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Abstract
In this paper, we discuss a generalization of the classical compound Poisson model with claim sizes following a
compound distribution. As applications, we consider models involving zero-truncated geometric, zero-truncated
negative-binomial and zero-truncated binomial batch-claim arrivals. We also provide some ruin-related quantities
under the resulting risk models. Finally, through numerical examples, we visualize the behavior of these quantities.

1. Introduction

Under the classical risk model, a compound Poisson process is used to model aggregate claims. In the
actuarial literature, it is common to employ a homogeneous Poisson process as the counting process
for claim arrivals. It is noteworthy that this is an equi-dispersed process. Moreover, the classical ruin
model is meant for single-claim occurrences. In reality, more often than not, insurers receive several
claims at a time. For example, dental, medical and car insurance policies yield frequent claims that
arrive several at a time. Albrecher et al. [1] provide an example of housing claims resulting from
fires. It has been commonly suggested by researchers to combine simultaneously arriving claims into
single amounts. Unfortunately, such an approach poses modeling difficulties as these augmented claims
become heavy-tailed. Instead, in this paper, we discuss another way of looking at the classical risk model
where the claim-counting process is a compound Poisson process. This way allows for simultaneous
claim occurrences while considering each claim as a single amount instead of amalgamating it into a
larger claim. There are studies on this topic already. For instance, the Pólya-Aeppli process proposed
by Minkova [8] is obtained by compounding a homogeneous Poisson process with a zero-truncated
geometric process. Sendova and Minkova [9] propose the Poisson-Logarithmic process, where the
compounded distribution is logarithmic and the compounding distribution is Poisson. Li and Sendova [6]
introduce a surplus processes involving a Poisson-Negative-Binomial or a Poisson-Binomial counting
process. To deduce specific expressions, exponential or Erlang claim amounts are assumed. As noted
in Remark 2.1 in Li and Sendova [6], any compound Poisson counting process is an over-dispersed
process. Finally, there are studies of more general claim-counting processes than the compound Poisson
one. The drawback there is that fewer quantities of interest in ruin theory may be deduced. For example,
Sendova and Minkova [10] propose a non-homogeneous compound-birth process to be employed for
modeling claim counts. The probability-generating function (p.g.f.) of the claim-counting process is
obtained in a fairly general setting.

In this paper, we focus on the Gerber-Shiu function that was first introduced in Gerber and Shiu
[5] to evaluate the discounted penalty at ruin. This function was very soon explored in the actuarial
literature to deduce several quantities, which are the function’s special cases and, at the same time, may
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be interpreted as risk measures of an insurer’s business. Examples include the density of the time to
ruin (see Dickson and Willmot [3]), the joint moments of the time of ruin, the surplus before ruin and
the deficit at ruin (see Lin and Willmot [7]), the marginal moments of the time of ruin where the general
solution is given by Willmot [13] and is applied in the case of phase-type claims by Drekic and Willmot
[4], and several others.

Our work here shows that when the Laplace transform of the probability density function (p.d.f.)
of the batch-claim amounts is in the 𝑅𝑛 class of distributions, the ultimate ruin probability may be
expressed explicitly. Subsequently, we are able to provide explicit expressions of some ruin-related
quantities in terms of the ultimate ruin probability. These are the marginal moments of the time of
ruin and the proper joint density of the surplus before ruin and the deficit at ruin. Therefore, in
this paper, we consider applications for three kinds of classical compound Poisson models where
the counting process is a compound Poisson process with a compounded distribution that is a zero-
truncated geometric or zero-truncated negative-binomial or zero-truncated binomial distribution. Under
these three models, the batch-claim numbers all have rational Laplace transforms. Moreover, the batch
claims can either accommodate both over-dispersed and under-dispersed data (zero-truncated geometric
distribution and zero-truncated negative-binomial distribution), or only accommodate under-dispersed
data (zero-truncated binomial distribution), while the resulting compound Poisson process is always
over-dispersed.

With respect to the batch arrivals, we further discuss the special cases of exponential and of Erlang
claim sizes for illustration purposes. We derive specific expressions for ruin-related quantities under
the resulting compound Poisson models, such as the ultimate ruin probability, marginal moments of the
time of ruin, and the proper joint density of the surplus before ruin and the deficit at ruin.

To illustrate our results, we provide numerical examples with claim amounts following an exponen-
tial distribution or an Erlang distribution. Graphs of some ruin-related quantities are supplied under
our different compound Poisson models. These examples indicate that batch-claim arrivals should be
imbedded in the risk model whenever the relevant data implies that claims arrive indeed in batches.
Otherwise, all risk quantities would be underestimated. We also noticed that compared with the zero-
truncated geometric and the negative-binomial batch arrivals, the binomial-batch arrivals have less effect
on the risk quantities. This observation implies that the Poisson-Binomial model may yield less signif-
icant modeling improvements compared with the Poisson-Geometric and Poisson-Negative-Binomial
models.

Finally, it is of note that the way of accounting for simultaneously arriving claims that we are
proposing in this paper may be easily extended to other well-studied models involving compound
Poisson aggregate claims. In particular, models involving diffusion, interest earned on the premium,
taxation and several others may be extended in a fairly straightforward way. Additionally, given the
computational challenges surrounding risk measures in general, deducing explicit expressions as we do
in Subsection 2.3 has impact for practitioners.

This paper is organized as follows. In Section 2, we list relevant definitions and properties under the
classical compound Poisson model. Then, in Section 3, we consider applications involving the Poisson-
Geometric, Poisson-Negative-Binomial and Poisson-Binomial counting processes. Finally, in Section
4, numerical examples are discussed.

2. Preliminaries

In this section, we recall the classical compound Poisson model and some relevant definitions as well
as theorems we need further in the paper.

2.1. Relevant results

Now, we recall the definitions of the Laplace transform and the translation transform:

358

https://doi.org/10.1017/S0269964822000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000195


Probability in the Engineering and Informational Sciences

Definition 1. The Laplace transform of a real-valued integrable function 𝜑(𝑦), 𝑦 ≥ 0, is defined as

�̃�(𝑠) =
∫ ∞

0
𝑒−𝑠𝑦𝜑(𝑦) 𝑑𝑦, 𝑠 > 0.

Definition 2. The translation operator 𝑇𝑠 on a function 𝜑 is defined by

𝑇𝑠𝜑(𝑥) =
∫ ∞

𝑥

𝑒−𝑠 (𝑦−𝑥)𝜑(𝑦) 𝑑𝑦, 𝑠 > 0. (2.1)

Properties of the Laplace transform may be found in Chapter 1 of Spiegel [12].

2.2. The compound Poisson claim-counting process

Definition 3. We introduce the counting process {𝑁 (𝑡), 𝑡 ≥ 0} as follows:

𝑁 (𝑡) = 𝑋1 + · · · + 𝑋𝑀 (𝑡) , 𝑡 ≥ 0,

where {𝑀 (𝑡), 𝑡 ≥ 0} is a homogeneous Poisson process with intensity parameter 𝜆 > 0 and probability
mass function (p.m.f.) given by

P{𝑀 (𝑡) = 𝑘} = (𝜆𝑡)𝑘
𝑘!

𝑒−𝜆𝑡 , 𝑘 = 0, 1, 2, . . . ,

{𝑋1, 𝑋2, . . .} are independent and identically distributed (i.i.d.) discrete random variables, which have
the same p.m.f. 𝑝𝑛, 𝑛 = 1, 2, . . . , as a generic random variable (r.v.) 𝑋 , and are independent of 𝑀 (𝑡).

It is noteworthy that Remark 2.1 in Li and Sendova [6] states that the process 𝑁 (𝑡) is over-dispersed
regardless of the distribution of 𝑋 .

Definition 4. The surplus process {𝑈 (𝑡), 𝑡 ≥ 0} is given by

𝑈 (𝑡) = 𝑢 + 𝑐𝑡 −
𝑁 (𝑡)∑
𝑖=1
𝑌𝑖 , (2.2)

where 𝑢 ≥ 0 is the initial surplus and 𝑐 > 0 is the constant premium rate. {𝑌1, 𝑌2, . . .} are i.i.d. random
variables, representing the successive individual claim amounts. {𝑌1, 𝑌2, . . .} and 𝑁 (𝑡) are further
assumed to be mutually independent. We also denote by 𝐹 and 𝑓 the cumulative distribution function
(c.d.f.) and the p.d.f., respectively, of the associated generic r.v. 𝑌 .

The surplus process 𝑈 (𝑡) is based on the assumption that claims arrive according to a general
compound Poisson process. The aggregate losses are then given by

𝑆(𝑡) =
𝑁 (𝑡)∑
𝑖=1
𝑌𝑖 , 𝑡 ≥ 0,

where 𝑆(𝑡) is a compound random variable with Laplace transform

�̃�(𝑠; 𝑡) = P𝑁 (𝑡) [ 𝑓 (𝑠)] = P𝑀 (𝑡) {P𝑋 [ 𝑓 (𝑧)]} = 𝑒−𝜆𝑡 {1−P𝑋 [ 𝑓 (𝑠) ] },

where P𝑋 denotes the p.g.f. of 𝑋 .
In other words, 𝑆(𝑡) may be interpreted as a compound Poisson process with parameter 𝜆 > 0 and

compounded distribution having Laplace transform P𝑋 [ 𝑓 (𝑠)]. Thus, the surplus process𝑈 (𝑡) defined in
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(2.2) may be regarded as a classical Poisson model with claim sizes having the latter Laplace transform.
This is the same as having i.i.d. exponential inter-event times with mean 1/𝜆, while each event is a
compound r.v. that we will denote by 𝑍 . In other words, we have a number of i.i.d. claims occurring at
the same time. Therefore, known results under the classical model also apply to the surplus process𝑈 (𝑡).

