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Fetal macronutrient requirements for oxidative metabolism and growth are
met by placental transport of glucose, amino acids, and, to a lesser extent
that varies with species, fatty acids. It is becoming possible to relate the
maternal–fetal transport kinetics of these molecules in vivo to the expres-
sion and distribution of specific transporters among placental cell types
and subcellular membrane fractions. This is most true for glucose trans-
port, although apparent inconsistencies among data on the roles and rela-
tive importance of the predominant placenta glucose transporters, GLUT-1
and GLUT-3, remain to be resolved. The quantity of macronutrients trans-
ferred to the fetus from the maternal bloodstream is greatly influenced by
placental metabolism, which results in net consumption of large amounts
of glucose and, to a lesser extent, amino acids. The pattern of fetal nutrient
supply is also altered considerably by placental conversion of glucose to
lactate and, in some species, fructose, and extensive transamination of
amino acids. Placental capacity for transport of glucose and amino acids
increases with fetal demand as gestation advances through expansion of
the exchange surface area and increased expression of specific transport
molecules. In late pregnancy, transport capacity is closely related to pla-
cental size and can be modified by maternal nutrition. Preliminary evi-
dence suggests that placental expression and function of specific transport
proteins are influenced by extracellular concentrations of nutrients and
endocrine factors, but, in general, the humoral regulation of placental
capacity for nutrient transport is poorly understood. Consequences of nor-
mal and abnormal development of placental transport functions for fetal
growth, especially during late gestation, and, possibly, for fetal program-
ming of postnatal disorders, are discussed.
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Introduction

The placenta is an organ unique to pregnancy in higher animals, and is most highly developed
in eutherian mammals. It acts as the conduit for exchange of nutrients and excreta between
mother and fetus, as an endocrine regulator, as a paracrine and autocrine mediator of many
pregnancy-specific physiological functions in maternal and conceptus tissues, and as an
immunological ‘blindfold’ that serves to protect the conceptus from its maternal host. The pre-
sent review will address only the nutrient transport functions of the placenta, confined to the
macronutrients that support energy metabolism and synthesis of soft tissues. A major theme
will be extracellular regulation of placental function and fetal growth responses as studied in
vivo in the sheep and other model species. Fundamental mechanisms elucidated in studies
employing isolated systems, such as placental membrane vesicles, will be discussed in the con-
text of organismal integration. The putative endocrine roles of the placenta in regulation of
maternal nutrient partitioning and fetal growth are reviewed elsewhere (Anthony et al. 1995;
Bell & Ehrhardt, 1998).

Mechanisms of placental nutrient transport

Glucose and its metabolites

Glucose. Glucose is a principal energy substrate for fetal and placental metabolism in all mam-
malian species studied. Analysis of the kinetics of placental glucose transport in vivo indicated
that this process is achieved by facilitated diffusion (Widdas, 1952; Simmons et al. 1979). The
predominant glucose transporter (GLUT) protein isoforms in the sheep placenta are GLUT-1
and GLUT-3 (Ehrhardt & Bell, 1997; Das et al. 1998), mRNA and protein abundance of which
increase with gestational age, especially for GLUT-3 (Currie et al. 1997; Ehrhardt & Bell,
1997). The relative importance of GLUT-3 also may be inferred from its immunolocalization at
the apical, maternal-facing surface of the trophoblastic cell layer that forms the fetomaternal
tissue barrier in the ovine placenta (Das et al. 2000). In contrast, GLUT-1 was localized at the
basolateral and apical membrane surfaces in fetal trophoblast cells. The authors suggest that
this localization pattern allows a collaboration between GLUT-3 and GLUT-1 at the
maternal–fetal tissue barrier in which apical GLUT-3, with a lower Km, readily takes up
maternal glucose while basolateral GLUT-1, with a higher Km, facilitates its intracellular
transport and exit (Das et al. 2000). 

In distinct contrast, GLUT-1 is considered to be the primary GLUT in the human placenta
(see Illsley, 2000). In the term placenta, at least, GLUT-1 protein was located on both the
microvillous and basal membranes of the syncytiotrophoblast (Jansson et al. 1993; Barros et al.
1995), but its asymmetric distribution favoured the microvillous surface (Jansson et al. 1993;
Tadokoro et al. 1996). GLUT-1 mRNA was localized predominantly in syncytial as opposed to
vascular tissue (Jansson et al. 1996). Although lower abundance of GLUT-3 mRNA was dis-
tributed throughout human villous tissue (Jansson et al. 1995; Hauguel-de Mouzon et al. 1997),
GLUT-3 protein was essentially absent in syncytial membranes (Jansson et al. 1993; Barros
et al. 1995), and was located primarily in vascular endothelium (Hauguel-de Mouzon et al.
1997). 

The different patterns of cellular and intracellular location, and inferred functional roles of
GLUT-1 and GLUT-3 in human and sheep placentae cannot be explained simply in terms of
species differences in placental structure. In the haemochorial rat placenta, gestational changes
in relative mRNA abundance of the two isoforms (Zhou & Bondy, 1993), and the asymmetrical
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distribution of GLUT-3 in syncytiotrophoblastic membranes (Shin et al. 1997), are much more
similar to characteristics of the epitheliochorial sheep placenta than to those of the haemochor-
ial human placenta.

