 to 100 mmol/l. Conversely, Warner and Stacy (1972) calculated positive K\(^+\) absorption rates only when ruminal concentration exceeded 100 mmol/l, suggesting that the absorption of K\(^+\) may be regulated in a complex manner. Interestingly, the omasum showed a lower K\(^+\) absorption rate (19 mmol/day) at higher ruminal K\(^+\) concentration in sheep (43 mmol/l, von Engelhardt and Hauffe, 1975) and a K\(^+\) absorption rate of about 81 mmol/day in young steers (Edrise et al., 1986).

Studies with isolated forestomach epithelia of sheep have shown a small net K\(^+\) secretion between 0.04 and 0.36 μeq/cm²h across the rumen when the tissues were incubated in the absence of electrical and chemical gradients (Ferreira et al., 1972; Harrison et al., 1975; Wolffram et al., 1989; Leonhard-Marek and Martens, 1996). A small K\(^+\) absorption of 0.04 to 0.13 μeq/cm²h was observed in the omasum (Harrison et al., 1970; Harrison, 1971). However, when the luminal K\(^+\) concentration was increased from 4 to 100 mmol/l, net K\(^+\) absorption across rumen epithelia increased by 2.5 μeq/cm²h (Kronshtein and Leonhard-Marek, 2009), corresponding to an amount of 0.7 mmol/day (or 27 g/day) across the estimated 1.2 m² of ruminal surface in sheep (Ferreira et al., 1972). This equals the amount of K\(^+\) absorption observed in vivo by Scott (1967), but exceeds that observed by Warner and Stacy (1972) at the same ruminal potassium concentration of 100 mmol/l. Although the efflux of K\(^+\) from the rumen is passive, in that it follows the electrochemical gradient, the permeability of the rumen to the K\(^+\) ion is thus clearly regulated in a complex fashion that is yet poorly understood. However, outlines are beginning to emerge.

Uptake of K\(^+\) occurs via a transcellular route while the paracellular permeability of the rumen to K\(^+\) seems to be lower (Figure 2). The use of different blockers has revealed the contribution of both apical and basolateral K\(^+\) channels to ruminal K\(^+\) transport (Harrison et al., 1975; Bödeker and Kemkowski, 1996; Leonhard-Marek and Martens, 1996). Apical K\(^+\) channels could be blocked by quinidine or verapamil, basolateral K\(^+\) channels were sensitive to inhibition by barium (Figure 2).

Luminal K\(^+\) channels are responsible for the effect of a change in luminal K\(^+\) concentration on the apical membrane potential (PDa), which is depolarized with increasing ruminal K\(^+\) concentrations (Leonhard-Marek and Martens, 1996). As mentioned, the K\(^+\)-dependent depolarization of PDa decreases ruminal Mg\(^2+\) absorption particularly in animals on a low Mg\(^2+\) diet. Both the reduction in intracellular Mg\(^2+\) and the relief of the voltage dependent block by extracellular divalent cations as outlined above should increase the NSCC of the rumen (Figure 2). This mechanism might in part be responsible for the increased Na\(^+\) absorption seen at high ruminal K\(^+\) concentrations (Scott, 1967; Warner and Stacy, 1972).

The increase in the active, electrogenic transport of Na\(^+\) across the tissue under high K\(^+\) conditions also has implications for the transport of K\(^+\); as the transepithelial potential across the rumen increases, the gradient driving the efflux of K\(^+\) decreases. Although the potentials observed in vivo (Scott, 1967; Warner and Stacy, 1972) and in vitro (Leonhard-Marek and Martens, 1996) under high ruminal K\(^+\) conditions are induced by the high ruminal K\(^+\) concentrations, they serve to limit the actual efflux of this element by decreasing the electrochemical driving force (Stumph and Martens, 2007a and 2007b).

In summary it can be said that efflux of K\(^+\) from the rumen is passive and determined by the electrochemical gradient. The activity of the Na\(^+\)/K\(^+\) ATPase in conjunction with the regulatory control of the permeabilities of the apical, basolateral and paracellular conductances for Na\(^+\) and K\(^+\) should ultimately determine the amount of K\(^+\) distributed into the ruminal cavity or released into plasma.

Absorption of calcium

To meet the Ca\(^{2+}\) requirements of milk production, the mechanisms of gastrointestinal Ca\(^{2+}\) absorption are of great interest especially in high yielding dairy cows. Although the small intestine is regarded as the main absorption site for Ca\(^{2+}\) in monogastric animals, ruminants can absorb Ca\(^{2+}\) from all gastrointestinal regions (Breves et al., 1995). Balance studies show that preintestinal Ca\(^{2+}\) absorption gains significance at higher Ca\(^{2+}\) intake. When Ca\(^{2+}\) intake rises to 8 g/day in sheep or to 120 g/day in cattle, absorption of Ca\(^{2+}\) is shifted to preintestinal regions (Grace et al., 1974; Khorasani et al., 1997; Schröder and Breves, 2006). A survey of different balance studies showed that a high preintestinal Ca\(^{2+}\) absorption is usually accompanied by a low intestinal Ca\(^{2+}\) absorption or even by intestinal Ca\(^{2+}\) secretion.
(Schröder and Breves, 2006). It is worth to mention in this context that in a recent meta-analysis Lean et al. (2006) have shown that prevention of milk fever seems to be possible not only at low Ca intake (<0.5% of DM), but also at high Ca intake (>2% of DM), which may indicate that at high Ca\(^{2+}\) intake, absorption of Ca\(^{2+}\) from the forestomachs could help to cover increased Ca\(^{2+}\) requirement at parturition.