Let 𝐹∗𝑛 (𝑦) be the 𝑛-fold convolution of 𝐹 (𝑦) with itself. Define𝐻 (𝑦) to be the c.d.f. of the compound
r.v. 𝑍 , so that

𝐻 (𝑦) =
∞∑
𝑛=1

𝑝𝑛𝐹
∗𝑛 (𝑦), 𝑦 ≥ 0,

which is the c.d.f. of a batch claim. Subsequently, the p.d.f. and the survival function of 𝑍 are denoted,
respectively, by ℎ(𝑦) and �̄� (𝑦) = 1 − 𝐻 (𝑦).

Also, E{𝑍} = 𝜇E{𝑋}, where 𝜇 = E{𝑌 }.
The Laplace transform of the associated p.d.f. is ℎ̃(𝑠) = P𝑋 [ 𝑓 (𝑠)],which is the p.g.f. of 𝑋 calculated

at 𝑓 (𝑠).
Define the equilibrium tail distribution of 𝑍 as

𝐻𝑒 (𝑦) = 1
E{𝑍}

∫ 𝑦

0
�̄� (𝑡) 𝑑𝑡.

Then the associated p.d.f. is

ℎ𝑒 (𝑦) = 𝑑

𝑑𝑦
𝐻𝑒 (𝑦) = �̄� (𝑦)

E{𝑍} ,

with Laplace transform

ℎ̃𝑒 (𝑠) = 1 − ℎ̃(𝑠)
𝑠E{𝑍} . (2.3)

We will further assume that the relative security loading 𝜃 satisfies the following relationship:

𝑐𝑡 = (1 + 𝜃)E
{
𝑁 (𝑡)∑
𝑖=1
𝑌𝑖

}
= (1 + 𝜃)E{𝑁 (𝑡)}E{𝑌 }

= (1 + 𝜃)𝜆𝑡𝜇E{𝑋}, 𝑡 ≥ 0, (2.4)

where 𝑐 should satisfy the inequality
𝑐 > 𝜆𝜇E{𝑋},

to make sure 𝜃 is strictly positive.

2.3. Ruin-related quantities

2.3.1. The Gerber-Shiu function
Definition 5. The Gerber-Shiu function is defined by

𝑚(𝑢) = E{𝑒−𝛿𝜏𝜔(𝑈 (𝜏−), |𝑈 (𝜏) |)𝐼 (𝜏 < ∞) |𝑈 (0) = 𝑢}, 𝑢 ≥ 0,

where 𝛿 ≥ 0 is a discount factor, 𝜏 = inf{𝑡 ≥ 0 : 𝑈 (𝑡) < 0} is the time to ruin,𝜔(𝑥, 𝑦), 𝑥 ≥ 0, 𝑦 > 0, is a
penalty function,𝑈 (𝜏−) is the surplus before ruin, |𝑈 (𝜏) | is the deficit at ruin, and 𝐼 (·) is the indicator
function.

The Gerber-Shiu function was first introduced by Gerber and Shiu [5]. (See Eq. (2.10) there.)
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Theorem 1. Let 𝜔 : [0,∞) × [0,∞) → [0,∞) be a bounded (Borel-measurable) function, the relative
security loading be positive, and the claim-size distribution have a finite second moment. Then, the
Gerber-Shiu function satisfies the defective renewal equation

𝑚(𝑢) = 𝜋(𝜌)
∫ 𝑢

0
𝑚(𝑢 − 𝑦) 𝑑𝐵(𝑦; 𝜌) + 𝜆

𝑐
𝑇𝜌𝜁 (𝑢), (2.5)

where 𝜌 is the non-negative root to the generalized Lundberg’s fundamental equation

𝜆 + 𝛿 − 𝑐𝑠 = 𝜆ℎ̃(𝑠),

𝜋(𝜌) = 𝜆
𝑐
𝑇𝜌�̄� (0) ∈ (0, 1),

𝜁 (𝑢) =
∫ ∞

𝑢

𝜔(𝑢, 𝑦 − 𝑢) 𝑑𝐻 (𝑦),

�̄�(𝑦; 𝜌) = 1 − 𝐵(𝑦; 𝜌) = 𝑇𝜌�̄� (𝑦)
𝑇𝜌�̄� (0) ,

and 𝑇𝑠 𝑓 (𝑦) is defined as in identity (2.1).

Equation (2.5) corresponds to identity (2.34) in Gerber and Shiu [5].

2.3.2. The ultimate ruin probability
We denote the ultimate ruin probability by

𝜓(𝑢) = P{𝜏 < ∞ |𝑈 (0) = 𝑢}.

Restating Eq. (4.11) in Gerber and Shiu [5], we have the following.

Corollary 2.1. When 𝛿 = 0 and 𝜔(𝑥, 𝑦) = 1 for all 𝑥 ≥ 0, 𝑦 > 0, the Gerber-Shiu function 𝑚 reduces
to the probability of ultimate ruin 𝜓, which satisfies the defective renewal equation

𝜓(𝑢) = 1
1 + 𝜃

∫ 𝑢

0
𝜓(𝑢 − 𝑡) 𝑑𝐻𝑒 (𝑡) + 1

1 + 𝜃 �̄�𝑒 (𝑢), 𝑢 ≥ 0. (2.6)

The solution to (2.6) is the compound geometric survival function

𝜓(𝑢) = 𝜃

1 + 𝜃
∞∑
𝑛=1

(
1

1 + 𝜃

)𝑛
𝐻∗𝑛

𝑒 (𝑢), 𝑢 ≥ 0,

whose Laplace transform is

�̃�(𝑠) = 1 − ℎ̃𝑒 (𝑠)
𝑠[1 + 𝜃 − ℎ̃𝑒 (𝑠)]

. (2.7)

We now make a connection with the 𝑅𝑛 family of distributions, i.e., those distributions whose Laplace
transform of the respective p.d.f. is a rational function. As discussed in Subsection 2.1 of Sendova and
Zhang [11], the 𝑅𝑛 class of distributions is fairly large and is not a subclass of the phase-type distributions.

Remark 1. According to the relationships among ℎ̃(𝑠), ℎ̃𝑒 (𝑠) and �̃�(𝑠) in equations (2.3) and (2.7), if
the batch-claim distribution is in the 𝑅𝑛 family, then the resulting ℎ̃𝑒 (𝑠) and �̃�(𝑠) are also in that family.
Therefore, we are able to provide an explicit expression of the ultimate ruin probability. Consequently,
more ruin-related quantities, such as the marginal moments of the time of ruin and the proper joint
density of the surplus before ruin and the deficit at ruin are also expressed explicitly.

Probability in the Engineering and Informational Sciences 361

https://doi.org/10.1017/S0269964822000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000195


We formalize this observation in the following result:

Lemma 1. Whenever the distribution of batch claims belongs to the 𝑅𝑛 family of distributions, the
probability of ruin also belongs to that family.

2.3.3. The defective joint density of the surplus before ruin and the deficit at ruin
The solution to the defective renewal Eq. (2.5) with 𝛿 = 0 may be utilized to determine the defective
joint density of the surplus before ruin and the deficit at ruin.

The defective joint density of the surplus before ruin and the deficit at ruin 𝑓𝑑 (𝑥, 𝑦 |𝑢) was obtained
in Section 7 in Dickson [2].

We then deduce the proper joint density of the surplus before ruin and the deficit at ruin

𝑓 (𝑥, 𝑦 | 𝑢) = 𝑓𝑑 (𝑥, 𝑦 | 𝑢)∫ ∞
0

∫ ∞
0 𝑓𝑑 (𝑥, 𝑦 | 𝑢) 𝑑𝑦 𝑑𝑥

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[𝜓(𝑢) − 𝜓(𝑢 − 𝑥)]ℎ(𝑥 + 𝑦)
E{𝑍}

∫ 𝑢
0 �̄�𝑒 (𝑢 − 𝑡) 𝑑𝜓(𝑡)

, 0 ≤ 𝑥 < 𝑢, 𝑦 > 0

[𝜓(𝑢) − 1]ℎ(𝑥 + 𝑦)
E{𝑍}

∫ 𝑢
0 �̄�𝑒 (𝑢 − 𝑡) 𝑑𝜓(𝑡)

, 𝑥 > 𝑢, 𝑦 > 0
, 𝑢 ≥ 0. (2.8)

2.3.4. Marginal moments of the time of ruin
With the defective marginal moments 𝜓𝑘 for 𝑘 = 1, 2, . . . , given by

𝜓𝑘 (𝑢) = E{𝜏𝑘 𝐼 (𝜏 < ∞) |𝑈 (0) = 𝑢}, 𝑢 ≥ 0,

we have the proper moments of the ruin time provided by

𝜓𝑘 (𝑢)
𝜓(𝑢) = E{𝜏𝑘 | 𝜏 < ∞,𝑈 (0) = 𝑢}, 𝑢 ≥ 0.

Then mean of the time of ruin is

E{𝜏 | 𝜏 < ∞,𝑈 (0) = 𝑢} = 𝜓1(𝑢)
𝜓(𝑢) , 𝑢 ≥ 0,

its second moment is

E{𝜏2 | 𝜏 < ∞,𝑈 (0) = 𝑢} = 𝜓2(𝑢)
𝜓(𝑢) , 𝑢 ≥ 0,

and therefore, its variance is given as

Var{𝜏2 | 𝜏 < ∞,𝑈 (0) = 𝑢} = 𝜓2(𝑢)
𝜓(𝑢) −

[
𝜓1(𝑢)
𝜓(𝑢)

]2

, 𝑢 ≥ 0.