In addition to the important influences of cellular configuration and kinetics of GLUT pro-
teins in the placenta, placental glucose transfer is dependent on the maternal–fetal plasma glu-
cose concentration gradient (Simmons et al. 1979; DiGiacomo & Hay, 1990; Hay et al. 1990).
This gradient is influenced by numerous factors that affect maternal and/or fetal glycaemia,
including maternal nutrition and endocrine status, fetal growth capacity, and the variable but
always large fraction of uterine glucose uptake that is consumed by the placenta (see Hay,
1995). 

Lactate and fructose. Glucose taken up from the umbilical circulation is readily converted to
lactate by the ovine fetal placenta in vivo (Aldoretta & Hay, 1999). The placentae of other
species, including man (Challier et al. 1986), are similarly glycolytic. Placental perfusion
studies (Kastendieck et al. 1979), combined with analysis of the fetoplacental exchanges of
radiolabelled glucose and lactate (Bassett, 1986), indicate that the fetomaternal interface of the
ovine placenta is highly impermeable to lactate. Thus, little or none of the energetically signifi-
cant net uptake of lactate by the ovine fetus is derived directly from the maternal circulation or
glycolysis in the maternal caruncular tissues. In contrast, the placenta of the guinea-pig is much
more permeable to lactate (Kastendieck & Moll, 1977). The same is presumably true for other
species, including man, with haemochorial placentae.

Certain species, most notably the ungulates, also metabolize fetal glucose to fructose in
trophoblastic tissues nourished by the umbilical circulation (Britton et al. 1967; Meznarich et
al. 1987). Like lactate, this metabolite is mostly confined within the fetoplacental compartment
by the impermeability of the maternal–fetal tissue interface, consistent with the almost com-
plete absence of fructose in the maternal circulation of species with fructogenic placentae
(Goodwin, 1952). This implies that in these species, as in man (Illsley, 2000), the placenta lacks
GLUT-5 or a similar protein that is responsible for fructose transport in the jejunum and some
other tissues (Mueckler, 1994). 

Amino acids

Most amino acids taken up by the placenta are transported against a fetal–maternal concentra-
tion gradient, implying the use of energy-dependent, active transport processes (Young &
McFadyen, 1973). Studies of isolated plasma vesicles prepared from rodent and human tro-
phoblast have confirmed that the placenta actively transports amino acids using systems previ-
ously described for plasma membranes in other tissues (Battaglia & Regnault, 2001). These are
classified as Na-dependent or Na-independent, and on their preference for neutral (zwitteri-
onic), acidic (cationic), or basic (anionic) amino acids, leading to six fundamental groups: A,
ASC, L (or l), y+, �, and glycine transporter systems. Not all systems are present on the same
membrane and there appears to be a greater variety of transporters on the maternal-facing
microvillous membrane than on the basolateral adjacent to the umbilical microcirculation. The
functional significance of these systems for transporting different categories of amino acids,
including membrane location, have been comprehensively reviewed and systematically
organized by Battaglia & Regnault (2001).

Recent in vivo studies on pregnant sheep have done much to relate knowledge of amino-
acid transport systems in isolated placental vesicles to the physiology of amino acid transfer
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from maternal to fetal circulations. These experiments have strongly suggested that rapid pla-
cental transport of neutral amino acids requires not only Na-dependent transport at the maternal
epithelial surface, but affinity for highly reversible, Na-independent transporters located at the
fetal surface (Jozwik et al. 1998). Additional studies by the same group provided supporting
evidence for this hypothesis and also showed that there are major differences in placental clear-
ance among the essential amino acids (Paolini et al. 2001). Five of the nine essential acids,
namely, the branched-chain amino acids leucine, isoleucine, and valine, plus methionine and
phenylalanine, have similar and relatively fast clearances, in contrast to the slower clearances
of tryptophan, threonine, histidine, and lysine (Fig. 1). It is notable that the more rapidly
cleared acids are all zwitterions with hydrophobic side chains. The evidence suggests that they
have similar affinity for a rate-limiting transport system that mediates rapid flux from the
maternal to the fetal circulation, most likely the Na-independent L system located on the fetal
surface of the placenta (Jozwik et al. 1998). It is reassuring to note that the relative rates of in
vivo transport of the amino acids studied thus far in the sheep are consistent with the more lim-
ited data for the human placenta (see Battaglia & Regnault, 2001). 

It can be inferred that many of the amino-acid transporter proteins cloned in other tissues
are expressed and functional in the placenta. However, relatively few of these proteins have
been cloned from placental tissue and the molecular explanation of placental amino-acid trans-
port systems in terms of the regulated, differential expression of various transporter proteins in
trophoblastic cell membranes is in its infancy (for example, Kamath et al. 1999; Ayuk et al.
2000).

Fatty acids

Placental capacity for maternal–fetal transport of short- and long-chain fatty acids and their
keto-acid derivatives varies widely among species. For example, the epitheliochorial placentae
of ruminants and swine generally appear to be much less permeable to fatty acids than are the
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Fig. 1. Transplacental clearance of isotopically labelled essential amino acids in seven ewes during late
pregnancy. Histograms are means with their standard errors shown as vertical bars. (Data are from Paolini
et al. 2001.)

