
Using state space models to understand trait
evolution in fossil lineages

Gene Hunt1 , Wilmer Martínez-Rivera2, Melanie Jane Hopkins3 ,

John Fricks4 and Beckett Sterner5

1NationalMuseum of Natural History, Smithsonian Institution, 10th Street and ConstitutionAvenueNW,Washington, D.C.
20560, U.S.A.
2Banco de la República de Colombia, Cra. 7 #14-78, Santa Fé, Bogotá, Columbia
3American Museum of Natural History, 200 Central Park West, New York, New York 10024, U.S.A.
4School ofMathematical and Statistical Sciences, Arizona State University, 901 South PalmWalk, Tempe, Arizona 85287-1804,
U.S.A.
5School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, Arizona 85287-1804, U.S.A.

Abstract

Linear state space models provide a useful framework for investigating phenotypic evolution in
fossil lineages for a wide variety of models representing Brownian motion, Ornstein-Uhlenbeck
processes, and the potential influence of environmental covariates. A state space framework also
provides access to residuals for the predicted and observed values at each time point as well as
improved numerical stability.We illustrate the value of the state space approach by reanalyzing a
classic dataset of trait evolution in the diatom lineage Stephanodiscus yellowstonensis.A series of
increasingly complex models were fit to these data, including a novel modification of an
Ornstein-Uhlenbeck model in which a trait tracks an exogenous covariate. These model results
suggest that the number of spines on the periphery of the diatom is best explained by adaptation
to changing solar insolation over time.

Non-technical Summary

Paleontologists have long used repeated observations from fossil species to document and
understand patterns of trait evolution. Here we describe a flexible framework for modeling
such data called linear state space models. After summarizing this approach and its properties,
we apply it to a classic dataset of trait evolution in species of diatom, a kind of unicellular algae. A
set of models were fit to these diatom data using the state space approach, the best supported of
which involved a novel model in which the focal trait tracks variations in solar insolation over
time. Overall, state space models offer a useful framework for paleontologists to robustly
develop, fit, and evaluate models of trait evolution.

Introduction

The project of documenting and explaining historical patterns of evolutionary change has had
enduring significance since George Gaylord Simpson introduced the ideas of evolutionary tempo
and mode as a tool for bridging observation and theory across micro- and macroevolutionary
timescales (Simpson 1944). Fossil trait series provide a sequence of phenotypic measurements
drawn frommultiple organisms in the same lineage over a period of time, typically on the scale of
tens to hundreds of thousands of years. In contrast to comparative methods, which rely on
measurements of different species, fossil trait series document historical patterns of evolutionary
change in a single species over much longer durations than we can access in the present. This
makes fossil trait series a uniquely valuable data source for addressing fundamental questions in
evolutionary biology occurring at those scales, including why evolutionary rates of change appear
to show a robust scaling with time (Harmon et al. 2021) and whether evolutionary divergence is
driven by the gradual accumulation of small changes or short, rapid bursts of change that
punctuate long periods of stasis (Hunt et al. 2015). In addition, paleobiologists have long looked
at these data for signatures of other evolutionary and ecological processes, seeking to gain insights
into processes of adaptation (Voje 2020; Kearns et al. 2021), extinction (Brombacher et al. 2017,
2018), stasis (Antell et al. 2021), and parallel evolution (Stuart et al. 2020).

Because evolution is stochastic and involves the interaction of multiple processes such as
selection and drift, statistical modeling is essential to reliably estimate evolutionary rates and
classify fossil trait series into biologically significant patterns or modes of change (Hunt 2012;
Gingerich 2019). In addition, the sample sizes of fossil lineage data are often small relative to the
potential complexity of the system, so it is especially important to make effective use of the
available information. The appropriate interpretation of evolutionary rates in a system, for
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example, is sensitive to the underlyingmode of change: for a lineage
evolving according to classical Brownian motion, we can under-
stand its rate of change as the variance of random fluctuations it
undergoes between points of time, but for a lineage exhibiting a
linear directional trend in addition to Brownian motion, we also
need to incorporate the magnitude of that linear tendency (Hunt
2012). Numerical estimation of evolutionary rates is also sensitive
to model choice, and using an inadequate model for the data can
generate scaling artifacts in the magnitude of rates in relation to the
absolute time duration of the trait series (Hunt 2012; Gingerich
2019; Harmon et al. 2021).