Ruminal and omasal Ca\(^{2+}\) absorption are at least partly active and involve electrogenic and electroneutral components (Höller et al., 1988a and 1988b; Schröder et al., 1997; Wadhwa and Care, 2000). Active ruminal Ca\(^{2+}\) absorption can be increased by concentrate feeding (Uppal et al., 2003), in the presence of SCFAs (Schröder et al., 1997 and 1999; Wadhwa and Care, 2000; Uppal et al., 2003, Leonhard-Marek et al., 2007a) or by increasing the amounts of luminal chloride (Leonhard-Marek et al., 2007a), whereas sulfate ions seem to have stimulatory and depressing effects with no net change of Ca flux rates in vitro (Leonhard-Marek et al., 2007b). An increased absorption of undissociated SCFA will provide protons to the cell interior, while the ruminal uptake of SCFA or Cl\(^{-}\) via anion exchange mechanisms is accompanied by a secretion of bicarbonate (Gäbel et al., 1991a) and an increase in surface pH (Leonhard-Marek et al., 2006). The stimulating effects of SCFA and amloride (increased availability of protons because of blocked NHE) have therefore suggested that Ca\(^{2+}/H^{+}\) antiporters contribute to apical Ca\(^{2+}\) uptake (Schröder et al., 1997 and 1999).

However, in the light of the presence of a ruminal vH\(^{-}\)ATPase (Schweigel and Martens, 2003; Etschmann et al., 2006), these findings might be additionally explained as a stimulation of other Ca\(^{2+}\) transport proteins by an apical pH microclimate.

An increased electrogenic Na\(^{+}\) absorption in the absence of divalent cations as shown for rumen and omasum (see above), is a feature of many Ca\(^{2+}\) channels (Sather and McCleskey, 2003; Hoenderop et al., 2005). Ca\(^{2+}\) channels might thus represent the functional basis for a divalent sensitive Na\(^{+}\) absorption as well as for an electrogenic Ca\(^{2+}\) absorption across forestomach epithelia. In the rumen, the Ca\(^{2+}\) channel agonist Bay K 8644 (50 mM) was able to increase Ca\(^{2+}\) absorption (Wadhwa and Care, 2000), which could indicate the presence of \(\lambda\)-type Ca\(^{2+}\) channels in rumen epithelium. Although many epithelia use TRPV-type Ca\(^{2+}\) channels for Ca\(^{2+}\) absorption (Hoenderop et al., 2005), \(\lambda\)-type Ca\(^{2+}\) channels have been suggested to contribute additionally to intestinal Ca\(^{2+}\) absorption (Morgan et al., 2003). Both the epithelial TRPV-type Ca\(^{2+}\) channels and \(\lambda\)-type Ca\(^{2+}\) channels increase their conductance with alkaline pH (Pietrobon et al., 1989; Vennekens et al., 2001), so that an increased uptake of Cl\(^{-}\) or SCFA\(^{-}\) in exchange for bicarbonate could stimulate a luminal Ca\(^{2+}\) conductance via an increase in surface pH. TRPV6 has recently been shown to be expressed in rumen tissues. In situ hybridization, immunohistochemistry and Western blot analysis, however, indicated only a weak TRPV6 signal, which was observed along the entire epithelium and not just localized in the luminal cell layers. The actual significance of this channel for ruminal Ca\(^{2+}\) uptake remains questionable (Wilken et al., 2009).

Transepithelial Ca\(^{2+}\) absorption depends on the activity of the basolateral Na\(^{+}/K^{+}\)-ATPase and on the presence of sodium, suggesting the contribution of Na\(^{+}/Ca^{2+}\) exchangers (NCXs) to basolateral Ca\(^{2+}\) extrusion (Höller et al., 1988a and 1988b; Schröder et al., 1997 and 1999). Indeed, the expression of NCX-specific mRNA has been shown in rumen epithelium (Wilken, 2006). In contrast, the plasma membrane Ca\(^{2+}\)-ATPase, although equally shown to be expressed on mRNA level with no further information about expression patterns (Wilken, 2006), does not seem to contribute to ruminal Ca\(^{2+}\) absorption as the Ca\(^{2+}\) pump inhibitor vanadate had no significant effect on net Ca\(^{2+}\) absorption (Schröder et al., 1999).

Absorption of ammonia

Within the forestomachs, the microbial degradation of proteins, peptides, amino and nucleic acids taken up with the food as well as the hydrolysis of recycled urea delivers substantial amounts of ammonia, which is mostly re-used for the synthesis of microbial protein. An optimal growth rate of ruminal microbes, however, requires ammonia concentrations between 3.5 and 6 mmol/l (Satter and Slyter, 1974; Kang-Meznarich and Broderick, 1980), while a diet rich in rapidly degradable proteins can easily raise ruminal ammonia concentrations up to 20 mmol/l (Wernli and Wilkins, 1980). According to Nolan and Strachin (1979) between 35% and 65% of the generated ammonia is absorbed across rumen epithelium. A smaller quantity of ammonia (about 10% of the generated amount, Nolan and Strachin, 1979) flows into the omasum and can be absorbed there (von Engelhardt and Hauffe, 1975).