01NRR 039  29/10/02  2:27 PM  Page 214

https://doi.org/10.1079/NRR200239 Published online by Cambridge University Press

https://doi.org/10.1079/NRR200239


haemochorial placentae of rodents, lagomorphs, and man (Battaglia & Meschia, 1988). Thus,
despite the relative abundance of acetate and other derivatives of rumen fermentation, such as
3-hydroxybutyrate, in the circulation of maternal ruminants, these substrates make only minor
contributions to the energy metabolism of fetal sheep (Morriss et al. 1974; Char & Creasy,
1976) and cattle (Comline & Silver, 1976). Transport of long-chain, non-esterified fatty acids is
similarly meagre in the sheep (Elphick et al. 1979; Leat & Harrison, 1980) and pig (Elphick et
al. 1980). However, placental transfer of non-esterified fatty acids is greater and more respon-
sive to maternal plasma non-esterified fatty acid concentration in the rat (Hummel et al. 1975),
rabbit (Elphick & Hull, 1977), and guinea-pig (Thomas & Lowy, 1983). Transport mechanisms
have yet to be defined conclusively, but a role for a placenta-specific fatty-acid binding protein
identified in man (Campbell et al. 1995) and sheep (Campbell et al. 1994) has been proposed
by Dutta-Roy (2000). It also has been suggested that this protein may be involved in the prefer-
ential transfer of long-chain, polyunsaturated fatty acids from maternal plasma to the fetus
(Campbell et al. 1996b). As discussed later, fetal acquisition of these vital fatty acids is addi-
tionally facilitated by placental elongation and desaturation of C18 essential fatty acids.

Influence of placental metabolism on maternal–fetal nutrient transfer

Glucose metabolism

Uteroplacental tissues consume 60–70 % of uterine net uptake of glucose during late pregnancy
in sheep and cattle (see Bell, 1993; Table 1). Placental glucose consumption is also substantial in
other species, although apparently lower in the haemochorial placenta of man (Hauguel et al.
1986), rats (Leturque et al. 1987), and rabbits (Hauguel et al. 1988) than in the epitheliochorial
placenta of ruminants. In sheep, uterine arterial glucose concentration determines the net uptake
of glucose by the uterus from the maternal circulation, while changes in fetal arterial glucose con-
centration independently determine the partition of glucose between uteroplacental tissues and the
fetus (Hay et al. 1990). However, under normal conditions, fetal arterial glucose concentration,
and thus its influence on uteroplacental glucose consumption, is directly related to maternal
arterial glucose concentration (Hay et al. 1983; Hay & Meznarich, 1988; Leury et al. 1990a).
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Table 1. Effect of maternal glucose supply on uptake and metabolism of glucose by the
conceptus in eight ewes  during late pregnancy*
(Mean values and standard errors of the mean)

Glucose supply†

Low High

Variable Mean SEM Mean SEM

Maternal plasma glucose concentration (mM) 2.23 0.13 4.92 0.29
Uterine glucose uptake (�mol/min) 239 23 437 40
Fetal glucose uptake (�mol/min) 75 5 125 9
Uteroplacental metabolic rates (�mol/min)

Glucose consumption 164 22 312 39
Lactate production 109 12 183 21
Fructose production from glucose 4 1 7 3
Glucose oxidation 27 4 43 8

* Data from Aldoretta & Hay (1999).
† Manipulated by fasting for 24 h (low) and intravenous infusion of dextrose (high). 
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Glucose consumed by the ovine placenta undergoes rapid conversion to lactate (about 35
%), fructose (about 4 %), and CO2 (about 17 %), accounting for about 56 % of uteroplacental
glucose disposal in late-pregnant ewes with low or high maternal plasma glucose concentra-
tions (Aldoretta & Hay, 1999; Table 1). The metabolic fate of the remaining 44 % of glucose
that is apparently metabolized by the placenta is not known and requires investigation. Lactate
and fructose formed in trophoblastic tissues was released into the fetal circulation while lactate
formed in caruncular tissues was released into the maternal circulation, at rates that were
directly related to maternal glucose supply. Rapid oxidation of glucose accounted for about
23–34 % of uteroplacental oxygen consumption, depending on maternal glycaemia (Aldoretta
& Hay, 1999). Oxidizable substrates that might contribute to the remaining 66–77 % of utero-
placental respiration include ketones (Carver & Hay, 1995) and acetate, at least in caruncular
tissues (Bell, 1993), branched-chain and certain other amino acids (see later), and C derived
from the turnover of carbohydrate and lipid stores in placental tissues.

Amino acid metabolism

Placental metabolism substantially influences the quantity and composition of amino acids
delivered to the fetus. Turnover of placental constitutive proteins is very rapid (Young et al.
1982) but net deposition of protein is negligible during the latter half of ovine pregnancy
(Ehrhardt & Bell, 1995). Thus, the appreciable net consumption of glutamate, serine, and
branched-chain amino acids by the placenta (Liechty et al. 1991; Chung et al. 1998) implies
significant catabolism or transamination of these acids. Secretion of placental peptides must
account for an additional, small fraction of this net loss of amino acids.