In this paper, we present some practical tools and background
theory for the use of linear state space models, also called
dynamic linear models, in the analysis of phenotypic time series
from fossil lineages. This approach provides some key advances
over previous methodological approaches. First, state space
models, which apply to time series with observations at discrete
time points, are grounded in continuous-time models, which are
important for knowing how to handle time-varying parameters
when there are uneven time steps between observations. Second,
the state space framework allows for the ready evaluation of
exogenous environmental covariates. Third, the framework pro-
vides access to residuals for the predicted and observed values at
each time point, a powerful model diagnostic tool that is in
standard use across other scientific disciplines. We illustrate
the value of these residuals to propose a new interpretation of a
classic dataset of diatom evolution in Yellowstone Lake (Theriot
et al. 2006). We also present some simulation studies emphasiz-
ing the quality of parameter estimation and model selection
within this framework in comparison to previous frameworks
for estimation.

We focus on univariate evolutionary models from a single
species, because this foundation is essential for numerically efficient
and stable parameter estimation as paleontologists start to increas-
ingly take advantage of high-throughput specimen processing,
including machine-learning methods for image segmentation and
trait extraction (Porto and Voje 2020; Goswami and Clavel 2024;
He et al. 2024). However, the modeling framework we develop here
is readily generalized to analyzing multivariate measurements from
variable numbers of individual specimens at each time point. This
approach also demonstrates the broad relevance of stochastic inte-
gral models to analyzing fossil lineage datasets, building on prior
work by Reitan et al. (2012), and is complementary to stochastic
integral models for species richness (Hannisdal and Liow 2018;
Reitan and Liow 2019) and comparative phylogenetic datasets
(Blomberg et al. 2020; Turley 2020).

Methods

In this section, we briefly present the definition of a linear state
space model, sometimes known as a dynamic linear model. We
introduce the general structure of the model along with some
adaptations and quantities that this formulation facilitates. Then,
we show how observing an Ornstein-Uhlenbeck (OU) process at
discrete time points can be formulated as a linear state space
model. In particular, we make clear the relationship between the
continuously defined model and the discretely sampled observa-
tions. We also discuss the relationship of other familiar models,
such as an unbiased random walk (RW), random walk with a
directional trend (DT), and stasis (ST) to the linear state space
models in Appendix 2.

Definition of a Linear State Space Model

The linear state space model consists of two recursively defined
equations: the system equation and the observation equation. We
will focus on the unidimensional case for each equation, although
multivariate extension is straightforward. The system equation is
a linear stochastic equation describing the underlying dynamics of
a phenomenon, such as the change of the level of a trait measure-
ment for a population at a given time. The system equation can be
written as

Xt =ΦXt�1þWt (1)

for t = 1,…,T, whereW1,…,WT are a sequence of independent and
identically distributed normal random variables with zero-mean
and variance σ2W. This is an autoregressive model with coefficientΦ.
The model is called autoregressive because the sequence could be
viewed as having the current time observation depend on the
previous observation as a covariate. The observation equation is
then defined as

Yt =AX t þVt (2)

for t = 1,…,T , where V1,…,VT is a sequence of independent and
identically distributed normal random variables with zero-mean and
variance σ2V , which is also independent of the sequenceW1,…,WT .
This sequence of Y1,…YT will model the observed data and is a
linear transformation by A of the system process, Xt , plus an
additional observation error, Vt. Note that the notation here follows
the book by Shumway and Stoffer, where detailed calculations asso-
ciated with this model can be found (Shumway and Stoffer 2000).

In the subsection that follows and in Appendix 1, we will show
how a number of familiar trait evolution models fit into this
framework, especially when a few features are added. This linear
state space model is the framework for calculating model likeli-
hoods using the renowned Kalman filter. The Kalman filter recur-
sively calculates the conditional distribution of Xt given
observations Y1,…,Yt ; this means that if you have the Kalman
filter calculated up to time t�1 and receive a new observation Yt ,
then the conditional distribution of Xt given the data up to time t
can be calculated without passing back through all of the previous
data. A by-product of calculating the Kalman filter is that the
likelihood function can be calculated with one pass through the
data, so that the computational efficiency of this calculation is of
order T. The likelihood function for a linear state space model can
also be calculated using amultivariate normal distribution of size T,
which has been the standard approach in previous paleontological
research (Hunt et al. 2008; Voje 2020); however, that approach
requires calculating the inverse of a T ×T matrix. Hence there can
be a significant speed up and improved stability using the Kalman
filter algorithm to calculate the relevant likelihood function, espe-
cially for time series with many samples.