Ruminal absorption of ammonia can be raised by increases in pH and is depressed to a constant value when pH is decreased to values below 6, suggesting that most of it is absorbed in the lipid soluble form of NH\(_{3}\) (Hogan, 1961; Abdoun et al., 2005 and 2006). However, as ammonia is a base with a pK value around 9, the majority of it will be present in the form of NH\(_{4}^{+}\) at physiological rumen pH. Abdoun et al. (2005) measured ammonia fluxes across rumen epithelium at different pH values and found a strong correlation between total ammonia absorption and the concentration of mucosal NH\(_{3}\) (in mmol/l): \(J_{NH_{3}} = 4.1 \mu\text{eq/cm}^2\text{h} | [NH_{3}] + 0.7 \mu\text{eq/cm}^2\text{h} (r = 0.99)\). In this equation the intercept of 0.7 \(\mu\text{eq/cm}^2\text{h}\) at \([NH_{3}] = 0\) should represent electrogenic absorption of NH\(_{3}^{+}\) (Abdoun et al., 2005 and 2006). Assuming a pH independent absorption rate of NH\(_{4}^{+}\), the absorption of NH\(_{4}^{+}\) would explain nearly 100% of the total ammonia absorption measured by Abdoun et al. (2005) at pH 6.4 and about 20% of the ammonia absorption at pH 7.4. Adding NH\(_{4}^{+}\) or K\(^{+}\) salts to the luminal side of isolated sheep rumen epithelia induced increases in transepithelial Isc, which could both be blocked by quinidine (Bödeker and Kemkowski, 1996). In the same study, absorption of ammonia was reduced by the addition of quinidine or by imposing a positive potential difference across the epithelia, suggesting the permeation of NH\(_{3}^{+}\).
through epithelial K⁺ channels (Figures 1 and 2). Quinidine sensitive NH₄⁺ and K⁺ permeable channels have also been demonstrated in isolated RECs using the patch clamp technique (Abdoun et al., 2005).

In rumen and omasum, increasing amounts of ammonia interfere with Na⁺ and Cl⁻ absorption in a manner that depends on luminal pH. While an increase in ammonia concentration raised ruminal Na⁺ absorption at pH 6.4, it had no effect at pH 6.9 and depressed Na⁺ absorption at pH 7.4 (Abdoun et al., 2005). In omasal epithelia, ammonia only showed depressing effects on Na⁺ absorption at pH 7.4 that vanished when the sheep had been kept on a concentrate-based diet instead of a hay diet before the experiments (Martens et al., 2004). In the rumen of sheep that had been fed concentrate or urea, ammonia even had stimulating effects on Na⁺ fluxes at pH 7.4 (Abdoun et al., 2003). A predominant absorption of NH₄⁺ at pH 6.4 would provide protons to the cell interior and could thereby stimulate apical Na⁺/H⁺ exchangers (Figure 1), which is underlined by the observation that this ammonia dependent increase in Na⁺ absorption was completely blocked in the presence of amiloride (Abdoun et al., 2005). A predominant absorption of NH₃ at a more alkaline pH will, conversely, increase intracellular pH (Müller et al., 2000) and thereby reduce NHE activity (Aronson et al., 1982). An alkaline load is followed by HCO₃⁻ extrusion from RECs (Bilk et al., 2005). In line with this connection, an increase in luminal NH₃ concentration enhanced ruminal Cl⁻ absorption in a CO₂/HCO₃⁻ containing buffer solution (Abdoun et al., 2005). A diet rich in nitrogen seems to change the relative permeabilities of rumen and omasum for NH₃ and NH₄⁺ resulting in altered ammonia dependent effects on the absorption of other ions (Abdoun et al., 2003; Martens et al., 2004).

Ammonia also interferes with ruminal Mg²⁺ absorption (Martens and Rayssiguier, 1980), with effects on both the electrogenic and the electroneutral component (S. Leonhard-Marek and H. Martens, unpublished data). In the light of the pathways of ruminal ammonia absorption discussed above, an electrogenic uptake of NH₄⁺ should depolarize the apical membrane potential and thereby reduce the driving force for electrogenic uptake of Mg²⁺. At the same time, however, absorption of NH₄⁺ should increase the intracellular provision of protons and thus increase a VHH⁺-ATPase dependent stimulation of Mg²⁺ absorption and/or an uptake via Mg²⁺/H⁺ exchange. Conversely, uptake of NH₃ would reduce these electroneutral mechanisms of Mg²⁺ absorption while increasing electrogenic absorption via pH effects on TRPM or MagT1 (Goytain and Quamme, 2005; Kozak et al., 2005). It thus seems difficult to hypothesize mechanisms of adaptation that would explain why the effect of ammonia on ruminal Mg absorption disappears within some days as observed by Gäbel and Martens (1986).

Absorption and secretion of chloride

The concentration of chloride within the reticulorumen varies between 10 and 40 mmol/l with the highest values measured 1 h and the lowest ones from 8 to 14 h after feeding, reflecting the concentration in saliva at this latter time point (Bailey, 1961). In vitro – in the absence of electrochemical gradients – chloride is absorbed across rumen epithelia, an absorption that depends on the presence of sodium, an active Na⁺/K⁺-ATPase and on the presence of bicarbonate (Chien and Stevens, 1972; Harrison et al., 1975; Martens et al., 1991). These dependencies have suggested the involvement of Cl⁻/HCO₃⁻ exchangers coupled to NHE via intracellular pH in analogy to other epithelia of the gastrointestinal tract on the apical side (Figure 3).

When monitoring ruminal surface pH with the aid of a fluorescent microprobe inserted into the outer membranes of rumen epithelium, an increase in luminal Cl⁻ concentration resulted in an increase in surface pH (Leonhard-Marek et al., 2006), in line with a secretion of HCO₃⁻ in exchange for Cl⁻ absorption. Recently, Bilk et al. (2005) have shown that isolated RECs express mRNA for the anion transporters PAT, DRA, and AE2, all of which might contribute to Cl⁻ transport across rumen epithelium and have been shown to transport Cl⁻ in exchange for HCO₃⁻ in other tissues (Mount and Romero, 2004; Romero et al., 2004).