The ovine placenta produces copious amounts of ammonia that is released into maternal
and, to a much lesser extent, fetal circulations (Holzman et al. 1977; Bell et al. 1989). This is
consistent with its lack of enzymic capacity for urea synthesis (Edwards et al. 1977), its exten-
sive deamination of branched-chain amino acids to their respective keto acids, which are
released into fetal and maternal circulations (Smeaton et al. 1989; Loy et al. 1990), and its
rapid rate of glutamate oxidation (Moores et al. 1994). Transamination of branched-chain
amino acids accounts for some of the net acquisition of glutamate by the placenta, the remain-
der of which is taken up from the umbilical circulation (Moores et al. 1994). That which is not
quickly oxidized combines with ammonia to form glutamine, which is then released back into
the fetal bloodstream (Chung et al. 1998). Some of this glutamine is converted back to gluta-
mate in the fetal liver, which produces most of the glutamate consumed by the placenta
(Vaughn et al. 1995). This glutamate–glutamine shuttle promotes placental oxidation of gluta-
mate and fetal hepatic utilization of the amide group of glutamine.

Similarly, the placenta almost quantitatively converts serine, mostly taken up from the uter-
ine circulation, to glycine (Chung et al. 1998), reconciling the discrepancy between the negligi-
ble net uptake of glycine by the uterus and the substantial net release of this amino acid into the
umbilical circulation (Geddie et al. 1996). In addition to ensuring an adequate supply of the
most abundant amino acid in fetal blood and tissues, this process is important for placental
purine synthesis via donation of the side-chain �-carbon atom of serine to form methylene-
tetrahydrofolate.

The complex interrelationships among placental uptake, metabolism, and transport of
amino acids are further illustrated by a tracer study of alanine metabolism in the late-pregnant
ewe (Timmerman et al. 1998). This study revealed that the trivial net placental exchange of ala-
nine masks an appreciable rate of metabolism of maternal alanine taken up by the placenta that
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exchanges with endogenously produced alanine. Thus, most of the alanine delivered to the fetus
is of placental origin, derived from placental protein turnover and transamination.

Fatty acid metabolism

Fetal plasma and tissue lipids have characteristically low concentrations of the essential C18
fatty acids, linoleic and linolenic acids, and high concentrations of their respective C20 and
C22 derivatives, arachidonic and docosahexaenoic acids, relative to the composition of mater-
nal plasma lipids (see Noble, 1979). Although fetal tissues have some capacity to elongate and
desaturate C18 acids, observed rates of maternal–fetal transfer of the these acids would pro-
vide too little substrate for fetal metabolism to account for more than a fraction of the abun-
dance of C20 and C22 acids in fetal tissues, especially in ruminants (Elphick et al. 1979; Leat
& Harrison, 1980). Active systems for desaturation and chain-elongation of linoleic and
linolenic acids have been identified in sheep placenta (Noble et al. 1985). Also, the ovine pla-
centa has considerable capacity for hydrolysis of esterified lipids from maternal plasma that
are richer than plasma non-esterified fatty acids in linoleic and linolenic acids (Clegg, 1981).
Thus, placental metabolism ensures an adequate fetal supply of the longer-chain n-6 and n-3
metabolites of the C18 polyunsaturated fatty acids, which are the forms ultimately required by
tissues.

Factors affecting placental capacity for nutrient transport

Stage of gestation

Placental capacity for glucose transport in vivo increases fivefold during the latter half of preg-
nancy in sheep (Molina et al. 1991). Part of this increase undoubtedly is related to placental
remodelling and expansion of exchange surface area over this period (Stegeman, 1974).
However, there is also a substantial gestational increase in the expression and membrane den-
sity of functional GLUT proteins as assessed by the concentration of cytochalasin B binding
sites and mRNA and protein abundance of GLUT-1 and GLUT-3 (Ehrhardt & Bell, 1997). The
relative importance of GLUT-3 is indicated by its greater rate of gestational increase in protein
abundance, closely correlated with an increasing fraction of cytochalasin binding that cannot be
accounted for by GLUT-1, the only other GLUT of quantitative significance in the ovine pla-
centa (Fig. 2). These results are generally consistent with gestational changes in the relative
abundance of GLUT-1 and GLUT-3 in the rat placenta (Zhou & Bondy, 1993).

In contrast, the relatively modest gestational increase in glucose transport capacity in the
human placenta has been ascribed to increased expression of GLUT-1 (Sakata et al. 1995),
especially in the basal membrane fraction of syncytiotrophoblastic cells (Jansson et al. 1993).
Abundance of GLUT-3 mRNA in human villous tissue decreased with advancing gestation
(Sakata et al. 1995). 

Gestational development of placental amino-acid transport systems has not been investi-
gated systematically in any species. However, developmental changes in expression of amino-
acid transport proteins and transport kinetics have been described in rat (Novak et al. 1996) and
human (Ayuk et al. 2000) placentae, and reviewed by Battaglia & Regnault (2001).
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Placental size and its functional correlates

During the latter half of pregnancy, positive correlations between fetal and placental weights
become progressively stronger, such that in well-nourished, polytocous ewes close to term,
variation in placental weight accounts for about 90 % of variation in fetal weight (Greenwood
et al. 2000; Fig. 3). Various experimental manipulations have been used to demonstrate persua-
sively that placental weight is indeed a powerful determinant of fetal growth, especially during
late gestation. These treatments include pre-mating carunclectomy, which variably reduces
opportunity for establishment of cotyledonary placentation in sheep (Alexander, 1964), chronic
environmental heat stress (Alexander & Williams, 1971), and, more recently, overfeeding of
relatively young, primiparous ewes (Wallace et al. 2000). Each of these procedures causes a
primary reduction in placental growth that is followed by fetal growth retardation in late preg-
nancy (Alexander & Williams, 1971; Vatnick et al. 1991; Robinson et al. 1995; Wallace et al.
2000). The similarity in patterns of association between fetal and placental weights caused by
these approaches and that due to natural variation in polytocous ewes (Greenwood et al. 2000)
suggests that they provide comparable models of placental insufficiency during late pregnancy.