The Kalman filter approach also makes prediction relatively
straightforward. The filter calculates the conditional mean and
variance of Xt given Y1,…,Yt , giving us access to a “best guess”
for Xt with the data up to that time. This also allows us to predict,
that is, to find the conditional mean and variance, of the next
observation Ytþ1 given the observations up to time t (i.e.
Y1,…YtÞ, which is known as the one-step ahead predictor of the
data and also allows us to construct residuals for our data after
having fit it to a specific state spacemodel. Again, using the notation
of Shumway and Stoffer, the standardized residuals would be
defined as
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Ytþ1�AX t
tþ1ffiffiffiffiffiffiffiffiffi

Σtþ1
p (3)

for t = 1,…,T�1, where Σtþ1 is the conditional variance of Ytþ1

given Y1,…,Yt , which is calculated as part of the Kalman filter
algorithm. Residuals in a time-series context are an important tool
for discerning the quality of fit of a model, in a manner similar to
their use in regression analysis. It is a way to “approximate” the
sequence Vt , and we therefore expect them to be approximately
independent and identically distributed.

In addition to facilitating likelihood function calculations and
predictions of both the system equation model and future obser-
vations, the linear state space model facilitates regression with
exogenous variables, which is especially important when consider-
ing the effects of environmental variables on trait dynamics. These
can enter either through the system equation or the observation
equations. In addition, the parameters defining the linear state
space model can be time-varying. These modifications give

Xt =ΦtXt�1þϒut þWt (4)

and

Yt =AtXt þΓut þVt (5)

where ut is an r × 1 column vector of exogenous variables, typically
what we think of as covariates, for each t , and ϒ and Γ are the
coefficients that convert changes in the input variables into changes
in Xt and Yt . In this context, we can still use the Kalman filter to
calculate the likelihood and to create predictions, and thus residuals,
to evaluate model performance. Visually examining the residuals is a
useful complement to the formal model misspecification tests for
common fossil lineage models that were introduced by Voje (2018).

Unbiased Random Walk as a Linear State Space Model

Many commonly used trait evolution models can be represented in
this state space framework. Perhaps the simplest case is that of anRW,
which we develop here as an example. Under this model, the trait
value at one time step (Xt) is equal to the value at the previous time
step (Xt�1), plus an evolutionary perturbation (Wt). The autoregres-
sive coefficient is unity (Φ= 1), and the variance of theWt is usually
called the step variance in paleontology. The state equation represents
the true trait mean of the population at each time step. Because
sample sizes are finite, however, we can never know the truemeans of
our samples. The calculated trait means that we observe, Yt , reflects
the true population mean (Xt), plus sampling noise (Vt). In most
paleontological cases, our measurements of traits are noisy but
unbiased, and so A= 1 . Biased sampling from, for example, size-
selective preservation, could be accounted for in principle by appro-
priate values of A , although the nature of bias would need to be
independently estimated. For trait means, the observational variance
ofVt for each sample will be the within-sample trait variance divided
by the number of individuals measured in that sample.

Ornstein-Uhlenbeck as a Linear State Space Model

State space models are applied to discretely observed time series,
and so an important step in analysis is to understand how
continuous-time evolutionary models manifest in discrete time.
This section presents this topic for OU models, with additional
models considered in Appendix 1. Readers interested mostly in
practical application of state space models may wish to proceed
directly to the next section.

TheOU process is used in evolutionary studies tomodel adaptation
(Hansen 1997; Hunt et al. 2008). It is often defined by its stochastic
differential equation (SDE) formulation.

dX tð Þ= �αX tð ÞdtþσdW tð Þ (6)

This type of differential is a shorthand to define an integral
equation. Such an equation is defined as a solution to sequences of
difference equations:

X nΔð Þ�X n�1ð ÞΔð Þ= �αX n�1ð ÞΔð ÞΔ
þ σW nΔð Þ�W n�1ð ÞΔð Þ, (7)

as Δ goes to zero and nΔ converges to some terminal time T and
withX 0ð Þdefining an initial value for the equations. (This sequence
is on an evenly spaced grid, which is not necessary in general as long
as the grid spacing distance shrinks to zero.) The OU process has a
solution (Oksendal 2013) in the form of a stochastic integral with
deterministic integrand,

X tð Þ= e�αtX 0ð Þþ
Z t

0
e�α t�sð ÞσdW sð Þ (8)