Studies aimed at elucidating the effect of bicarbonate showed differences between the various stomach epithelia. The elimination of bicarbonate, which reduced absorptive and secretory Cl⁻ flux rates across the rumen (Gäbel et al., 1991b), had no effect in the reticulum. However, the inhibition of the carbonic anhydrase with azetazolamide reduced Cl⁻ absorption across the reticulum (Vogler, 1991), suggesting a role for an anion exchange mechanism in this tissue.

A Cl⁻ dependent base (HCO₃⁻) extrusion should increase the intracellular availability of protons. This context was used repeatedly to explain the stimulatory effects of Cl⁻ on the electroneutral absorption of Na⁺, Mg²⁺, and Ca²⁺ across rumen epithelium (Martens and Gäbel, 1988; Leonhard et al., 1991; Sehested et al., 1996; Leonhard-Marek et al., 2007a). Additional effects of Cl⁻ on electrogenic cation absorption raised the hypothesis that apical Cl⁻ channels might mediate a Cl⁻ dependent change in membrane potential and thereby increase the electric driving force for cation uptake (Leonhard-Marek and Schröder, 2002; Leonhard-Marek et al., 2006). In contrast to this expectation, however, an increase in luminal Cl⁻ concentration did not hyperpolarize, but instead depolarized the apical membrane of rumen epithelium (Leonhard-Marek and Schröder, 2002; Leonhard-Marek et al., 2006), which suggested the presence of Cl⁻ conductances not in the apical but in the basolateral membranes of rumen epithelia (figure 3).

These data are supported by other deliberations. Net electroneutral transport of NaCl (Gäbel et al., 1991b) requires not only an apical uptake pathway as outlined above via NHE coupled to an anion exchanger: efflux, too, has to be electroneutral. However, sodium leaves the tissue via the Na⁺/K⁺-ATPase. As potassium is recirculated, the basolateral efflux of Na⁺ would result in an increasingly negative cytosol unless Cl⁻, too, leaves the tissue electrogenically (Abdoun et al., 2005; Stumpff et al., 2009a).
Chloride transport rates measured across isolated epithelia from reticulum and omasum are higher than those across the rumen. In the absence of electrochemical gradients, both epithelia exhibit a small net Cl\(^-\) absorption. In the reticulum, absorptive and secretory flux rates of Cl\(^-\) were partly reduced by the addition of bumetanide or the stilbene derivatives SITS and DIDS (Vogler, 1991). Omasal Cl\(^-\) transport was affected by DIDS (absorptive and secretory flux) and furanside (secretory flux, Tiling, 1997), with absorption of Cl\(^-\) most likely occurring via an apical anion exchanger and a basolateral anion channel, as described for the rumen. Studies currently underway suggest that the omasum expresses an anion channel similar to that observed in the rumen (F. Stumpff and M. Georgi, unpublished data).

The extraordinarily high serosal to mucosal Cl\(^-\) fluxes observed in the omasum suggest a potentially more prolific role for an additional basolateral Cl\(^-\)/HCO_3\(^-\) exchanger in this tissue (Figure 3, Tiling, 1997). In vivo studies of the omasum have shown a net secretion of chloride (von Engelhardt and Hauf, 1975), leading to a measurable increase in Cl\(^-\) concentration from proximal to distal parts within the omasum of cattle (Ekman and Sperber, 1953; Edris et al., 1986). This secretion can also be shown in vitro, but only when the mucosal Cl\(^-\) concentration is lowered as would be the case under in vivo conditions (Tiling, 1997). Subsequent studies with epithelia from the omasum tested for Cl\(^-\) transport under physiological gradients (Cl\(^-\) serosal > mucosal, HCO_3\(^-\) mucosal > serosal). Under these conditions, anion exchange should allow for a net secretion of Cl\(^-\) and a net absorption of HCO_3\(^-\).

In the absence of any gradient, the small net absorption of Cl\(^-\) is coupled to Na\(^+\) absorption and can be blocked by hydrochlorothiazide, suggesting the involvement of apical Na\(^+\)-Cl\(^-\)-cotransporters (Figure 3, Ali, 2005). This Cl\(^-\) transporter is thought to be necessary for the provision of sufficient Cl\(^-\) ions into subapical domains to allow for high transport rates of the apical Cl\(^-\)/HCO_3\(^-\) exchanger (see below).

In summary, both the rumen and the omasum allow the passage of sizable amounts of chloride, with the direction of transport differing. While the pronounced ability of the ruminal epithelium to absorb chloride in vitro correlates with the low chloride concentrations observed in the rumen in vivo, the pronounced ability of the omasum to secrete chloride leads to rising levels of this anion as the ingesta move toward the abomasum.

Secretion and absorption of bicarbonate

Bicarbonate transport across the rumen

Although salivary production of HCO_3\(^-\) is considerable, corresponding to some 40 mol/day (Bailey and Balch, 1961;
Erdmann, 1988; Allen, 1997), bicarbonate (HCO_3^-) is also secreted in large amounts by the rumen epithelium, thereby contributing to an optimally buffered environment within the reticulorumen in general and in the microclimate adjacent to the transporting layer of cells in particular. Part of this bicarbonate is converted to CO$_2$ in the course of acid buffering and exhaled by the ructus of the animals or taken up diffusively into the blood. The remaining bicarbonate passes to the omasum and is absorbed there in exchange for chloride (Figure 3). The removal of bicarbonate from the ingesta is essential to prevent an immediate and huge liberation of CO$_2$ upon entry into the abomasum with its high concentration of hydrochloric acid (HCl).