Experimental and, presumably, natural reduction in placental size is highly correlated with
decreases in several important determinants and indices of placental capacity for nutrient trans-
port, and with consequent changes in fetal metabolism and growth during late gestation. For
example, reduction in membrane surface area for placental exchange in carunclectomized ewes
had little effect on fetal weight at 90 d but was insufficient for normal growth at 120 d of gesta-
tion (term being about 150 d) (Robinson et al. 1995). In both carunclectomized and heat-treated
ewes there were also reductions in uterine and umbilical blood flows, consistent with reduced
placental clearance of highly diffusible, flow-limited solutes such as antipyrine, ethanol, and
3H2O, and metabolic consequences such as reduced placental uptake and transport of oxygen,
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Fig. 2. Relationship (R2 0.86) between fraction of cytochalasin B (CB) binding sites not accounted for by
immunoneutralization of glucose transporter (GLUT)-1 protein and abundance of GLUT-3 protein in the
placentae of ewes at 75 d (�), 110 d (�), and 140 d (�) of pregnancy. Each point represents the placenta of
a twin fetus. (Adapted from the data of Ehrhardt & Bell, 1997.)
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and development of fetal hypoxaemia (for reviews see Bell, 1987; Owens et al. 1989; Robinson
et al. 1995; Bell et al. 1999). It is unlikely that reduced placental perfusion is a primary con-
straint for placental transport of glucose and amino acids because the placental clearance of
these nutrients is diffusion-limited rather than flow-limited. For example, the placental delivery
of glucose to the umbilical circulation is not responsive to physiological variations in uterine
blood flow (Wilkening et al. 1985). Severe restriction of placental perfusion, as can occur dur-
ing exercise or acute heat stress (Bell, 1987), may indirectly affect active transport of amino
acids through negative effects on placental energetics and ion gradients (Hay, 1998).

Placental capacity for glucose transport was reduced greatly, as were uteroplacental glu-
cose consumption and fetal glycaemia in carunclectomized (Owens et al. 1987a,b) and heat-
treated (Bell et al. 1987; Thureen et al. 1992) ewes. Part of the absolute reduction in glucose
transport capacity must be due to reduced exchange surface area of the trophoblastic mem-
brane, implying fewer GLUT in total. In previously heat-treated (Thureen et al. 1992), but not
in carunclectomized (Owens et al. 1987b) ewes, placental weight-specific glucose transport
capacity also was reduced. Thus, chronic heat stress, which reduces average weight but not
total number of placentomes, additionally reduces number and/or activity of GLUT proteins at
maternal and/or fetal exchange surfaces. In contrast, carunclectomy, which reduces placentome
number but may stimulate a compensatory increase in average weight of individual
placentomes, caused a modest increase in placental weight-specific clearance of the non-
metabolizable glucose analogue, 3-O-methyl glucose (Owens et al. 1987b). This implies that
GLUT expression was increased somewhat in the reduced number of placentomes.

Placental insufficiency in heat-treated ewes also extends to impaired capacity for amino
acid transport, including major reductions in placental uptake and maternal–fetal transfer of
leucine (Ross et al. 1996; Table 2) and threonine (Anderson et al. 1997). The magnitude of
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these reductions implies decreased abundance and/or activity of specific transporter proteins, in
addition to a reduction in exchange surface area. The normally extensive placental catabolism
of leucine was also greatly reduced in heat-treated ewes (Ross et al. 1996; Table 2), presumably
as a means of conserving fetal access to this essential amino acid. Fetal:maternal leucine
enrichment decreased in human pregnancies exhibiting intrauterine growth retardation
(Marconi et al. 1999) as in heat-treated sheep (Ross et al. 1996), suggesting similar mecha-
nisms of transport and metabolism of leucine in the two species. 

Maternal nutrition

Recent evidence from our laboratory indicates that the placenta is not merely a passive respondent to
maternal nutrient supply, and that activity of placental transport mechanisms may be directly
modulated by maternal nutrition. For example, moderate undernutrition of ditocous ewes for 2
weeks during late pregnancy caused a 50 % increase in maternal–fetal capacity for glucose transport
in vivo (Ehrhardt et al. 1996b), determined by compartmental modelling of the bi-directional
exchanges of radiolabelled 3-O-methyl glucose between mother and twin fetuses (Ehrhardt et al.
1996a; Fig. 4). This was at least partly explained by a 20 % increase in total GLUT abundance,
assessed by binding of cytochalasin B, associated with a similar increase in GLUT-3 protein
abundance (Ehrhardt et al. 1998). These responses help explain how placental glucose transfer
remained sufficient to sustain normal fetal growth, despite chronic maternal hypoglycaemia and a 26
% decrease in the maternal–fetal gradient in arterial plasma glucose concentration (Bell et al. 1999).