The definition of these SDEs as a limit of solutions to certain
difference equations points to one possible discretization. Namely,
we could rearrange the difference equation to arrive at

X nΔð Þ = 1�αΔð ÞX n�1ð ÞΔð ÞþσW nΔð Þ�W n�1ð ÞΔð Þ (9)

but this is only an approximate solution that accurately represents
the model definition when Δ is small. However, if we take the
integral solution of equation (6) and manipulate it appropriately,
we arrive at

Xn = e
�αΔXn�1þ

Z nΔ

n�1ð ÞΔ
e�α nΔ�sð ÞσdW sð Þ (10)

We can use Ito’s isometry to calculate the variance of the last term,
which is Gaussian and has a zero mean. The variance is then

Var

Z nΔ

n�1ð ÞΔ
e�α nΔ�sð ÞσdW sð Þ

 !
= σ2e�2αnΔ

Z nΔ

n�1ð ÞΔ
e2αsds (11)

We solve the integral to arrive at the variance of the last term

σ2Δ =
σ2

2α
1� e�2αΔ
� �

(12)

Note that when Δ is small, then a Taylor approximation will verify
that this expression is approximately equal to σ2Δcorresponding to
equation (7). So, we can express this discretization as

Xn = e
�αΔXn�1þσΔεn (13)

where εn is a sequence of independent standard normal random
variables.

The OU model will eventually settle around zero regardless of
the initial condition. We can modify this part of the model for the
OU process to be centered around another constant, θ. The exact
discrete version would be

Xn = cþ e�αΔ Xn�1�θð ÞþσΔεn (14)

This formulation allows for one way to introduce exogenous vari-
ables by replacing θ with a linear combination of covariates, as
demonstrated in “Application: Stephanodiscus yellowstonensis
Trait Evolution.”.
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Model Estimation and Selection Simulations

We used simulations to validate model fitting in the state space
framework using the Kalman filter compared to prior work. We
also explored parameter estimation and model selection perfor-
mance in the state space framework. Details are provided in
Appendix 2, but in general, performance was as expected for
likelihood-based methods. Corrected Akaike information criterion
(AICc) scores generally favored the correct, generating models,
increasingly so with increasing sequence length. Parameter esti-
mates were unbiased, or nearly so, although convergence could
depend on two inherent observational timescales in trait series: the
time step between observed samples (Δ in equation 7, for example)
and the total duration between the first and last observations.
Parameter convergence may therefore depend on how increasing
the sample size alters these timescales. For example, subdividing a
fixed interval of time with more observations does not lead the
linear trend parameter, μ , to converge asymptotically in the DT
model. In contrast, smaller time steps are valuable for estimating
parameters of the OU and decelerating evolution models.

Application: Stephanodiscus yellowstonensis Trait Evolution

To illustrate the linear state space framework, we re-analyzed the
Stephanodiscus yellowstonensis fossil trait series published in Voje
(2020), originally created by Theriot and colleagues (2006), using
the discretized models described in “Methods” and implemented in
the state space framework. Script and data files to perform this
analysis have been uploaded to Zenodo (see “Data Availability
Statement”).

Stephanodiscus yellowstonensis is a species of diatom endemic to
Yellowstone Lake, Wyoming, USA, and likely descended from the
preexisting species S. niagarae, which is still extant throughout the
region (Theriot et al. 2006). The fossil trait series is derived from
63 samples from a sediment core collected from the lake’s central
basin, and it covers approximately 14,000 years ago until the
present. For each sample, Theriot and co-workers measured
50 individuals, occasionally fewer if this number of specimens
was not available. They measured three traits on each individual:
valve diameter, the number of costae per valve, and the number of
spines per valve. All three traits show a relatively rapid increase in
values from about 12,000 to 10,000 years ago, with a slower and
fluctuating decrease thereafter. To illustrate the model-fitting
methods, we focus on just one variable, spine count (Fig. 1). As
noted by Voje (2020), all three traits are considered to be ecolog-
ically important for diatoms; valve spines, in particular, may
enhance nutrient uptake and photosynthetic rate by affecting
how diatoms sink through the water column. Spine counts were
log-transformed before analysis, because we consider a propor-
tional scale to be more appropriate for the evolution of this trait.
This transformation also has the effect of removing a strong cor-
relation between the mean and variance among samples (r = 0:70,
P < 10�4 for untransformed spine counts, r = 0:04, P = 0:77 after
log-transformation).