Experiments with the temporarily isolated and washed reticulorumen of sheep have shown that bicarbonate secretion can be observed in the presence of SCFA (Gäbel et al., 1991a). Changing from hay to concentrate diets raised net bicarbonate secretion as well as net SCFA absorption, while the replacement of SCFA by gluconate and mannitol reversed bicarbonate secretion as well as net SCFA absorption, while the reduction of extracellular Cl$^-$ via Na$^+$/H$^+$ exchange. As HSCFA dissociate rapidly at the near neutral pH of the cytosol (pK \approx 4.8), basolateral efflux cannot occur via diffusion of HSCFA but has to involve specific transport proteins. Larger SCFA such as butyrate are metabolized into products that leave via a basolateral monocarboxylate transporter. The anions of the lower chain SCFA leave the tissue unmetabolized and coupled to the efflux of Na$^+$. The model suggests that basolateral efflux of SCFA anions is driven by the potential induced by the Na$^+$/K$^+$-ATPase and occurs through a large-conductance anion channel.

As in other preparations, the direction of exchange depended on the gradients present (Huhn et al., 2003; Bilk et al., 2005). Isolated RECs that were alkalized by a switch in the bathing solution from a CO$_2$/HCO$_3^-$ to a HEPES buffer, were not able to recover from this alkalized state in the absence of Cl$^-$ and SCFA on the extracellular side. In contrast, the recovery from acidification (after switching from HEPES to CO$_2$/HCO$_3^-$ in the bath) was partly dependent on extracellular Na$^+$ (Na^+/HCO$_3^-$ basolaterally located cotransport, Huhn et al., 2003) and could be enhanced by the reduction of extracellular Cl$^-$ (Bilk et al., 2005).

A semiquantitative PCR analysis of anion transporters on the mRNA level (Bilk, 2008) revealed a high presence of DRA in SCFA exposed rumen epithelia, while no DRA expression could be detected in isolated RECs cultivated in the absence of SCFA. In contrast, PAT1 showed a higher presence in cultivated rumen cells compared with the native epithelium. On the basis of these differences, Bilk (2008) postulated that DRA and PAT1 might be the structural equivalents of SCFA and Cl$^-$/HCO$_3^-$ exchange, respectively.

Bicarbonate transport across the omasum

As mentioned above, removal of HCO$_3^-$ from the ingesta before the abomasum seems essential to prevent the formation of gas (CO$_2$ (Svendsen, 1975)) in the abomasum. In addition, presence of powerful buffers with a high pK value require the secretion of large amounts of HCl by the abomasum to reduce pH to a level at which gastric enzymes are known to work. Both formation of gas and accumulation of...
Cl (with cations and water following) should lead to a dispersion of the organ with possible subsequent displacement. For this reason, the transport of bicarbonate across the omasum has been systematically studied and clearly depends on the transepithelial and transmembranal concentration gradients for Cl\(^{-}\) and HCO\(_3\)\(^{-}\). Interestingly and in contrast to what is observed in the rumen, Cl\(^{-}\) and HCO\(_3\)\(^{-}\) do not seem to interfere directly with the transport of SCFA across the omasum, suggesting that the anion exchangers expressed by this epithelium show very low affinity to the larger and more polar anions of SCFA than to those of Cl\(^{-}\) and HCO\(_3\)\(^{-}\).

Depending on the gradients present, bicarbonate can be absorbed or secreted across in vitro preparations of omasal epithelia. Transport rates are, however, not symmetrical at identical (opposed) gradients. The same relative gradients allowed for higher absorptive than secretory fluxes of epithelia. Transport rates are, however, not symmetrical at

In line with this argument, an increase in the concentration of acetate was found to stimulate the absorption of Na\(^{+}\) and thus acidic tissues at the high chloride concentrations observed in most physiological situations), or a direct coupling of NHE and the anion exchanger via scaffolding proteins (Seidler et al., 2009). As the mucosal presence of SCFA increases Na\(^{+}\) absorption via NHE (Ali et al., 2006), an increase in bicarbonate absorption after exposure to SCFA is to be expected.

In assessing the relative importance of these two uptake mechanisms, it should be noted that permeabilities of SCFA to lipid bilayers are so high (>10\(^{-3}\) cm s\(^{-1}\)) that diffusion through the aqueous unstirred layers adjacent to the membrane is the rate-limiting step for diffusion across the membrane system (Walter et al., 1982). Given the high surface area available for transport processes, only small amounts of undissociated SCFA are necessary to maintain transport, and accordingly, widely diverse preparations such as snail neurons (Sztakowski and Thomas, 1989), ciliary epithelial cells of the eye (Helbig et al., 1989) or isolated cells of the ruminal epithelium (Bilk, 2008) are acidified by small amounts of undissociated SCFA.

Given the high lipophilicity of butyrate, an uptake as undissociated acid might represent a major pathway for movements across rumen and omasum, might thus depend on different anion affinities in differently localized anion exchangers, and/or on different transmembranal gradients for the transported ions. This latter assumption is underlined by the observed Cl\(^{-}\) absorption via a Na\(^{+}\)-Cl\(^{-}\) cotransporter, which can be observed in the omasum, but not in the rumen.

In summary, the omasum shows a considerable absorptive capacity for bicarbonate, resulting in a net absorption of this anion from the forestomachs. High individual variations in basal and gradient induced HCO\(_3\)\(^{-}\) absorption may explain why ruminants on the same diet show different susceptibility to abomasal gas accumulation and displacement.