During more severe, chronic undernutrition or starvation for several days, the development
of profound fetal hypoglycaemia helps to sustain the maternal–fetal gradient in glucose concen-
tration by restricting the reverse transfer of glucose to the placenta, and reducing placental glu-
cose consumption (see Hay, 1995). Under these more stringent conditions, fetal
gluconeogenesis is induced (Leury et al. 1990b), with amino acids being the presumed major
substrate, consistent with increased fetal urea synthesis (Lemons & Schreiner, 1983; Faichney
& White, 1987). The ultimate consequence is reduced fetal tissue protein synthesis
(Krishnamurti & Schaefer, 1984) and slowing of fetal growth to a rate that can be sustained by
the reduced placental nutrient supply.
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Table 2. Effect of heat-induced intra-uterine growth retardation (IUGR) on placental
transfer and metabolism of leucine in thirteen ewes during late pregnancy*

(Mean values and standard errors of the mean)

Control IUGR

Variable Mean SEM Mean SEM

Fetal weight (kg) 3.34 0.14 1.44 0.11
Placental weight (kg) 0.39 0.03 0.14 0.02
Leucine fluxes (�mol/min per kg fetus)

Uterine uptake 8.6 1.1 3.4 0.7
Umbilical uptake 3.8 0.2 3.5 0.4
Uteroplacental oxidation 1.1 0.2 0.4 0.1
Additional uteroplacental metabolism 3.0 1.2 �0.3 0.6

KIC fluxes (�mol/min per kg fetus)
Uterine uptake �0.2 0.2 0.2 0.1
Umbilical uptake 0.5 0.1 0.0 0.2

KIC, ketoisocaproic acid.
* Data from Ross et al. (1996).
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Effects of energy and/or protein supply on placental capacity for amino acid transport have
been little studied. Fasting late-pregnant ewes for 5 d had an insignificant effect on umbilical net
uptake of amino acids despite appreciable decreases in maternal arterial plasma concentrations of
many amino acids (Lemons & Schreiner, 1983). This suggests that during short-term energy–pro-
tein deprivation, placental mechanisms for active transport of amino acids are unimpaired and
may even be up regulated. Under similar fasting conditions, the uteroplacental deamination of
branched-chain amino acids appeared to be increased, judging from a threefold increase in the
efflux of �-ketoisocaproate, the keto-acid derivative of leucine, into uterine and umbilical circula-
tions (Liechty et al. 1991). This suggests that increased amino acid catabolism may partly com-
pensate for the likely reduction in placental glucose oxidation under these conditions.

Placental transport and metabolism of amino acids have not been studied during more pro-
longed restriction of energy or protein. However, in ewes fed adequate energy but insufficient
protein during the last month of pregnancy, fetal growth and protein deposition over this period
were decreased by 18 % (McNeill et al. 1997). It is also relevant that in chronically hypergly-
caemic ewes with secondary hyperinsulinaemia and hypoaminoacidaemia, placental and fetal
uptakes of several amino acids were reduced, and fetal total N uptake was decreased by 60 %
(Thureen et al. 2001).
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Fig. 4. Compartmental model of the kinetics of 3-O-methyl glucose (3MG) in ditocous ewes during late
pregnancy, based on maternal injection of [3H]3MG. The fetal model was validated in monotocous ewes 
by simultaneous maternal injection of [3H]3MG and fetal injection of [14C]3MG (Ehrhardt et al. 1996a). (�), Blood
sampling sites; ( ), fractional transfer rates; (�), compartments; ( ), [3H]3MG injection site; ( ), extra-
cellular distribution of 3MG. Maternal–fetal clearance of 3MG was calculated as the volume of compartment 1
cleared of tracer to compartment 11 or 21 per unit time (ml/min).
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Extracellular regulation of placental capacity for nutrient transport

Maternal nutrient supply

Glucose. The experimentally determined Km for saturable glucose transport by the ovine 
placenta is about 3.9 mM (Simmons et al. 1979), which is within the physiological range of 
glycaemia in well-fed, adult sheep. Thus, uterine uptake and placental consumption and transfer
of glucose are very sensitive to arterial glucose concentration in pregnant ewes (see Hay, 1995).
Emerging evidence suggests that chronic changes in maternal glycaemia may additionally mod-
ulate glucose transport capacity by influencing the placental expression of GLUT proteins.
Maternal hyperglycaemia for up to 3 weeks during late pregnancy caused persistent decreases
in placental concentrations of GLUT-1 (Das et al. 1998) and GLUT-3 (Das et al. 2000). In con-
trast, chronic, insulin-induced maternal hypoglycaemia decreased the concentration of GLUT-1
(Das et al. 1998) but had no effect on GLUT-3 (Das et al. 2000). The authors speculated that
this ‘relative’ increase in GLUT-3 might help explain their repeated observation that placental
glucose consumption was less severely affected by maternal hypoglycaemia than was placental
glucose transfer to the fetus (Carver & Hay, 1995; Das et al. 2000). It is notable that, as dis-
cussed previously, chronic hypoglycaemia in underfed, late-pregnant ewes was associated with
a modest but significant increase in placental expression of GLUT-3 (Ehrhardt et al. 1998).

The possible influence of maternal glycaemia on placental expression and activity of
GLUT in the human placenta is of interest, not least because of the incidence of gestational and
non-gestational diabetes in women. Illsley (2000) has summarized the conflicting evidence
based on culture and incubation of human trophoblastic cells over varying periods in media
containing different concentrations of glucose. He concluded that while extracellular concen-
tration of glucose may exert short-term effects on capacity for glucose transport, placental
expression of GLUT-1 is refractory to changes in glucose concentrations within the physio-
logical range. However, it remains possible that this refractoriness of the human placenta is a
consequence of the in vitro conditions employed, in contrast to the relative sensitivity of the
sheep placenta in vivo to physiological variations in glycaemia. 