Theriot et al. (2006) posit that morphological changes in the
S. yellowstonensis lineage track environmental changes, and these
authors synthesize the available records of regional change through
the study interval. Here, we quantitatively analyze two of these
records. The first is the proportion of the dominant pollen type,
attributable to Pinus contortus, as reflecting floral change in the
area. See Figure 2, digitized from figure 10 in Theriot et al. (2006).
The second environmental record we analyzed is solar insolation,

which peaked around 11,000 years ago and decreased to the present
day. Insolation values in W=m2 were taken from model output
from Lasker et al. (2004), using the web interface http://vo.imcce.fr/
insola/earth/online/earth/online/index.php for the latitude and
longitude of Lake Yellowstone. As S. yellowstonensis blooms in
summer (Theriot et al. 2006), we used insolation values for the
month of June (Fig. 2).

The sampling times of the environmental records did not pre-
cisely match those of the trait time series. We used linear interpo-
lation to produce time series of the environmental records, sampled
at the same times as the traits. Both environmental records were
mean-centered before analysis to facilitate model fitting.

Our overall model-fitting strategy started with the five models
considered by Voje (2020): stasis (ST), random walk (RW), direc-
tional trend (DT), Ornstein-Uhlenbeck (OU), and decelerated
evolution (DE). To test Theriot et al.’s (2006) suggestion that
environmental changes influenced morphological evolution, we
added OU models in which the trait optimum linearly tracks the
two environmental covariates described earlier, June solar insola-
tion (OUinsol) and the proportional abundance of Pinus contortus
pollen (OUpollen ). Because model fits and residuals indicated a
decrease in stochastic evolutionary change through the core (see
“Results”), we considered additional models that allowed for a one-
time decrease in the step variance. We specified this time to be
10,000 years ago, following Theriot et al.’s observation (2006: p. 45)
that environmental conditions were much more stable after
this date.

All these models were fit using functions in the R package
paleoTS, the recent update of which (version 0.6.1) allows for fitting
models via the Kalman filter and a state space model approach.
Approximate profile confidence intervals on parameter estimates
were generated using the dentist package (Boyko and O’Meara
2024).Of the five models fit by Voje, we found that DE was best
supported by AICc (Table 1, models 1–5), consistent with Voje’s
findings. The maximum-likelihood parameter estimate for the
decay parameter of the DE model implies a roughly sevenfold
decrease in the step variance over the course of the 14 kyr sequence
(br = �0:00014 ; Fig. 3). Examination of residuals indicates that
decrease in the stochastic component over time is an important
signal in this dataset. Models without this dynamic show residuals
with elevated spread early in the sequence (Fig. 4 as an example
from the RW model). In contrast, residuals from the DE and best-
fitting models are not structured in this way, showing a pattern
closer to the ideal even spread (Figs. 5, 6). Also consistent with these
data is a model with a single step-down in variance at 10 ka, with
separate stochastic variances before (σ2W1

) and after (σ2W2
) this shift

point. Thismodel (Table 1,model 6) fits very slightly better than the
DE model. Parameter estimates from this model indicate that the
step variance decreases from 2.77 × 10�5 to 1.40 × 10�5 , about a
twofold drop (Fig. 3).

Comparing the two covariate tracking models, it is more plau-
sible that spine counts tracked June solar insolation rather than the
pollen data (Table 1,models 8 and 7, AICc difference of 4.9) (Fig. 7).
The OUinsol model shares the features of the OUmodel, except that
the fitness optimum varies with solar insolation instead of being
constant over time. The large increase in support between the OU
to OUinsol (Table 1, ΔAICc = 6.1) is therefore a measure of the
importance of solar insolation in accounting for these observations.
Combining this insolation-tracking dynamic with a step decrease in
stochastic variance results in a model that is best supported overall
(Table 1, model 9; Table 2). This model implies a dynamic where
spine counts deterministically follow summer insolation, with
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overlaid stochastic evolution that is initially high, but then
decreases later on.

Discussion

Using the State Space Modeling Framework

We have presented a novel framework based on stochastic integrals
and linear state space models for describing and analyzing five
models for univariate trait evolution in fossil lineages. We have
shown how the stochastic integral approach provides a clearer
conceptual basis for relating underlying parameters stated in con-
tinuous time to models incorporating discretized sampling and
observational error. In particular, we showed how a property
of the sampling regime, the duration between observed time points
(Δ), enters into the system equations of the OU model. Looking

forward, the framework is naturally generalizable to multivariate
systems.