As discussed in Section 6 of Willmot [13], 𝜓1(𝑢) satisfies the following difference equation

𝜓1(𝑢) = 1 + 𝜃
𝑐𝜃

[∫ 𝑢

0
𝜓(𝑢 − 𝑦)𝜓(𝑦) 𝑑𝑦 +

∫ ∞

𝑢

𝜓(𝑦) 𝑑𝑦 − 𝜓(𝑢)
∫ ∞

0
𝜓(𝑦) 𝑑𝑦

]
, 𝑢 ≥ 0, (2.9)

and 𝜓2(𝑢) satisfies

𝜓2(𝑢) = 2(1 + 𝜃)
𝑐𝜃

[∫ 𝑢

0
𝜓1(𝑢 − 𝑦)𝜓(𝑦) 𝑑𝑦 +

∫ ∞

𝑢

𝜓1(𝑦) 𝑑𝑦 − 𝜓(𝑢)
∫ ∞

0
𝜓1 (𝑦) 𝑑𝑦

]
, 𝑢 ≥ 0. (2.10)
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According to the Heaviside Expansion Theorem, which can be found on p. 46 of Spiegel [12], if the
Laplace transform of 𝜓(𝑢) is of the form �̃�(𝑠) = 𝑅(𝑠)/𝑃(𝑠), where 𝑅(𝑠) is a polynomial of degree less
than the degree of the polynomial 𝑃(𝑠), i.e., �̃�(𝑠) is a rational function, and if 𝑃(𝑠) has 𝑑 distinct roots
𝜌 𝑗 , 𝑗 = 1, 2, . . . , 𝑑, with negative real part, then the probability of ultimate ruin is given by

𝜓(𝑢) =
𝑑∑
𝑗=1

𝑅(𝜌 𝑗 )
𝑃′(𝜌 𝑗)

𝑒𝜌 𝑗𝑢 , 𝑢 ≥ 0.

Therefore, 𝜓1(𝑢) and 𝜓2(𝑢) may be expressed explicitly as linear combinations of exponents.

3. Applications

This section is dedicated to applications of the classical compound Poisson model where claims are
assumed to arrive in batches and are thus modeled by a compound r.v. (𝑍). Alternatively, this setup may
as well be interpreted as compound Poisson counts of claim arrivals (𝑁 (𝑡)) combined with continuous
i.i.d. claim amounts (𝑌1, 𝑌2, . . .).

There are three distinct compound Poisson models that we consider here: Poisson-Geometric (also
known as the Pólya-Aeppli model), Poisson-Negative-Binomial and Poisson-Binomial.

As discussed in Subsection 2.2, the batch claims (𝑍) follow a compound distribution. The com-
pounding r.v. (𝑋) is the number of claims in a batch and the compounded r.v. (𝑌 ) is the individual
claim size. Our choice of distributions for 𝑋 is motivated by Lemma 1. All three of the geometric, the
negative-binomial and the binomial distributions have p.g.f. that, combined with an appropriate distri-
bution of the individual claim sizes, yield a batch-claim distribution that is in the 𝑅𝑛 family. Conversely,
if the batch claims follow a distribution that is not in the 𝑅𝑛 family, for example, a distribution in the
transformed beta family or in the transformed gamma family, we are not able to treat the resulting ruin
model in the same way.

3.1. Poisson-Geometric model (or Pólya-Aeppli model)

Now, assume that 𝑋 follows the zero-truncated geometric distribution with parameter 𝛽. We then have
a Poisson-Geometric counting process 𝑁 (𝑡).

The p.m.f. of 𝑋 is given by

𝑝𝑛 =
𝛽𝑛−1

(1 + 𝛽)𝑛 , 𝛽 > 0, 𝑛 = 1, 2, . . .

Since Var{𝑋}/E{𝑋} = 𝛽, then when 𝛽 < 1, the zero-truncated geometric distribution is under-
dispersed. Otherwise, it is over-dispersed. Therefore, this distribution can accommodate both over-
dispersed and under-dispersed batch-claim arrivals.

3.1.1. General claim amounts
Now, we consider the most general case of the Poisson-Geometric model with the claim-size r.v. 𝑌
following an unspecified distribution 𝑓 (𝑦), 𝑦 > 0. We derive some ruin-related quantities under this
model.

Identity ℎ̃(𝑠) = P𝑋 [ 𝑓 (𝑠)] implies that the batch-claim amount distribution has Laplace transform

ℎ̃(𝑠) =
∞∑
𝑛=1

𝛽𝑛−1

(1 + 𝛽)𝑛 [ 𝑓 (𝑠)]
𝑛

=
𝑓 (𝑠)

1 + 𝛽 − 𝛽 𝑓 (𝑠) . (3.1)
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Equation (2.3), together with E{𝑍} = 𝜇(1 + 𝛽), then produce

ℎ̃𝑒 (𝑠) = 1 − 𝑓 (𝑠)
𝜇𝑠[1 + 𝛽 − 𝛽 𝑓 (𝑠)] . (3.2)

Hence, with the help of (2.7), we have

�̃�(𝑠) = 𝜇𝑠[1 + 𝛽 − 𝛽 𝑓 (𝑠)] − 1 + 𝑓 (𝑠)
𝑠{𝜇𝑠(1 + 𝜃) [1 + 𝛽 − 𝛽 𝑓 (𝑠)] − 1 + 𝑓 (𝑠)} . (3.3)

Equation (2.4) results in the following expression for the relative security loading:

1 + 𝜃 = 𝑐

𝜆𝜇(1 + 𝛽) .

In the following two subsections, we consider the claim-size r.v.𝑌 following two specific distributions.

3.1.2. Exponential claim amounts
Assume 𝑌 follows an exponential distribution with mean 𝜇, and p.d.f.

𝑓 (𝑦) = 1
𝜇
𝑒−𝑦/𝜇, 𝑦 ≥ 0, 𝜇 > 0.

The Laplace transform of 𝑓 (𝑦) is then

𝑓 (𝑠) = 1
1 + 𝜇𝑠 , 𝑠 ≥ 0. (3.4)

Hence, the Laplace transform of ℎ(𝑦) is by (3.1)

ℎ̃(𝑠) = 1
1 + 𝜇𝑠(1 + 𝛽) .

Identity (3.2) then produces the Laplace transform of the equilibrium distribution

ℎ̃𝑒 (𝑠) = 1
1 + 𝜇𝑠(1 + 𝛽) .

Notice that this indicates an exponential distribution with mean 1/𝜇(1+𝛽). Therefore, Eq. (3.3) produces

�̃�(𝑠) = (1/𝜃)𝜇(1 + 𝛽)
(1/𝜃)𝜇(1 + 𝛽)(1 + 𝜃)𝑠 + 1

.

Inversion yields an explicit expression for the ultimate ruin probability. Namely,

𝜓(𝑢) = 1
1 + 𝜃 𝑒

−𝜃𝑢/𝜇 (1+𝛽) (1+𝜃) , 𝑢 ≥ 0.

Hence, starting from (2.9), the defective mean of the time of ruin reduces to

𝜓1(𝑢) = 𝑢 + 𝜇(1 + 𝛽)(1 + 𝜃)
𝑐𝜃 (1 + 𝜃) 𝑒−𝜃𝑢/𝜇 (1+𝛽) (1+𝜃) ,

which implies that the proper mean of the ruin time is

E{𝜏 | 𝜏 < ∞,𝑈 (0) = 𝑢} = 𝑢 + 𝜇(1 + 𝛽)(1 + 𝜃)
𝑐𝜃

. (3.5)

D. Gao and K. P. Sendova364

https://doi.org/10.1017/S0269964822000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000195


Similarly, implementing identity (2.10), the defective second moment of the time of ruin is given by

𝜓2(𝑢) = 𝜃𝑢
2 + 2𝜇(1 + 𝛽)(1 + 𝜃)(1 + 2𝜃)𝑢 + 2𝜇2(1 + 𝛽)2(1 + 𝜃)3

𝑐2𝜃3 (1 + 𝜃) 𝑒−𝜃𝑢/𝜇 (1+𝛽) (1+𝜃) ,

and the second moment of the ruin time is

E{𝜏2 | 𝜏 < ∞,𝑈 (0) = 𝑢} = 𝜃𝑢
2 + 2𝜇(1 + 𝛽)(1 + 𝜃)(1 + 2𝜃)𝑢 + 2𝜇2(1 + 𝛽)2(1 + 𝜃)3

𝑐2𝜃3 . (3.6)

Therefore, from (3.5) and (3.6), the variance of the time of ruin is

Var{𝜏2 | 𝜏 < ∞,𝑈 (0) = 𝑢} = 2𝜇(1 + 𝛽)(1 + 𝜃)2𝑢 + 𝜇2(1 + 𝛽)2(1 + 𝜃)2(2 + 𝜃)
𝑐2𝜃3 .