Absorption of SCFAs

Transport of SCFA across the rumen

Microbial fermentation of carbohydrates delivers 4 to 6 mol SCFA per kg of organic matter (Allen, 1997) to the forestomachs of ruminants, corresponding to a production of 55 to 100 mol/day in cows. The majority of these SCFA (which consist mainly of acetate (~60%), propionate (~20%) and butyrate (~10%) are absorbed across the forestomachs and cover a substantial part of the animals energy requirements (Bergman, 1990). The major fraction of SCFA crosses the forestomach epithelia unmetabolized (Kiddle et al., 1951; Gäbel et al., 2002), although SCFA, in particular butyrate, are also used by the epithelial cells themselves for cell metabolism, which could support active transport of other electrolytes (Weigand et al., 1975; Sehested et al., 1999; Kristensen et al., 2000; Gäbel et al., 2002; Gäbel and Aschenbach, 2006).

Apical uptake mechanisms for SCFA

Previous studies and reviews have focussed on two possible mechanisms of SCFA uptake across the apical membrane: diffusion of the protonated, undissociated form through the lipid bilayer and exchange of the dissociated SCFA anion for bicarbonate via a transport protein that exchanges SCFA \(^{-}\) for HCO\(_3\)\(^{-}\) anions under physiological conditions (Figure 4, Gäbel et al., 1991a; Kramer et al., 1996; Gäbel et al., 2002; Aschenbach et al., 2009).

In assessing the relative importance of these two uptake mechanisms, it should be noted that permeabilities of SCFA to lipid bilayers are so high (>10\(^{-3}\) cm s\(^{-1}\)) that diffusion through the aqueous unstirred layers adjacent to the membrane is the rate-limiting step for diffusion across the membrane system (Walter et al., 1982). Given the high surface area available for transport processes, only small amounts of undissociated SCFA are necessary to maintain transport, and accordingly, widely diverse preparations such as snail neurons (Sztakowski and Thomas, 1989), ciliary epithelial cells of the eye (Helbig et al., 1989) or isolated cells of the ruminal epithelium (Bilk, 2008) are acidified by small amounts of SCFA.
butyrate absorption. When measured at equal concentrations of 10 mmol/l in vitro, the absorptive flux of butyrate is about twice as high as the respective flux rates of propionate and acetate (Reckemmer et al., 1995), which has been attributed to both a higher lipophilicity and a higher metabolic breakdown, thereby ensuring a permanent butyrate gradient across the apical membrane. This latter fact is supported by the observation that absorption of n-butryate largely depends on the availability of ATP (Gäbel et al., 2001), although effects on the absorption of acetate and propionate were also observed.

Without SCFA gradients, however, a small net absorption of butyrate across bovine rumen could also be measured, but only in the presence of bicarbonate, and tended to be reduced by the presence of Cl− (Sehested et al., 1999). In the reticulorumones of sheep in vivo, that is in the presence of SCFA gradients, the disappearance of butyrate was not affected by Cl−, while butyrate slightly reduced the disappearance of chloride (Aschenbach et al., 2009), pointing to a small additional contribution of anion exchangers to butyrate absorption and a possible competition between butyrate and Cl− absorption.

The absorptive flux of propionate across sheep rumen epithelium could be stimulated by a decrease in pH – in line with uptake of undissociated acid via lipid diffusion or via a specific transport protein – but also by a reduction in mucosal Cl− concentration – in line with uptake via anion exchange (Kramer et al., 1996). In vivo, the negative effects of Cl− on SCFA disappearance from the washed reticulorumones were most pronounced for propionate, which vice versa had a high negative impact on the disappearance of Cl− (Aschenbach et al., 2009).

Acetate, the least lipophilic SCFA, is present in the fore- stomachs in the highest amounts under most feeding conditions. A decrease in pH was able to stimulate the uptake of acetate into rumen epithelia. In the presence of bicarbonate, however, the same decrease in pH induced an additional gradient for bicarbonate across the apical membrane and resulted in a much greater stimulation of acetate uptake (Aschenbach et al., 2009). In vivo studies showed negative impacts of acetate or chloride on the disappearance of the respective other anion. Nitrate that had been shown to block ruminal Cl− and propionate absorption in the presence of bicarbonate (Würmli et al., 1987; Kramer et al., 1996) blocked ruminal acetate absorption in the presence and in the absence of bicarbonate to almost the same final level (Aschenbach et al., 2009). From these observations the investigators conclude the presence of bicarbonate dependent and independent anion exchangers in addition to lipophilic uptake as mechanisms of acetate absorption.

Given the high capacity of monocarboxylate transporters (MCTs) for the transport of lactate, and the low transport rates for lactate observed in forestomach epithelia in vivo and in vitro, the role of an apical MCT has to be marginal. In line with this suggestion, the MCT inhibitors pCMBS, pHMB and phlor- etin had no effect on acetate uptake by sheep rumen (Aschenbach et al., 2009). Thus, although apical MCT4 seems to be expressed by the cell membranes of the stratum corneum and stratum granulosum of the goat (Kirat et al., 2007), functional data do not support a role in apical monocarboxylate transport for the species of sheep, at least. The bicarbonate insensitive mechanisms of non-diffusive acetate uptake into sheep rumen (Aschenbach et al., 2009) must be performed via another hitherto unknown transport protein.

Whether apical uptake of SCFA occurs via cotransport with a proton, or in exchange for HCO\textsubscript{3}{−}, all of the uptake routes outlined above are stimulated by low ruminal pH and lead to intracellular acidification. This has been shown in vitro both in isolated cells of the ruminal epithelium (Bilk, 2008) and directly in the intact tissue using pH sensitive microelectrodes (Abdoun et al., 2010). This acidification is limited by the stimulation of NHE and by proton extrusion via vH+-ATPases in the upper layers of the stratified rumen epithelium (see above). However, the severe epithelial lesions seen in ruminal acidosis suggest that the capacity of the tissue to deal with the influx of SCFA is limited.