Amino acids. Relationships between maternal plasma concentration and placental transport of
amino acids are complicated by the multiplicity of active transport systems, and by differing
affinities of several amino acids for the same, non-specific transporters. However, it is becoming
apparent that maternal concentration is an important determinant of placental transport of neutral
amino acids that have a relatively high affinity for the Na-independent L exchange system located
on the fetal exchange surface (Jozwik et al. 1999; Paolini et al. 2001; Thureen et al. 2001). These
amino acids, which are most rapidly transported from the maternal to the fetal circulation, include
the branched-chain acids, plus methionine, and phenylalanine (Paolini et al. 2001; Fig. 5).
Maternal infusion has a positive effect on umbilical uptake of the branched-chain amino acids but
is a relatively ineffective means of increasing fetal supply of most other amino acids (Jozwik et al.
1999).

Hormones and growth factors

Extracellular regulation of placental transport functions must be effected by direct endocrine
influences, as well as by nutrient supply. The following, briefly discussed examples highlight
the need for systematic investigation of this area.
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Insulin. Fetal plasma insulin concentration is a regulator of glucose consumption by insulin-
responsive fetal tissues (Wilkening et al. 1987). Through consequent changes in fetal glycaemia
and the maternal–fetal gradient in glucose concentration, it can also influence umbilical uptake
of glucose (Simmons et al. 1978). However, when respective fetal or maternal plasma glucose
concentrations were controlled using the euglycaemic clamp procedure, neither fetal (Jodarski
et al. 1985) nor maternal (Rankin et al. 1986) insulinaemia had any effect on the placental
clearance of the non-metabolizable glucose analogue, 3-O-methyl glucose. Similarly, maternal
hyperinsulinaemia had no effect on uterine or umbilical uptake of glucose when maternal eug-
lycaemia was maintained (Hay et al. 1984). These observations are consistent with our failure
to detect significant concentrations of the insulin-responsive glucose transport protein, GLUT-4,
in the ovine placenta (Ehrhardt & Bell, 1997). They also agree with the observed lack of effect
of insulin on glucose uptake and transport by the human placenta (Challier et al. 1986; Brunette
et al. 1990), and the failure to detect significant levels of GLUT-4 in human placental tissues
(Hauguel-de Mouzon et al. 1994; Barros et al. 1995). Greater abundance of GLUT-4 has been
detected in intravillous stromal cells, apparently co-localized with insulin receptors (Xing et al.
1998), but this probably has little relevance to the regulation of glucose transfer by syncytial
cells. 

It is also unlikely that fetal insulin indirectly promotes fetal growth via a direct influence
on placental growth and functional capacity. Pancreatectomy of fetal lambs (Fowden et al.
1989) and streptozotocin treatment of fetal rabbits (Fletcher & Bassett, 1986) profoundly
reduced fetal growth without overt effects on placental development. 

Insulin-like growth factors. Insulin-like growth factors (IGF)-I and -II enhanced cytochalasin
B-inhibitable deoxyglucose uptake in cultured human trophoblast cells (Kniss et al. 1994).
However, infusion of IGF-1 into the maternal (Liu et al. 1994) or fetal (Harding et al. 1994;
Liechty et al. 1996) circulation of sheep had no effect on uterine, uteroplacental, or umbilical
exchanges of glucose. These were short-term experiments and it remains possible that the IGF
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Fig. 5. Relationship (R2 0.98) between transplacental pulse flux of isotopically labelled amino acids after
single injection into the maternal femoral vein and maternal plasma arterial concentration before injection for
five essential amino acids that have high and similar rates of placental clearance (see p. 222 and Fig. 1).
Each value is the mean of seven observations. (Adapted from the data of Paolini et al. 2001.)
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have a more chronic influence on expression and/or activity of placental GLUT. Possible local
effects of IGF, their binding proteins, and other growth factors produced by the placenta also
require systematic investigation.

Several lines of evidence indicate that IGF-II plays an important role in placental growth
and functional development. It is abundantly expressed in various placental cell types through-
out gestation (see Zumkeller, 2000) and the characteristic phenotype of mice with a null muta-
tion of the IGF-II gene is profound placental growth retardation, associated with fetal stunting
(Baker et al. 1993). This suggests an important autocrine or paracrine role for IGF-II in placen-
tal growth. In contrast, gene knockout of IGF-I had no effect on the placenta (Baker et al.
1993). Placental expression of IGF-II is paternally imprinted (DeChiara et al. 1991), offering a
possible explanation for the apparently greater influence of paternal v. maternal genotype on
prenatal growth and birth weight of cattle (Garrick et al. 1989).

Leptin. It is becoming apparent that leptin, the ob gene product that is expressed principally in
white adipose tissue, may have numerous peripheral functions in addition to its role as a
humoral signal of energy balance to the brain (Harris, 2000). Likely target organs include the
placenta, which, in sheep, strongly expresses the leptin receptor variant Ob-Rb (Thomas et al.
2001; Ehrhardt et al. 2002) that is considered essential for intracellular signal transduction after
the binding of leptin. Maternal plasma leptin concentration is elevated during early to mid preg-
nancy in sheep, independent of changes in body fatness (Ehrhardt et al. 2001), at a time when
rapid placental growth may be most sensitive to extracellular influences (Ehrhardt & Bell,
1995). It is, therefore, intriguing to note that elevated levels of maternal plasma leptin tended to
be associated with impaired placental growth during mid gestation in overconditioned, primi-
parous ewes (Thomas et al. 2001). The putative role of leptin in modulation of the functional
development of the placenta requires direct investigation.