Observe that the mean and the variance of the ruin time are linear functions of 𝑢.
Finally, (2.8) provides the proper joint density of the surplus before ruin and the deficit at ruin

𝑓 (𝑥, 𝑦 | 𝑢) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 + 𝜃)𝜆
𝑐𝜃𝜇(1 + 𝛽) [𝑒

𝜃𝑥/𝜇 (1+𝛽) (1+𝜃) − 1] 𝑒−(𝑥+𝑦)/𝜇 (1+𝛽) , 0 ≤ 𝑥 < 𝑢, 𝑦 > 0

(1 + 𝜃)𝜆
𝑐𝜃𝜇(1 + 𝛽) [(1 + 𝜃) 𝑒𝜃𝑢/𝜇 (1+𝛽) (1+𝜃) − 1] 𝑒−(𝑥+𝑦)/𝜇 (1+𝛽) , 𝑥 > 𝑢, 𝑦 > 0

, 𝑢 ≥ 0.

Interestingly, the above density depends on the initial surplus only through its relative position with
respect to the surplus before ruin.

3.1.3. Erlang(𝑘) claim amounts
Assume 𝑌 follows an Erlang(𝑘) distribution with mean of 𝑘𝜇, and p.d.f.

𝑓 (𝑦) = 1
𝜇𝑘 𝑘!

𝑦𝑘−1 𝑒−𝑦/𝜇, 𝑦 ≥ 0, 𝜇 > 0.

Then, we obtain the Laplace transform of 𝑓 (𝑦)

𝑓 (𝑠) = 1
(1 + 𝜇𝑠)𝑘 , 𝑠 ≥ 0. (3.7)

The Laplace transform ℎ̃(𝑠) is expressed from (3.1) as

ℎ̃(𝑠) = 1
(1 + 𝛽)(1 + 𝜇𝑠)𝑘 − 𝛽 .

Applying the Heaviside Expansion Theorem, if there are 𝑛 roots 𝜂1, . . . , 𝜂𝑛 with negative real parts,
which are all distinct, ℎ(𝑦) is then

ℎ(𝑦) =
𝑛∑
𝑗=1

1
𝑘𝜇(1 + 𝛽)(1 + 𝜇𝜂 𝑗)𝑘−1 𝑒

𝜂 𝑗 𝑦 .

Applying E{𝑍} = 𝑘𝜇(1 + 𝛽) and Eq. (3.2), ℎ̃𝑒 (𝑠) is then

ℎ̃𝑒 (𝑠) = (1 + 𝜇𝑠)𝑘 − 1
𝑘𝜇𝑠[(1 + 𝛽)(1 + 𝜇𝑠)𝑘 − 𝛽] .
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Hence, with the help of (3.3) with 𝜇 replaced by 𝑘𝜇, we have

�̃�(𝑠) = 𝑘𝜇𝑠[(1 + 𝛽)(1 + 𝜇𝑠)𝑘 − 𝛽] − (1 + 𝜇𝑠)𝑘 + 1
𝑠{𝑘𝜇𝑠(1 + 𝜃) [(1 + 𝛽)(1 + 𝜇𝑠)𝑘 − 𝛽] − (1 + 𝜇𝑠)𝑘 + 1} ,

and the relative security loading is

1 + 𝜃 = 𝑐

𝑘𝜆𝜇(1 + 𝛽) .

Observe that �̃�(𝑠) may be presented as �̃�(𝑠) = 𝑅(𝑠)/𝑃(𝑠), and then the Heaviside Expansion
Theorem applies. If the polynomial 𝑃(𝑠) has 𝑚 distinct roots 𝜌1, 𝜌2, . . . , 𝜌𝑚 with negative real parts,
then the probability of ultimate ruin is given explicitly by

𝜓(𝑢) =
𝑚∑
𝑗=1

𝑅(𝜌 𝑗)
𝑃′(𝜌 𝑗)

𝑒𝜌 𝑗𝑢 ,

where

𝑅(𝜌 𝑗) = 𝑘𝜇𝜌 𝑗 [(1 + 𝜇𝜌 𝑗 )𝑘 − 𝛽] − (1 + 𝜇𝜌 𝑗)𝑘 + 1,

and

𝑃′(𝜌 𝑗 ) = 𝑘𝜇𝜌 𝑗 (1 + 𝜃)(1 + 𝛽)(1 + 𝜇𝜌 𝑗)𝑘−1(2 + 2𝜇𝜌 𝑗 + 𝑘𝜇𝜌 𝑗)
− 2𝑘𝛽(1 + 𝜃)𝜇𝜌 𝑗 − (1 + 𝜇𝜌 𝑗)𝑘−1(1 + 𝜇𝜌 𝑗 + 𝑘𝜇𝜌 𝑗 ) + 1.

Finally, the proper joint density of the surplus before ruin and the deficit at ruin is

𝑓 (𝑥, 𝑦 |𝑢) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑𝑛
𝑖=1

∑𝑚
𝑗=1

1
𝑘2𝜇2 (1+𝛽)2 (1+𝜇𝜂𝑖 ) 𝑘−1

𝑅 (𝜌𝑗 )
𝑃′ (𝜌𝑗 ) 𝑒

𝜂𝑖 (𝑥+𝑦)+𝜌𝑗𝑢 (1 − 𝑒−𝜌𝑗 𝑥 )∑𝑚
𝑗=1

𝑅 (𝜌𝑗 )
𝑃′ (𝜌𝑗 ) (𝑒𝜌𝑗𝑢 − 1) − ∑𝑛

𝑖=1
∑𝑚

𝑗=1
(1+𝜇𝜂𝑖 ) 𝑘−1

𝑘𝜇𝜂𝑖 [ (1+𝛽) (1+𝜇𝜂𝑖+𝑘𝜇𝜂𝑖 ) (1+𝜇𝜂𝑖 ) 𝑘−1−𝛽]
𝑅 (𝜌𝑗 )
𝑃′ (𝜌𝑗 )

[
𝜂𝑖

𝜌𝑗−𝜂𝑖
𝑒𝜌𝑗𝑢 − 𝜌𝑗

𝜌𝑗−𝜂𝑖
𝑒𝜂𝑖𝑢 + 1

] ,
where 0 ≤ 𝑥 < 𝑢, 𝑦 > 0, ∑𝑛

𝑖=1
1

𝑘2𝜇2 (1+𝛽)2 (1+𝜇𝜂𝑖 ) 𝑘−1 𝑒
𝜂𝑖 (𝑥+𝑦)

[∑𝑚
𝑗=1

𝑅 (𝜌𝑗 )
𝑃′ (𝜌𝑗 ) 𝑒

𝜌𝑗𝑢 − 1
]

∑𝑚
𝑗=1

𝑅 (𝜌𝑗 )
𝑃′ (𝜌𝑗 ) (𝑒𝜌𝑗𝑢 − 1) − ∑𝑛

𝑖=1
∑𝑚

𝑗=1
(1+𝜇𝜂𝑖 ) 𝑘−1

𝑘𝜇𝜂𝑖 [ (1+𝛽) (1+𝜇𝜂𝑖+𝑘𝜇𝜂𝑖 ) (1+𝜇𝜂𝑖 ) 𝑘−1−𝛽]
𝑅 (𝜌𝑗 )
𝑃′ (𝜌𝑗 )

[
𝜂𝑖

𝜌𝑗−𝜂𝑖
𝑒𝜌𝑗𝑢 − 𝜌𝑗

𝜌𝑗−𝜂𝑖
𝑒𝜂𝑖𝑢 + 1

] ,
where 𝑥 > 𝑢, 𝑦 > 0

.

with the help of (2.8).

3.2. Poisson-Negative-Binomial model

Assume that 𝑋 follows the zero-truncated negative-binomial distribution with parameters 𝛼 and 𝑟 . Then
we call this risk model a Poisson-Negative-Binomial risk model as the counting process 𝑁 (𝑡) is a
Poisson-Negative-Binomial process.

The p.m.f. of 𝑋 is

𝑝𝑛 =
1

(1 + 𝛼)𝑟 − 1

(
𝑟 + 𝑛 − 1

𝑛

) ( 𝛼

1 + 𝛼
)𝑛
, 𝑟 > −1, 𝑟 ≠ 0, 𝛼 > 0, 𝑛 = 1, 2, . . .

When 𝛼 < (1 + 𝑟)1/𝑟−1, the zero-truncated negative-binomial distribution is under-dispersed. Oth-
erwise, it is over-dispersed. Therefore, this distribution can accommodate both over-dispersed and
under-dispersed batch arrivals.
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3.2.1. General claim amounts
Now, we consider the most general case of the Poisson-Negative-Binomial model with the claim-size
r.v. 𝑌 following a general distribution. We then derive some ruin-related quantities under this model.

The Laplace transform of ℎ(𝑦) is deducted to be

ℎ̃(𝑠) = 1
(1 + 𝛼)𝑟 − 1

∞∑
𝑛=1

(
𝑟 + 𝑛 − 1

𝑛

) ( 𝛼

1 + 𝛼
)𝑛

[ 𝑓 (𝑠)]𝑛

=
1

(1 + 𝛼)𝑟 − 1

{
1

[1 − (𝛼/(1 + 𝛼)) 𝑓 (𝑠)]𝑟 − 1
}
.

With E{𝑍} = 𝜇𝑟𝛼/(1 − (1 + 𝛼)−𝑟 ) and (2.3), ℎ̃𝑒 (𝑠) is expressed as

ℎ̃𝑒 (𝑠) = 1
𝜇𝑟𝛼𝑠

{
1 − 1

[1 + 𝛼 − 𝛼 𝑓 (𝑠)]𝑟
}
. (3.8)

Therefore, Eq. (2.7) reduces to

�̃�(𝑠) = (𝜇𝑟𝛼𝑠 − 1) [1 + 𝛼 − 𝛼 𝑓 (𝑠)]𝑟 + 1
𝑠{[(1 + 𝜃)𝜇𝑟𝛼𝑠 − 1] [1 + 𝛼 − 𝛼 𝑓 (𝑠)]𝑟 + 1} , (3.9)

with relative security loading

1 + 𝜃 = 𝑐[1 − (1 + 𝛼)−𝑟 ]
𝜆𝜇𝑟𝛼

.