The five basemodels considered here have all been implemented
before for paleontological time series, and they have been fit using
maximum likelihood (Hunt 2006; Voje 2020). The present
approach, using state space models and the Kalman filter, offers
an alternative means to compute these samemodel likelihoods. The
two approaches will yield log-likelihoods that are the same (within a
constant) and the resulting maximum-likelihood parameter esti-
mates are equivalent, within precision of the hill-climbing algo-
rithm used to search for the best parameter values. Two practical
benefits of using the state space approach are that the Kalman filter
calculations (1) naturally produce predicted values and residuals
useful for assessing model adequacy and (2) do not require invert-
ing a large T by T matrix, where T is the number of samples in the
time series. The second benefit applies mostly to rather long time
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Figure 1. Evolutionary time series of log spine counts for Stephanodiscus yellowstonensis. Open circles and vertical bars showmean values ±1 SE on thosemeans. The red line is the
model-predicted trajectory of the fitness optimum for the best-supported model (see text). Age is in years before present day.
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series (T > 100), as this inversion becomes slow and is prone to fail
for very large matrices.

The analysis of spine counts in Stephanodiscus yellowstonensis is
a good example of a typical workflowwith the state space approach.
An initial set of models were considered, drawn from existing
theory and prior interpretations of the system under study. Model
fits, as well as examination of residuals, suggest that there are two
important signals in the data captured by these models: (1) a
decrease over time in the stochastic component of evolutionary
change and (2) a correlation between diatom phenotypes and
summer solar insolation. The Kalman filter calculations allowed
us to quickly implement a model with both of these components,
which turned out to be the best supported among those considered.
The modular nature of the Kalman filter can thus facilitate model
development, as it is allows users to easily combine evolutionary
components into new composite models of trait evolution.

We added a single step-down in variance, rather than the
exponential decrease of theDEmodel, to theOU covariate-tracking
model. The step decrease in variance is slightly favored over the DE
model, but the decision was also a practical one; its incorporation
into the OU with covariate tracking is more straightforward. Given
the near equivalance in model support between the DE and this
discrete shift (Table 1), it is unlikely that these data could
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Figure 2. Measured environmental covariates, including June solar insolation (red solid line) and proportion of pollen attributable to Pinus contortus (blue dashed line; note
reversed axis).

Table 1. Model fits to spine counts of the Stephanodiscus yellowstonensis
lineage. From left to right, columns give model abbreviations, log-likelihoods,
number of parameters, corrected Akaike information criterion (AICc) scores,
ΔAICc scores, and Akaike weights. Model abbreviations: RW, random walk; DT,
directional trend; OU, Ornstein-Uhlenbeck; DE, decelerating evolution; RWshift,
random walk with a shift in the step variance parameter at 10 ka; OUpollen, OU
model in which the trait optimum tracks the proportion of the pollen comprised
of Pinus contortus; OUinsol, OU model in which the trait optimum tracks solar
insolation; OUinsol�shift, OU model in which the trait optimum tracks solar
insolation with a shift in the step variance at 10 ka

Model logL K AICc ΔAICc Akaike weight

1 Stasis 87.474 2 �170.748 105.625 0

2 RW 137.003 2 �269.806 6.567 0.023

3 DT 137.222 3 �268.037 8.336 0.010

4 OU 138.536 4 �268.383 7.990 0.012

5 DE 138.322 3 �270.237 6.136 0.029

6 RWshift 138.454 3 �270.500 5.872 0.033

7 OUpollen 140.355 5 �269.658 6.714 0.022

8 OUinsol 142.783 5 �274.515 1.858 0.247

9 OUinsol�shift 144.936 6 �276.373 0 0.625
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discriminate between the two different ways of modeling a reduc-
tion in the step variance over time.

Microevolution in Stephanodiscus yellowstonensis

The set of evolutionary models considered here are usually inter-
preted as phenomenological, not mechanistic. Phenomenological
models are useful for representing, using just a few parameters,
qualitatively different kinds of dynamics, such as meandering
change (RW), fluctuations around a stable mean (ST), or direc-
tional trends. In some cases, these models can be shown to be the
expected outcome of specific microevolutionary scenarios (e.g.,
neutral genetic drift will produce a randomwalk). But these models

are usually interpreted descriptively, rather than as the outcome of
specific microevolutionary mechanisms.