Implications of placental transport functions for fetal growth in late gestation

Except under the most extreme conditions, fetal growth is little affected by maternal nutrient
supply or placental capacity for nutrient transport before the last third of gestation. In late preg-
nancy, maternal hypoglycaemia induced by fasting or severe undernutrition of ewes is associ-
ated with a perceptible slowing of fetal growth within a few days (see Mellor, 1983). The
negative influence of preceding placental growth retardation and functional insufficiency is
equally clear (Bell, 1987; Robinson et al. 1995). However, there is also strong evidence that the
normal and appropriate slowing of fetal growth in well-fed animals during late pregnancy is
due to placental constraint (Mellor, 1983; Bell et al. 1999). The degree to which this is medi-
ated by regulation of placental transport characteristics, independently of membrane surface
area for nutrient exchange, is uncertain. For example, placental GLUT normally operate well
below saturation over the range of glucose concentrations normally experienced, suggesting
that their membrane concentration or activity might not be limiting for glucose transport. On
the other hand, even in optimally fed, monotocous ewes with normal placentae, circumvention
of the placenta by direct fetal infusion with glucose during the last month of gestation increased
lamb birth weight by almost 20 % (Stevens et al. 1990). The relative lack of fetal growth
response to high levels of maternal protein intake (McNeill et al. 1997), consistent with the
limited effect of maternal amino acid infusion on umbilical uptake of amino acids (Jozwik et al.
1999), also suggests placental limitation of the transfer of these vital nutrients.
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Placental influences on fetal programming and its consequences in postnatal life

Beginning with the observations summarized by Barker (1994), accumulating epidemiological
evidence from several human populations suggests that prenatal nutrient supply affects not only
patterns of growth of conceptus tissues but also the incidence of disorders such as cardiovascu-
lar disease and type II diabetes during adulthood (see Langley-Evans, 2001). This has led to the
notion of ‘fetal programming’, based on the postulate that nutritional experience during key
phases of prenatal life can indelibly alter fetal tissue development in ways that ultimately affect
predisposition to systemic pathologies in later life. Altered placental function was implicated as
an influencing factor through epidemiological association of increased incidence of cardiovascular
disease and type II diabetes with increased placental weight:birth weight in human infants
(Phillips et al. 1994; Campbell et al. 1996a; Godfrey et al. 1996). Some of these associated
effects have been mimicked experimentally in animal studies, most consistently by protein
undernutrition of pregnant rats (Langley & Jackson, 1994; Langley et al. 1994; Langley-Evans
et al. 1996a,b). Maternal undernutrition during early to mid pregnancy can also increase
placental size in sheep without necessarily affecting later fetal growth (McCrabb et al. 1992;
Heasman et al. 1998). It is not yet known if these effects on placental morphology are related to
alterations in nutrient transport capacity. However, the relative enhancement of placental
growth in protein-deprived, pregnant rats was associated with decreased placental activity of
11�-hydroxysteroid dehydrogenase type 2 (Langley-Evans et al. 1996b). Resulting impairment
of the placenta’s ability to prevent fetal overexposure to maternal glucocorticoids has been
asserted as an important determinant of fetal programming events that lead to postnatal devel-
opment of hypertension and glucose intolerance in rats (Lindsay et al. 1996; Nyrienda et al.
1998) and sheep (Dodic et al. 1998; Whorwood et al. 2001).

Conclusions

The variable constraint of fetal growth by placental capacity for nutrient transport during late
gestation is well documented. The functional consequences of this phenomenon range from
intra-uterine growth retardation due to placental insufficiency, commonly seen in polytocous
pregnancies in domestic animals, to abnormally rapid late fetal growth that can result in mater-
nal metabolic disease, such as pregnancy toxaemia in ruminants, or dystocia and perinatal mor-
tality. The critically important role of the placenta in optimizing fetal growth without
compromising neonatal survival or maternal health is unquestioned, but the specific mecha-
nisms are poorly understood. 

Identification and molecular characterization of the proteins responsible for placental trans-
port of glucose, amino acids, and fatty acids is under way. This will allow detailed studies of
the regulation of expression and activity of these transporters by extracellular factors of mater-
nal and fetal origin, as well as by autocrine and paracrine factors produced in the placenta itself.
The insights so provided will be necessary to determine the specific nature of placental limita-
tion of fetal nutrient supply and growth during late pregnancy. In particular, it is unclear if the
limiting effects of placental capacity for nutrient transport are primarily a function of abun-
dance or activity of nutrient transporters, distinct from the more general constraints related to
the morphometry of the maternal–fetal surface for nutrient exchange. Although not discussed in
the present review, it must also be recognized that the placenta plays an active role in the
endocrine modulation of fetal demand and maternal supply of nutrients, as well as being a 
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primary target for humoral regulatory agents. Finally, putative placental involvement in nutri-
tion-related fetal programming of adult disease requires systematic investigation. 
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