3.2.2. Exponential claim amounts
Assume 𝑌 follows an exponential distribution with mean 𝜇. From the results obtained in Section 5.1.1
in Li and Sendova [6], the Laplace transform of ℎ(𝑦) is given by

ℎ̃(𝑠) = 1
(1 + 𝛼)𝑟 − 1

{[ (1 + 𝛼)(1 + 𝜇𝑠)
1 + (1 + 𝛼)𝜇𝑠

]𝑟
− 1

}
.

By identity (3.8), the Laplace transform of ℎ𝑒 (𝑦) is

ℎ̃𝑒 (𝑠) = 1
𝜇𝑟𝛼𝑠

{
1 −

[
1 + 𝜇𝑠

1 + (1 + 𝛼)𝜇𝑠

]𝑟 }
.

The Laplace transform of the probability of ultimate ruin is obtained by Eq. (3.9) and formula (3.4) to be

�̃�(𝑠) = (𝑠𝜇𝑟𝛼 − 1) [1 + (1 + 𝛼)𝜇𝑠]𝑟 + (1 + 𝜇𝑠)𝑟
𝑠{[𝑠𝜇𝑟𝛼(1 + 𝜃) − 1] [1 + (1 + 𝛼)𝜇𝑠]𝑟 + (1 + 𝜇𝑠)𝑟 } ,

which recovers Eq. (35) in Li and Sendova [6]. Moreover, as �̃�(𝑠) is a rational function, 𝜓(𝑢) may be
presented as a linear combination of exponentials as is done in Eq. (38) in Li and Sendova [6].
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Finally, the proper joint density of the surplus before ruin and the deficit at ruin is calculated through
(2.8), where∫ 𝑢

0
�̄�𝑒 (𝑢 − 𝑡) 𝑑𝜓(𝑡)

=
𝑚∑
𝑗=1

𝑅(𝜌 𝑗)
𝑃′(𝜌 𝑗 )

{[
1 − 1 − (1 + 𝛼)−𝑟

𝜇𝑟𝛼𝜌 𝑗

]
(𝑒𝜌 𝑗𝑢 − 1) + 1 − (1 + 𝛼)−𝑟

𝜇𝑟𝛼
𝑢

}

+ 1
𝜇𝑟𝛼(1 + 𝛼)𝑟

𝑟∑
𝑖=1

𝑚∑
𝑗=1

(
𝑟

𝑖

)
𝛼𝑖
𝑅(𝜌 𝑗)
𝑃′(𝜌 𝑗 )

[(
1
𝜌 𝑗

− 𝑖
)
(𝑒𝜌 𝑗𝑢 − 1) − 𝑢

]

− 1
𝜇𝑟𝛼(1 + 𝛼)𝑟

𝑟∑
𝑖=1

𝑖−1∑
𝑤=0

𝑤∑
𝑛=0

𝑚∑
𝑗=1

𝑛∑
ℎ=0

(
𝑟

𝑖

)
𝛼𝑖
𝑅(𝜌 𝑗)
𝑃′(𝜌 𝑗)

𝜌 𝑗

(𝑛 − ℎ)!
[(1 + 𝛼)𝜇]ℎ−𝑛+1𝑢𝑛−ℎ

[(1 + 𝛼)𝜇𝜌 𝑗 + 1]ℎ+1 𝑒
−𝑢/𝜇 (1+𝛼) .

3.2.3. Erlang(𝑘) claim amounts
Assume 𝑌 follows an Erlang(𝑘) distribution with mean 𝑘𝜇. Therefore, identity (3.9) together with
formula (3.7) imply that

�̃�(𝑠) = (𝑘𝜇𝑟𝛼𝑠 − 1) [(1 + 𝛼)(1 + 𝜇𝑠)𝑘 − 𝛼]𝑟 + (1 + 𝜇𝑠)𝑘𝑟
𝑠{[(1 + 𝜃)𝑘𝜇𝑟𝛼𝑠 − 1] [(1 + 𝛼)(1 + 𝜇𝑠)𝑘 − 𝛼]𝑟 + (1 + 𝜇𝑠)𝑘𝑟 } ,

which is the result of Subsection 5.1.2 in Li and Sendova [6]. We may then write �̃�(𝑠) = 𝑅(𝑠)/𝑃(𝑠),
where 𝑅 and 𝑃 are known polynomials. If 𝑃(𝑠) has 𝑚 distinct roots 𝜌1, 𝜌2, . . . , 𝜌𝑚 with negative real
parts, then the Heaviside Expansion Theorem implies that the probability of ultimate ruin is given
explicitly by

𝜓(𝑢) =
𝑚∑
𝑗=1

𝑅(𝜌 𝑗)
𝑃′(𝜌 𝑗)

𝑒𝜌 𝑗𝑢 ,

where
𝑅(𝜌 𝑗) = (𝑘𝜇𝑟𝛼𝜌 𝑗 − 1) [(1 + 𝛼)(1 + 𝜇𝜌 𝑗)𝑘 − 𝛼]𝑟 + (1 + 𝜇𝜌 𝑗)𝑘𝑟 ,

and

𝑃′(𝜌 𝑗 ) = 𝜇𝑘𝑟𝜌 𝑗 (1 + 𝛼)(1 + 𝜇𝜌 𝑗)𝑘−1 [𝑘𝜇𝜌 𝑗𝑟𝛼(1 + 𝜃) − 1] [(1 + 𝛼)(1 + 𝜇𝜌 𝑗)𝑘 − 𝛼]𝑟−1

+ [2𝑘𝜇𝜌 𝑗𝑟𝛼(1 + 𝜃) − 1] [(1 + 𝛼)(1 + 𝜇𝜌 𝑗)𝑘 − 𝛼]𝑟 + [𝜌 𝑗𝜇(𝑘𝑟 + 1) + 1] (1 + 𝜇𝜌 𝑗)𝑘𝑟−1.

Note that here the relative security loading is

1 + 𝜃 = 𝑐[1 − (1 + 𝛼)−𝑟 ]
𝑘𝜆𝜇𝑟𝛼

.

3.3. Poisson-Binomial model

Assume that 𝑋 follows the zero-truncated binomial distribution with parameters 𝑙 and 𝑞. Then the risk
model is called a Poisson-Binomial risk model with a Poisson-Binomial counting process 𝑁 (𝑡).

The p.m.f. of 𝑋 is given by

𝑝𝑛 =

(
𝑙

𝑛

)
𝑞𝑛 (1 − 𝑞)𝑙−𝑛

1 − (1 − 𝑞)𝑙 , 0 < 𝑞 < 1, 𝑙 = 1, 2, . . . , 𝑛 = 1, 2, . . . , 𝑙.
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The zero-truncated binomial distribution is under-dispersed, which means that this distribution may
only accommodate under-dispersed batch arrivals.

3.3.1. General claim amounts
We now consider the most general case of the Poisson-Binomial model with the claim-size r.v. 𝑌
following a general distribution. Then, we derive some ruin-related quantities under this model.

The Laplace transform of ℎ(𝑦) is expressed as

ℎ̃(𝑠) =
∞∑
𝑛=1

(
𝑙

𝑛

)
𝑞𝑛 (1 − 𝑞)𝑙−𝑛

1 − (1 − 𝑞)𝑙 [ 𝑓 (𝑠)]𝑛 = (1 − 𝑞)𝑙
1 − (1 − 𝑞)𝑙

{
1

[1 − (𝑞/(1 − 𝑞)) 𝑓 (𝑠)]𝑙−𝑛+1
− 1

}
.

Since E{𝑍} = 𝜇𝑙𝑞/(1 − (1 − 𝑞)𝑙) and from (2.3), we have

ℎ̃𝑒 (𝑠) = 1
𝜇𝑙𝑞𝑠

{
1 − (1 − 𝑞)2𝑙−𝑛+1

[1 − 𝑞 − 𝑞 𝑓 (𝑠)]𝑙−𝑛+1

}
. (3.10)

Hence, identity (2.7) yields the Laplace transform of the ruin time

�̃�(𝑠) = (𝜇𝑙𝑞𝑠 − 1) [1 − 𝑞 − 𝑞 𝑓 (𝑠)]𝑙−𝑛+1 + (1 − 𝑞)2𝑙−𝑛+1

𝑠{[(1 + 𝜃)𝜇𝑙𝑞𝑠 − 1] [1 − 𝑞 − 𝑞 𝑓 (𝑠)]𝑙−𝑛+1 + (1 − 𝑞)2𝑙−𝑛+1} , (3.11)

with relative security loading

1 + 𝜃 = 𝑐[1 − (1 − 𝑞)𝑙]
𝜆𝜇𝑙𝑞

.

3.3.2. Exponential claim amounts
Assume 𝑌 follows the exponential distribution with mean 𝜇. From the results obtained in Section 5.2.1
in Li and Sendova [6], the Laplace transform of ℎ(𝑦) is given by

ℎ̃(𝑠) = (1 − 𝑞)𝑙
1 − (1 − 𝑞)𝑙

{[
1 + (1 − 𝑞)𝜇𝑠
(1 − 𝑞)(1 + 𝜇𝑠)

] 𝑙
− 1

}
.