One potential exception is the OU model. Under a set of
simplified but reasonable assumptions, this model describes the
expected trajectory of a population evolving in the vicinity of a peak
in the adaptive landscape (Lande 1976). The peak corresponds to
the trait value that results in highest mean population fitness. This
peak is stable in the OUmodel, but changes with extrinsic variables
in the covariate-tracking versions implemented here. If the best-
fitting of these (OUinsol) is in fact a complete description of the
microevolutionary process, its parameters can be related to popu-
lation genetic parameters related to the strength of natural selection
(from the α parameter) and the effective population size (Ne, from
σ2), as described by Hunt et al. (2008).

Under this set of assumptions, natural selection is inferred to be
rather weak. Mean fitness decreases only 1% or less for individuals
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Figure 5.Residuals from the decelerated evolution (DE)model. Note they aremuch less
structured over time compared with those from the random walk (RW) model.
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Figure 4. Residuals from the random walk (RW) model. Note the greater spread of
residuals early in the sequence.
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Figure 3.Modeled changes in the step variance predicted by the two models for which
this parameter varies over time. The decelerated evolution (DE) model has a step
variance that exponentially decreases, whereas the randomwalkwith a shift in the step
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Figure 6. Residuals from the best-fitting model (model 9 in Table 1). Note that the
spread of residuals does not markedly change over time as it does in the random walk
(RW) model.
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3 SD away from the optimum (Table 3). Caution should be exer-
cised here, because the timescale of adaptation is inferred to be
rapid relative to temporal sampling resolution. Its half-life—the
amount of time it would take the population to progress halfway to
the optimum—is only about 280 years (Table 3), which is close to

the median spacing between samples (258 years). As a result, selec-
tion could be much stronger than what is estimated, but we would
not be able to detect it without finer temporal resolution.

The other population genetic parameter that can be calculated is
the effective population size, Ne . This parameter determines the
magnitudes of change due to genetic drift in these models. Drift is
more potent in smaller populations, and thus lower Ne values
correspond to larger stochastic changes (= higher step variances)
around the adaptive trajectory of OU models. The fit of the best
model implies about a threefold increase in effective population size
at 10 ka. This is consistent with a stepwise increase in the abundance
of S. yellowstonensis observed in the core at this time (Theriot et al.
2006).

Although the direction of this change is consistent with an
increase in the observed absolute abundances of this lineage, the
magnitudes of estimated effective population sizes, ranging from
102 to 104 (Table 3), seem rather low for these unicellular algae,
which can be found living at abundances high enough to produce
that many individuals in just 100 liters of water, or fewer (see
Interlandi et al. 1999: p. 679). However, it is important to note that
effective population size is generally much lower than census
population size, with the discrepancy between the two increasing
with fluctuations in population size, differences in fitness across
individuals, inbreeding, and other factors. The two literature esti-
mates of Ne for diatoms are for widespread marine species and are
about 107 , which although very high, is still orders of magnitude
lower than their peak census abundances (Krasovec et al. 2019). It is
likely that our Ne estimates for S. yellowstonensis are unrealistically
low, but the population genetics of lake diatoms is not well enough
investigated to be sure of this.

Assuming that theNe values computed from the best model are
indeed too low, then genetic drift would not be sufficient to
account for the stochastic component of spine count evolution.
Therefore, other factors, in addition to June insolation, will have
caused changes in the position of the adaptive optimum for spine
counts, and hints of non-randomness in the residuals of the best-
fitting model (Fig. 6) may reflect these unmeasured factors. Ther-
iot et al.’s (2006) presentation of the paleoenvironmental record
provides a detailed account of environmental variation that might
contribute to these insolation-independent evolutionary change.
In particular, the decrease in the stochastic evolutionary compo-
nent after 10 ka may be explained by the shift to more stable
conditions at this time, leading to more modest selective fluctu-
ations in diatom morphology. Voje (2020) offers an alternative
explanation in which ecological opportunity is initially high,
perhaps because of the phenotypic changes associated with the
origin of the new species S. yellowstonensis. With high ecological
opportunity, stabilizing selection may be weakened, permitting
greater variation and larger evolutionary steps. This interpreta-
tion is consistent with the observation that standing variation in
spine counts is initially high and decreases steadily for the first 3 or
4 kyr of the sequence (Fig. 8). These two explanations for the
reduction in stochastic evolutionary change—decreasing envi-
ronmental variation and decreasing ecological opportunity—are
not mutually exclusive.