The challenge to cellular homeostasis by influx of SCFA

It may be argued that if SCFA enter the epithelium via lipid diffusion as HSCFA and leave the epithelium the same way, no problem should occur once steady state sets in.

Some deliberations can show why a model assuming classical lipid diffusion of HSCFA across the ruminal epithelium runs into problems. If both influx and efflux rate are equal and determined by the concentration gradient, substrates can be expected to accumulate to a level halfway between the apical and basolateral concentration. In the best-case scenario, with ruminal pH at cytosolic pH (~ 7.2), SCFA will thus accumulate in the ruminal epithelium to a concentration around half that found in the rumen, or some 50 mmol/l. An equimolar amount of cations will have to enter the cytosol to maintain electroneutrality, with osmolarity rising by a staggering 100 mosmol/l. At lower ruminal pH, the amount of protonated HSCFA available for influx will rise dramatically, diffuse into the cell and dissociate within so that a further accumulation of SCFA is to be expected before efflux equals influx at a cytosolic pH compatible with cell survival (see Stumpff et al., 2009a, for detailed calculation). Basolateral efflux thus has to be more efficient than influx. Of course, the challenge of SCFA to cell survival becomes even more formidable if additional mechanisms for the apical uptake of SCFA are present (Aschenbach et al., 2009; Penner et al., 2009a). Efflux across the basolateral membrane can thus not occur via diffusion of the undisso- ciated form driven by a concentration gradient (Stumpff et al., 2009a).

Basolateral efflux mechanisms for SCFA

In light of what has been outlined above, a rapid efflux of SCFA is essential for tissue homeostasis and requires effi- cient, protein-mediated pathways. One candidate that has been discussed as a basolateral efflux pathway for SCFA is the monocarboxylate transporter MCT1 (Figure 4). Although MCT does not seem to be a probable candidate for sizable...
amounts of SCFA influx into the ruminal epithelium, isolated cells of the ruminal epithelium possess an MCT1 which is able to extrude ketone bodies and protons and plays a role in SCFA transport in these cells, while immunohistochemical studies have shown a plasma membrane staining for MCT1 in cells of the stratum basale of the intact tissue (Müller et al., 2002; Kirat et al., 2006; Graham et al., 2007). Accordingly, serosal application of pCMB has been found to block the transport of SCFA across ruminal tissue (Kirat et al., 2006). However, extrusion of SCFA via MCT requires protons for cotransport, and the protons that enter the epithelium apically are rapidly extruded via NHE and v-HTPase. One possible explanation for this discrepancy could be that the missing protons for MCT are delivered via entry of CO₂ into the epithelium from the basolateral side. HCO₃⁻ could then leave apically via SCFA/HCO₃⁻ exchange, resulting in a net exchange of SCFA⁻ for HCO₃⁻ across the tissue. In net terms, this would correspond to an absorption of SCFA⁻ and H⁺ on a 1:1 basis.

However, studies across the rumen epithelium in sheep, cows and reindeer show a very consistent coupling of SCFA transport with Na⁺ transport (Danielli et al., 1945; Gäbel et al., 1991b; Sehested et al., 1993 and 1999; Storeheier et al., 2003), suggesting that Na⁺ is the counterion for transepithelial transport of SCFA⁻ and not H⁺. As outlined above, the major fraction of Na⁺ is taken up electroneutrally via NHE and leaves electrogenically via the Na⁺/K⁺-ATPase. As the major part of K⁺ is recycled basolaterally (Leonhard-Marek and Martens, 1996), a corresponding flow of anions must leave basolaterally through a conductance to balance the flow of charge across the tissue. Accordingly, the net electroneutral flux of Na⁺ is closely correlated with the net flux of Cl⁻. However, a difference between these fluxes emerges when SCFA concentrations rise, suggesting that SCFA⁻ anions can serve as counterions for the basolateral efflux of Na⁺ (Gäbel et al., 1991b; Diernaes et al., 1994; Abdoun et al., 2005).

Recent patch clamp studies have shown that the anion conductance of RECs is also permeable to acetate and might thus contribute to basolateral extrusion of SCFA (Figure 4, Stumpff et al., 2009a). Interestingly, this conductance could also be blocked by pCMB and DIDS, which implies that some of the SCFA transport rates previously attributed to anion exchangers or monocarboxylate transporters because of blocker sensitivity (Sehested et al., 1999; Kirat et al., 2006) might additionally or alternatively be explained by a contribution of anion channels. The permeability of the channel decreases with increasing chain length, which might explain why butyrate is retained and metabolized by the ruminal epithelium (F. Stumpff, unpublished data). Driven by the potential generated by the Na⁺/K⁺-ATPase, efflux of the anions of SCFA through such a channel would certainly contribute greatly to cellular homeostasis.

In summary, a solid body of evidence supports the notion that SCFA are taken up apically with a proton that is recirculated to the ruminal cavity and has to be buffered by salivary and ruminal secretion of HCO₃⁻ to prevent ruminal acidosis. Basolaterally, the SCFA leaves the tissue coupled to an equimolar amount of Na⁺. There can be no doubt about the fact that at least part of ruminal SCFA absorption is mediated by proteins, the exact nature of which is currently being investigated.