Thus, we obtain the Laplace transform of ℎ𝑒 (𝑦)

ℎ̃𝑒 (𝑠) = 1
𝜇𝑙𝑞𝑠

{
1 −

[
1 + (1 − 𝑞)𝜇𝑠

1 + 𝜇𝑠

] 𝑙}

by Eq. (3.10). With the help of Eqs. (3.11) and (3.4), the Laplace transform of the probability of ultimate
ruin is

�̃�(𝑠) = (𝜇𝑙𝑞𝑠 − 1)(1 + 𝜇𝑠)𝑙 + [1 + 𝜇𝑠(1 − 𝑞)]𝑙
𝑠{[𝜇𝑙𝑞𝑠(1 + 𝜃) − 1] (1 + 𝜇𝑠)𝑙 + [1 + 𝜇𝑠(1 − 𝑞)]𝑙} ,

which recovers identity (44) in Li and Sendova [6]. Subsequently, as �̃�(𝑠) is a rational function, 𝜓(𝑢)
may be presented as a linear combination of exponentials as is done in Li and Sendova [6].
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Finally, the proper joint density of the surplus before ruin and the deficit at ruin is given in (2.8), where

∫ 𝑢

0
�̄�𝑒 (𝑢 − 𝑡)𝑑𝜓(𝑡) =

𝑚∑
𝑗=1

𝑅(𝜌 𝑗)
𝑃′(𝜌 𝑗 )

[(
1 − 1 − (1 − 𝑞)𝑙

𝜇𝑙𝑞𝜌 𝑗

)
(𝑒𝜌 𝑗𝑢 − 1) + 1 − (1 − 𝑞)𝑙

𝜇𝑙𝑞
𝑢

]

+ 1
𝜇𝑙𝑞

𝑙∑
𝑖=1

𝑚∑
𝑗=1

(
𝑙

𝑖

)
𝑞𝑖 (1 − 𝑞)𝑙−𝑖 𝑅(𝜌 𝑗)

𝑃′(𝜌 𝑗 )

[(
1
𝜌 𝑗

− 𝑖
)
(𝑒𝜌 𝑗𝑢 − 1) − 𝑢

]

+ 1
𝜇𝑙𝑞

𝑙∑
𝑖=1

𝑖−1∑
𝑤=0

𝑤∑
𝑛=0

𝑚∑
𝑗=1

𝑛∑
ℎ=0

(
𝑙

𝑖

)
𝑞𝑖 (1 − 𝑞)𝑙−𝑖 𝑅(𝜌 𝑗)

𝑃′(𝜌 𝑗 )
𝜌 𝑗

(𝑛 − ℎ)!
𝜇ℎ−𝑛+1𝑢𝑛−ℎ

(𝜇𝜌 𝑗 + 1)ℎ+1 𝑒
−𝑢/𝜇 .

3.3.3. Erlang(𝑘) claim amounts
Assume 𝑌 follows an Erlang(𝑘) distribution with mean 𝑘𝜇. From the results obtained in Section 5.1.2
in Li and Sendova [6], the Laplace transform of ℎ(𝑦) is

ℎ̃(𝑠) = (1 − 𝑞)𝑙
1 − (1 − 𝑞)𝑙

{[ (1 − 𝑞)(1 + 𝜇𝑠)𝑘 + 𝑞
(1 − 𝑞)(1 + 𝜇𝑠)𝑘

] 𝑙
− 1

}
,

since E{𝑍} = 𝑘𝜇𝑙𝑞/(1 − (1 − 𝑞)𝑙) and (3.10), the Laplace transform of ℎ𝑒 (𝑦) is

ℎ̃𝑒 (𝑠) = 1
𝑘𝜇𝑙𝑞𝑠

{
1 −

[ (1 − 𝑞)(1 + 𝜇𝑠)𝑘 + 𝑞
(1 + 𝜇𝑠)𝑘

] 𝑙}
.

Hence, we obtain the Laplace transform of the probability of ultimate ruin through Eqs. (3.11) and (3.7):

�̃�(𝑠) = (𝑘𝜇𝑙𝑞𝑠 − 1)(1 + 𝜇𝑠)𝑘𝑙 + [(1 − 𝑞)(1 + 𝜇𝑠)𝑘 + 𝑞]𝑙
𝑠{[𝑘𝜇𝑙𝑞𝑠(1 + 𝜃) − 1] (1 + 𝜇𝑠)𝑘𝑙 + [(1 − 𝑞)(1 + 𝜇𝑠)𝑘 + 𝑞]𝑙} ,

which recovers the relevant expression in Subsection 5.2.2 in Li and Sendova [6] and 𝜓(𝑢) may be again
presented as a known linear combination of exponentials. Namely,

𝜓(𝑢) =
𝑚∑
𝑗=1

𝑅(𝜌 𝑗)
𝑃′(𝜌 𝑗)

𝑒𝜌 𝑗𝑢 ,

where

𝑅(𝜌 𝑗) = (𝑘𝜇𝑙𝑞𝜌 𝑗 − 1)(1 + 𝜇𝜌 𝑗)𝑘𝑙 + [(1 − 𝑞)(1 + 𝜇𝜌 𝑗 )𝑘 + 𝑞]𝑙 ,

and

𝑃′(𝜌 𝑗) = {𝜇𝑘𝑙𝜌 𝑗 [𝑘𝜇𝜌 𝑗 𝑙𝑞(1 + 𝜃) − 1] + [2𝑘𝜇𝜌 𝑗 𝑙𝑞(1 + 𝜃) − 1] (1 + 𝜇𝜌 𝑗)}(1 + 𝜇𝜌 𝑗 )𝑘𝑙−1

+ {[1 + 𝜇𝜌 𝑗 (1 + 𝑘𝑙)] (1 − 𝑞)(1 + 𝜇𝜌 𝑗 )𝑘−1 + 𝑞}[(1 − 𝑞)(1 + 𝜇𝜌 𝑗 )𝑘 + 𝑞]𝑙−1.

Here, the relative security loading is

1 + 𝜃 = 𝑐[1 − (1 + 𝛼)−𝑟 ]
𝑘𝜆𝜇𝑟𝛼

.
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Figure 1. C.d.f. of the zero-truncated geometric distribution.

Finally, the proper joint density of the surplus before ruin and the deficit at ruin is given in (2.8), where∫ 𝑢

0
�̄�𝑒 (𝑢 − 𝑡) 𝑑𝜓(𝑡) =

𝑚∑
𝑗=1

𝑅(𝜌 𝑗 )
𝑃′(𝜌 𝑗)

[(
1 − 1 − (1 − 𝑞)𝑙

𝑘𝜇𝑙𝑞𝜌 𝑗

)
(𝑒𝜌 𝑗𝑢 − 1) + 1 − (1 − 𝑞)𝑙

𝑘𝜇𝑙𝑞
𝑢

]

+ 1
𝑘𝜇𝑙𝑞

𝑙∑
𝑖=1

𝑚∑
𝑗=1

(
𝑙

𝑖

)
𝑞𝑖 (1 − 𝑞)𝑙−𝑖 𝑅(𝜌 𝑗)

𝑃′(𝜌 𝑗)

[(
1
𝜌 𝑗

− 𝑖
)
(𝑒𝜌 𝑗𝑢 − 1) − 𝑢

]

+ 1
𝑘𝜇𝑙𝑞

𝑙∑
𝑖=1

𝑘𝑖−1∑
𝑤=0

𝑤∑
𝑛=0

𝑚∑
𝑗=1

𝑛∑
ℎ=0

(
𝑙

𝑖

)
𝑞𝑖 (1 − 𝑞)𝑙−𝑖 𝑅(𝜌 𝑗 )

𝑃′(𝜌 𝑗)
𝜌 𝑗

(𝑛 − ℎ)!
𝜇ℎ−𝑛+1𝑢𝑛−ℎ

(𝜇𝜌 𝑗 + 1)ℎ+1 𝑒
−𝑢/𝜇 .

4. Numerical examples

We dedicate this section to illustrative examples. In particular, we consider zero-truncated geometric,
negative-binomial and binomial batch-claim arrivals. With respect to the claim amounts, we consider
exponential and Erlang(𝑘) distributions. We assume that the claim-size mean is 𝜇 = 1.5 (in ten thousands
of dollars) and that the relative security loading is 𝜃 = 0.5.

4.1. Exponential claim amounts

In this subsection, we focus on examples with exponentially distributed claim amounts.
We firstly consider an example in the case of zero-truncated geometric batch arrivals.
As stated in Section 3, zero-truncated geometric batch arrivals may accommodate both under- and

over-dispersed data, while the resulting Poisson-Geometric counting process is always over-dispersed.
In other words, no matter whether the insurance company receives an under- or over-dispersed number
of claims at a time, the total number of claims is always over-dispersed. When 𝛽 = 0.5, the batch
arrivals are under-dispersed, while when 𝛽 = 2 or 10, the batch arrivals are over-dispersed. In order to
measure the efficiency of the compound Poisson model, we also consider the case 𝛽 = 0, which results
in no-batch arrivals and serves for comparison. The c.d.f. of the zero-truncated geometric distribution
in the four cases for 𝛽 is plotted in Figure 1. As the plot shows, the model whose batch arrivals follow
the zero-truncated geometric distribution with larger 𝛽 is more likely to receive larger number of claims
at a time. This means that an insurance company with more business requires a model with a larger 𝛽.
Note that the scale of the liabilities of the insurance company does not only depend on the number of
claims per day but also depend on the amount of each claim.
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Figure 2. Probability of ultimate ruin.

Table 1. Approximate values of 𝑢 for which the respective values for 𝜓 are reached for the first time.

𝛽 = 0 𝛽 = 0.5 𝛽 = 2 𝛽 = 10

𝜓(𝑢) = 0 32 36 70 280
𝜓(𝑢) = 5% 16 17 35 125

The probability of ultimate ruin for different 𝛽 is then plotted in Figure 2. Ideally, the ultimate ruin
probability should be below 5%. This is why we add a horizontal line at 5% on the plot. Intuitively,
the probability of ultimate ruin should decrease with the increase of the initial surplus. In the extreme
case, if the insurance company starts with an infinite initial surplus, then there is no risk of ruin. This is
confirmed in Figure 2. Moreover, the approximate values of 𝑢 for 𝜓(𝑢) = 0 and 5% for four different
values of 𝛽 are summarized in Table 1. According to the table, we have seen that for the same level of
initial surplus, the larger the 𝛽, the larger the probability of ruin is. Thus, over-dispersed batch arrivals
correspond to a higher risk of ruin. In general, Figure 2 demonstrates that the possibility of batch-
claim arrivals should not be underestimated as it influences the probability of ruin in a substantial way.
We also observed that the approximate value of 𝑢 when the probability of ultimate ruin falls to 5% is
approximately half of that when the probability of ultimate ruin reaches zero, especially when 𝛽 is small.
This indicates that in order to maintain a relatively low risk of ruin, the insurance companies may only
need half of the initial surplus required for reducing the risk of ruin to an exceedingly smaller level.

The mean and variance of the ruin time are plotted in Figures 3 and 4, respectively. These plots
illustrate what we already know from Eqs. (3.5) and (3.6), which is that both the mean and the variance
of the ruin time are linear functions of the initial surplus. We also observe that for the same level of the
initial surplus, the model with a higher 𝛽 corresponds to lower mean and variance of the ruin time. In
other words, over-dispersed batch arrivals lead to shorter ruin time. This is another evidence that the
possibility of batch arrivals should not be underrated when building a model.

Assume that 𝑢 = 25. The proper joint density of the surplus before ruin and the deficit at ruin for
different 𝛽 are plotted in Figure 5. It seems that most frequently, ruin occurs when the current surplus
drops below the initial surplus. When 𝛽 is larger, ruin may also happen when the current surplus is
larger than the initial surplus. Besides, the joint density comes to a higher peak when 𝛽 is small. It shows
that when the Poisson-Geometric model is employed, especially for over-dispersed batch arrivals, ruin
happens more dispersedly compared with the no-batch-arrivals case (𝛽 = 0).

Second, we consider an example with zero-truncated negative-binomial batch arrivals and exponential
claim amounts.
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Figure 3. Mean of the ruin time.

Figure 4. Variance of the ruin time.

As stated in Section 3, zero-truncated negative-binomial batch arrivals may also accommodate both
under- and over-dispersed data, while the resulting Poisson-Negative-Binomial counting process is still
over-dispersed. Let 𝑟 = 5. When 𝛼 = 0.2, the batch arrivals are under-dispersed, while when 𝛼 = 0.5 or
2, the batch arrivals are over-dispersed. We also consider the single-claim-arrival case for comparison
and denote its parameter by 𝛼 ↓ 0 as 𝛼 = 0 is not admissible for the negative binomial distribution, and
we may then define this case as 𝑝1 = 1, which in turn will result in the classical compound Poisson
model. The c.d.f. of the zero-truncated negative binomial distribution in the four cases for 𝛼 are plotted
in Figure 6. The plot implies that the model whose batch arrivals follow the zero-truncated negative
binomial distribution with larger 𝛼 is more likely to receive a larger number of claims at a time. This
means that an insurance company with more business requires a model with a larger 𝛼.

The probability of ultimate ruin for different 𝛼 is then plotted in Figure 7. It is confirmed in Figure 7
that the probability of ultimate ruin decreases with the increase of the initial surplus and reaches zero
when the initial surplus is large enough. Moreover, the approximate values of 𝑢 for 𝜓(𝑢) = 0 and 5%
for four different values of 𝛼 are summarized in Table 2. Based on the results in the table, for the same
level of initial surplus, the larger the 𝛼, the larger the probability of ruin is. Thus, over-dispersed batch
arrivals correspond to a higher risk of ruin as it should be expected. Moreover, Figure 7 stresses further
that the possibility of batch-claim arrivals has a significant effect on the probability of ruin and should
not be underestimated. Again, the approximate value of 𝑢 when the probability of ultimate ruin drops
to 5% is nearly half of that when the probability of ultimate ruin reaches zero, especially when 𝛼 is
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Figure 5. Proper joint density of the surplus before ruin and the deficit at ruin for different 𝛽.

Figure 6. C.d.f. of the zero-truncated negative binomial distribution.

small. This implies that the insurance companies may only require half of the initial surplus needed for
avoiding the vast majority of the risk of ruin to maintain a relatively low risk of ruin.

The mean and variance of the ruin time are plotted in Figures 8 and 9, respectively. These plots
seem to present linear patterns, which contradict Eq. (35) in Li and Sendova [6]. Obviously, when 𝛼 ↓
0, the mean and the variance of the ruin time are indeed linear functions of the initial surplus. After
more careful analysis, we may confirm that when 𝛼 > 0, e.g., when 𝛼 = 0.2, 0.5 or 2, the mean and
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Figure 7. Probability of ultimate ruin.

Table 2. Approximate values of 𝑢 for which the respective values for 𝜓 are reached for the first time.

𝛼 ↓ 0 𝛼 = 0.2 𝛼 = 0.5 𝛼 = 2

𝜓(𝑢) = 0 32 54 90 280
𝜓(𝑢) = 5% 16 27 40 130

Figure 8. Mean of the ruin time.

the variance of the ruin time are not linear. More specifically, the mean of the ruin time seems to be a
concave function, which implies that the mean of the ruin time increases slower when the initial surplus
is larger. Meanwhile, the variance of the ruin time seems to have a convex shape, which indicates that
the variance increases faster as the initial surplus gets larger. We also observe that for the same level of
the initial surplus, the model with a higher 𝛼 corresponds to lower mean and variance of the ruin time.
In other words, over-dispersed batch arrivals lead to shorter ruin time. This is another indication that
the possibility of batch arrivals should not be underestimated when a model is being built.

Assume that 𝑢 = 25. The proper joint density of the surplus before ruin and the deficit at ruin for
different𝛼 are plotted in Figure 10. We also observe that most often ruin happens when the current surplus
drops below the initial surplus. When 𝛼 is larger, ruin may also occur when the current surplus is larger
than the initial surplus. It shows that when the Poisson-Negative-Binomial model is utilized, especially
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Figure 9. Variance of the ruin time.

Figure 10. Proper joint density of the surplus before ruin and the deficit at ruin for different 𝛼.

for over-dispersed batch arrivals, ruin happens more dispersedly compared with the no-batch-arrival
case (𝛼 ↓ 0).

As we can see, the results obtained in the case of zero-truncated geometric batch arrivals are in
tune with the results obtained in the case of zero-truncated negative-binomial batch arrivals, which
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Figure 11. C.d.f. of the zero-truncated binomial distribution.

Figure 12. Probability of ultimate ruin.

reflects the fact that the zero-truncated geometric distribution is a special case of the zero-truncated
negative-binomial distribution.

Third, we consider an example with zero-truncated binomial-batch arrivals and exponential-claim
amounts.

As stated in Section 3, the zero-truncated binomial-batch arrivals may only accommodate over-
dispersed data, while the resulting Poisson-Binomial counting process is always over-dispersed. Let
𝑙 = 5. When 𝑞 = 0.2, 0.5 or 0.8, the batch arrivals are all over-dispersed. The single-claim arrival case 𝑞
↓ 0 is also considered for comparison. We use 𝑞 ↓ 0 this value of 𝑞 as it as 𝑞 = 0 is not admissible, so we
may define it additionally to result in 𝑝1 = 1. The c.d.f. of the zero-truncated binomial distribution in
the four cases for 𝑞 is plotted in Figure 11. The plot indicates that the model whose batch arrivals follow
the zero-truncated binomial distribution with larger 𝑞 is more likely to receive larger number of claims
at a time. This means that an insurance company with more business requires a model with a larger 𝑞.

The probability of ultimate ruin for the different values of 𝑞 is then plotted in Figure 12. This plot
verifies that the probability of ultimate ruin decreases with the increase of the initial surplus and reaches
zero when the initial surplus is large enough. Namely, the approximate values of 𝑢 for 𝜓(𝑢) = 0 and
5% for the four different values of 𝑞 are summarized in Table 3. Hence, we have seen that for the same
level of initial surplus, the larger the 𝑞, the larger the probability of ruin is. Figure 12 implies that batch-
claim arrivals under this model do influence the probability of ruin, but the influence might not be that
significant compared with the zero-truncated geometric and the negative-binomial batch arrivals cases.
In addition, the approximate value of 𝑢 when the probability of ultimate ruin falls to 5% is approximately
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Table 3. Approximate values of 𝑢 for which the respective values for 𝜓 are reached for the first time.

𝑞 ↓ 0 𝑞 = 0.2 𝑞 = 0.5 𝑞 = 0.8

𝜓(𝑢) = 0 32 36 50 60
𝜓(𝑢) = 5% 16 17 25 30

Figure 13. Mean of the ruin time.