Transport mechanisms for SCFA across the omasum

The rumen absorbs the major part of the SCFA produced by fermentation, but by the time the ingesta reach the abomasum, almost the total amount of SCFA (Yang and Thomas, 1965; Edrīse et al., 1986) has been absorbed. The capacity of the omasum for the absorption of SCFA may be of particular importance in animals on high concentrate diets. Both an increase in DM intake (Tammenga and van Vuuren, 1988), and increases in the uptake of concentrate (Penner et al., 2009b) increase the absolute amounts of SCFA flowing out of the rumen into the omasum. Additionally, SCFA can also be produced by ongoing fermentation in the omasum itself and might contribute about 15% of total SCFA production (Giesecke and von Engelhardt, 1975; Smith, 1984).

Of the SCFA, only acetate transport has been investigated in vitro with epithelia from omasum. In the absence of electrochemical gradients, acetate absorption equals acetate secretion across epithelia from omasum, suggesting a primarily passive mechanism under these (admittedly artificial) conditions (Ali et al., 2006). Acetate absorption can be stimulated by an increase in the concentrations of acetate or protons on the luminal side, while propionate, bicarbonate or luminal DIDS had no effects on acetate transport (Ali et al., 2006). This suggested the predominant absorption of acetate in its undissociated form across omasum rather than by anion exchange mechanisms. Possibly, the anion exchangers expressed by the omasum show poor binding with the larger and more polar SCFA⁻ anions than those expressed by the rumen. It should be noted that competition between the transport of SCFA and bicarbonate in binding to the same sites of an anion exchanger would seem to imperil the function of the organ in absorbing both.

Interestingly, blocking NHE with amiloride at low values of pH (6.4) decreased acetate fluxes across sheep omasum (Ali et al., 2006). Previous attempts to observe a corresponding drop in SCFA fluxes across ruminal epithelia were unsuccessful, which may be related to the higher pH of 7.4 at which these studies were performed (Kramer et al., 1996; Sehested et al., 1999), but may also reflect more profound differences between the two tissues. A major difference between the omasum and the rumen is the direction of transport of the apical Cl⁻/HCO₃⁻ exchanger, mediated by the presence of an apical NaCl cotransporter in the omasum that is absent in the rumen. In the rumen, the anion exchanger delivers HCO₃⁻ to the pH microclimate under the stratum corneum (Leonhard-Marek et al., 2006; Abdoun et al., 2010), and thus, balances the effect of NHE on this microclimate. A drop in NHE activity (as after amiloride) should result in a drop in cytosolic pH and thus, reduce the activity of the anion exchanger with little or no effect seen on apical pH. Conversely, in the omasum, both transporters...
Absorption of phosphate

Almost all balance studies show that the flow of inorganic phosphate (P) at the duodenum of ruminants exceeds phosphate intake. This difference ranged between 1 and 5 g/day in sheep (see Breves et al., 1988), and amounted to about 20 g/day in cattle (Yano et al., 1991). However, sheep with an adequate P supply of 4 g/day showed a salivary phosphate secretion of about 6 g/day (Bolton et al., 1976), which implies that stomach regions have to contribute to phosphate absorption. In line with this assumption, net disappearance of inorganic phosphate could be observed from the reticulorumen in vivo when luminal phosphate concentrations exceeded 3 or 5 mmol/l and was further stimulated when intraruminal phosphate concentrations were increased up to 17 mmol/l in the range of more physiological values (Breves et al., 2009a, 2009b and 2009c)

In summary, influx of SCFA into the omasum is thought to occur primarily via lipid diffusion, possibly enhanced by an apical microclimate that is acidified both by NHE and by the absorption of bicarbonate via an anion exchanger. Within the cytosol, HSCFA taken up dissociate. The basolateral efflux may occur as the anion via a large conductance anion channel. Absorption of SCFA in the omasum removes a potential buffer substance from the ingesta, prevents possible disturbances of the integrity of the abomasal epithelium (Bodeker et al., 1994) and prevents inhibition of abomasal motility (Bolton et al., 1976).

Concluding remarks

Forestomach epithelia exhibit powerful absorptive and secretory mechanisms with mutual interactions between the transport rates of the different ions. This interdependence changes with the animals needs and with the specific localization within the forestomachs. New transport pathways have recently been added to our picture of epithelial transport across rumen and omasum, including an apical NSCC, a basolateral anion conductance, an apical H-ATPase, differently expressed anion exchangers and a monocarboxylate transporter. In terms of regulation, specific transport rates have been shown to be regulated by an apical pH microclimate in the stratum corneum or by the concentration of intracellular Mg ions. Although the ruminal anion exchangers show considerable binding to SCFA, those of the omasum display a high preference for Cl⁻ and HCO₃⁻, with the direction of transport depending strictly on the gradients present.

Acknowledgements

Studies of the authors were supported by the German Research Foundation (DFG), the German Academic Exchange Service (DAAD), the Alexander von Humboldt Foundation and the Margarete-Markus-Charity.

References

Holms C 1990. Calcium-Passage durch die Pansenwand von Schafen bei verschiedenen Calcium-Ionen-Konzentrationen und unter Einfluß von anorganischem Phosphat. Thesis, School of Veterinary Medicine, Hannover, Germany.

Leonhard-Marek, Stumpff and Martens

Pietrobon D, Prod’hom B and Hess P 1989. Interactions of protons with single open L-type calcium channels. pH dependence of proton-induced current fluctuations with Cs\(^{+}\), K\(^{+}\), and Na\(^{+}\) as permeant ions. Journal of General Physiology 94, 1–21.

Schweigel M, Kolisek M, Nikolic Z and Kuzinski J 2008. Expression and functional activity of the Na/Hm exchanger, TRPM7 and MagT1 are changed to regulate Mg homeostasis and transport in rumen epithelial cells. Magnesium Research 21, 118–123.

Leonhard-Marek, Stumpf and Martens