Figure 14. Variance of the ruin time.

half of the initial surplus when the probability of ultimate ruin reaches zero. This means that in order
to maintain a relatively low risk of ruin, the insurance companies may only require half of the initial
surplus needed for eliminating most of the risk of ruin.

The mean and variance of the ruin time are plotted in Figures 13 and 14. These plots show approx-
imately linear patterns. Obviously, when 𝑞 ↓ 0, the mean and the variance of the ruin time are indeed
linear functions of the initial surplus. However, when 𝑞 ∈ (0, 1), e.g., 𝑞 = 0.2, 0.5 or 0.8, empirical
analysis shows that the mean and the variance of the ruin time are not linear. To be specific, the mean of
the ruin time seems to be concave, which implies that when the initial surplus is larger, the mean of the
ruin time increases slower. At the same time, the variance of the ruin time seems to be convex, which
indicates that the variance increases faster when the initial surplus is larger. All in all, for the same level
of the initial surplus, the model with a higher 𝑞 corresponds to lower mean and variance of the ruin time.
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Figure 15. Proper joint density of the surplus before ruin and the deficit at ruin for different 𝑞.

Assume that 𝑢 = 25. The proper joint density of the surplus before ruin and the deficit at ruin for
different 𝑞 are plotted in Figure 15. Notice that whenever ruin occurs, it happens with exceedingly high
probability that when the current surplus drops below the initial surplus. The value of 𝑞 has relatively
small effect on the distribution of the surplus before ruin and the deficit at ruin. It shows that the Poisson-
Binomial model may not yield significant modeling improvements compared with the no-batch-arrival
case.

4.2. Erlang(𝒌) claim amounts

This subsection is dedicated to Erlang(𝑘) claim amounts and we choose 𝑘 = 3. For comparison
reasons, we will utilize the same parameter values as in the examples with exponential-claim amounts
in Subsection 4.1.

Firstly, we consider an example in the case of zero-truncated geometric batch arrivals.
As before, we choose 𝛽 = 0, 0.5, 2 and 10. The c.d.f. of the zero-truncated geometric distribution in

the four cases for 𝛽 is plotted in Figure 1 in Subsection 4.1.
The probability of ultimate ruin for different 𝛽 is then plotted in Figure 16. As is shown in the plot,

the probability of ultimate ruin decreases with the increase of the initial surplus and reaches zero when
the initial surplus is large enough. The approximate values of 𝑢 for 𝜓(𝑢) = 0 and 5% for four different
values of 𝛽 are summarized in Table 4. Again, for the same level of initial surplus, the larger 𝛽 is, the
larger the probability of ruin is. Compared with the exponential case, the Erlang(𝑘) case may require
a higher level of initial surplus to maintain a low risk of ruin. Meanwhile, we still observe that the
approximate value of 𝑢 when the probability of ultimate ruin falls to 5% is nearly half of that when the
probability of ultimate ruin reaches zero, especially when 𝛽 is small.
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Figure 16. Probability of ultimate ruin.

Table 4. Approximate values of 𝑢 for which the respective values for 𝜓 are reached for the first time.

𝛽 = 0 𝛽 = 0.5 𝛽 = 2 𝛽 = 10

𝜓(𝑢) = 0 45 95 200 825
𝜓(𝑢) = 5% 22 40 95 380

Figure 17. Mean of the ruin time.

The mean and variance of the ruin time are plotted in Figures 17 and 18, respectively. These plots
show approximately linear patterns. However, empirical analysis shows that the mean and the variance
of the ruin time are not linear functions of the initial surplus. More specially, for all four different values
for 𝛽, the mean of the ruin time seems to show a concave shape, while the variance of the ruin time
seems to have a convex pattern. We also observe that for the same level of the initial surplus, the model
with a higher 𝛽 corresponds to lower mean and variance of the ruin time.

Assume that 𝑢 = 25. The proper joint density of the surplus before ruin and the deficit at ruin for
different 𝛽 are plotted in Figure 19. Similar to the exponential case, it seems that most frequently,
ruin occurs when the current surplus drops below the initial surplus. When 𝛽 is larger, ruin may also
happen when the current surplus is larger than the initial surplus. Besides, the joint density comes
to a higher peak when 𝛽 is small. It shows that when the Poisson-Geometric model is employed,
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Figure 18. Variance of the ruin time.

Figure 19. Proper joint density of the surplus before ruin and the deficit at ruin for different 𝛽.

especially for over-dispersed batch arrivals, ruin happens more dispersedly compared with the no-batch-
arrival case. And the effect of ruin being more dispersed is even more significant compared with the
exponential-claim-amount case.

Secondly, we consider an example with zero-truncated negative-binomial batch arrivals.
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Figure 20. Probability of ultimate ruin.

Table 5. Approximate values of 𝑢 for which the respective values for 𝜓 are reached for the first time.

𝛼 ↓ 0 𝛼 = 0.2 𝛼 = 0.5 𝛼 = 2

𝜓(𝑢) = 0 52 97 160 486
𝜓(𝑢) = 5% 26 46 74 218

Again, we assume 𝛼 = 0, 0.2, 0.5 and 2. Recall that we define the case 𝛼 ↓ 0 as 𝑝1 = 1, since the
value of 𝛼 = 0 is not admissible for the negative-binomial distribution. The c.d.f. of the zero-truncated
negative-binomial distribution in the four cases for 𝛼are plotted in Figure 6 in Subsection 4.1.

The probability of ultimate ruin for the different values of 𝛼 is then plotted in Figure 20. As the plot
shows, the probability of ultimate ruin decreases with the increase of the initial surplus and reaches
zero when the initial surplus is large enough. Moreover, the approximate values of 𝑢 for 𝜓(𝑢) = 0 and
5% for four different values of 𝛼 are summarized in Table 5. For the same level of initial surplus, the
larger 𝛼, the larger the probability of ruin is. Compared with the exponential-claim-amount case, the
Erlang(𝑘)-claim-amount case may require a higher level of initial surplus to maintain a low risk of ruin.
And the approximate value of 𝑢 when the probability of ultimate ruin drops to 5% is nearly half of that
when the probability of ultimate ruin reaches zero, especially when 𝛼 is small.

The mean and variance of the ruin time are plotted in Figures 21 and 22, respectively. Similar to the
exponential case, the mean and the variance of the ruin time seem to have linear patterns, but are not
linear functions of the initial surplus. This time, for all four different values for 𝛼, the mean of the ruin
time seems to be concave, while the variance of the ruin time seems to be convex. And again, for the
same level of the initial surplus, the model with a higher 𝛼 corresponds to lower mean and variance of
the ruin time.

Thirdly, we consider an example with zero-truncated binomial-batch arrivals. As before, we set 𝑙 = 5
and 𝑞 ↓ 0, 0.2, 0.5 and 0.8. Again, we define the case 𝑞 ↓ 0 to result in 𝑝1 = 1 as 𝑞 = 0 is not admissible
for the binomial distribution. The c.d.f. of the zero-truncated negative-binomial distribution in the four
cases for 𝑞 is plotted in Figure 11 in Subsection 4.1.

The probability of ultimate ruin for the different values of 𝑞 is then plotted in Figure 20. As is shown
in the plot, the probability of ultimate ruin decreases with the increase of the initial surplus and reaches
zero when the initial surplus is large enough. That is, the approximate values of 𝑢 for 𝜓(𝑢) = 0 and 5%
for four different values of 𝑞 are summarized in Table 6. For the same level of initial surplus, the larger
𝑞, the larger the probability of ruin is. For the Erlang(𝑘)-claim-amount case, the batch arrivals do not
have a significant influence on the probability of ruin either. Once again, the approximate value of 𝑢
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Figure 21. Mean of the ruin time.

Figure 22. Variance of the ruin time.

Table 6. Approximate values of 𝑢 for which the respective values for 𝜓 are reached for the first time.

𝑞 ↓ 0 𝑞 = 0.2 𝑞 = 0.5 𝑞 = 0.8

𝜓(𝑢) = 0 52 79 118 160
𝜓(𝑢) = 5% 26 37 55 76

when the probability of ultimate ruin falls to 5% is about half of that when the probability of ultimate
ruin reaches zero, especially when 𝛽 is small (Figure 23).

The mean and variance of the ruin time are plotted in Figures 24 and 25. Similar to the exponential-
claim-amount case, the mean and the variance of the ruin time present approximately linear patterns
but are not linear functions of the initial surplus. Again, for all four different values for 𝑞, the mean of
the ruin time seems to present a concave pattern, while the variance of the ruin time seems to show a
convex shape. We also observe that for the same level of the initial surplus, the model with a higher 𝑞
corresponds to lower mean and variance of the ruin time.

Assume that 𝑢 = 25. The proper joint density of the surplus before ruin and the deficit at ruin for
different 𝑞 are plotted in Figure 26. It seems that most often, ruin happens when the current surplus
drops below the initial surplus. There are also instances of ruin occurring when the current surplus
is larger than the initial surplus. Therefore, the value of 𝑞 has small effect on the distribution of the
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Figure 23. Probability of ultimate ruin.

Figure 24. Mean of the ruin time.

Figure 25. Variance of the ruin time.

surplus before ruin and the deficit at ruin, but the effect is a little bit more significant compared with the
exponential-claim-amount case. In general, the Poisson-Binomial model may not lead to a significant
improvement compared with the no-batch-arrival case.
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Figure 26. Proper joint density of the surplus before ruin and the deficit at ruin for different 𝑞.
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