Analysis of stratigraphic trait changes can be complicated by
hiatuses, variation in sedimentation rate, and other aspects
of stratigraphic architecture (Patzkowsky and Holland 2012;
Hohmann et al. 2024). Thanks to the continuous sedimentation
in Lake Yellowstone over the study interval (Theriot et al. 2006),
however, such complications are largely avoided in the
present case.

−20 −10 0 10

2.
8

2.
9

3.
0

3.
1

3.
2

3.
3

3.
4

June insolation

Lo
g 

nu
m

. o
f s

pi
ne

s

best model fit
OLS regression

Figure 7. Log of spine count plottedwith respect to June solar insolation inW/m2. Solid
line shows the relationship between the two variables predicted by the parameter
estimates (Table 2) of the best-fitting model (model 9 in Table 1). Dotted line shows the
fit from ordinary least-squares (OLS) regression. The close similarity between the two
curves is expected with rapid adaptation, as found here.

Table 2. Maximum-likelihood estimates (MLE) and confidence intervals (CI) for
the best-fitting model: an Ornstein-Uhlenbeck (OU) process in which the
position of the optimum depends linearly on the value of summer insolation
and the step variance is estimated separately before (σ1

2) and after (σ2
2) 10,000

years ago. b0 and b1 are the intercept and slope of the relationship between
solar insolation and the trait optimum, α represents the force of attraction to
that optimum, and anc is the estimated trait value at the start of the time series

anc σ1
2 σ2

2 α b0 b1

MLE 3.24 0.0325 0.0113 0.00247 3.05 0.00744

Lower 95% CI 3.05 0.0135 0.0237 0.00025 2.98 0.00305

Upper 95% CI 3.43 0.0559 0.0451 0.00767 3.11 0.0141

Table 3. Estimates of microevolutionary parameters calculated from the
Ornstein-Uhlenbeck (OU) model in which the trait optimum follows summer
insolation, with a step-down in step variance at 10 ka (model 9 in Table 1).
Shown are calculations assuming low (0.1) and high (0.7) plausible values of
trait heritability and 10 generations per year. ω is the computed variance of the
population fitness function; larger values indicate broader fitness curves and
therefore weaker stabilizing selection. Fitness reduction is the resulting
decrease in population mean fitness between the optimal trait value and the
trait values corresponding to three population standard deviations away from
the optimum. Effective population size (Ne) is computed separately before and
after 10 ka

h2 ω
Fitness

reduction

Half-life of
adaptation

(gen)
Ne

(before 10 ka)
Ne

(after 10 ka)

0.1 9.37 1.1% 2802 482 1384

0.7 65.7 0.16% 2802 3375 9686
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Handling Covariates in Models of Trait Evolution

Although amodel in which spine counts follow solar insolation as
an OU process is the best supported among those considered, we
caution that aspects of this model may make it less suitable for
some situations. Our implementation requires an assumption
that the position of the trait optimum is constant in between
the time points at which we have observations. This is reasonable
when, as is the case here, the covariates show point-to-point
changes that are small compared with the total range of the time
series. This assumption will be less appropriate for covariates that
fluctuate widely on short timescales. In addition, the microevo-
lutionary intepretation of the OU dynamics is only tenable if the
sampling resolution is fine enough to potentially capture the
adaptive dynamics of the population chasing the moving fitness
peak. Even with the exceptional temporal resolution of the
S. yellowstonensis data, the evolutionary dynamics may be too
rapid to well constrain estimates for the strength of stabilizing
selection. In addition, this modeling approach may be prone to
receiving spuriously strong support when applied to traits that
show clearly directional change if analyzed with covariates that
are also trended. Including the simpler DT model of a trend
(without covariates), as is done here, may protect against this
effect, as the fewer parameters of the trend model give it an AICc
advantage.

State space models are flexible enough to allow for other
approaches to incorporate the effects of exogenous covariates that
may be more suitable in other circumstances. For example, one
could model a trait as an RW, with an additional pulse of change
that is proportional to changes in a covariate, implemented through
the ϒ term of the state equation. Such a modeling approach does
not attempt to capture the dynamics of a population climbing an
adaptive peak and instead would be consistent with an assumption
that enough time has elapsed between samples for the population to
have reached the adaptive optimum. This approach would there-
fore be more appropriate for trait time series at more typical
paleontological resolutions. And the use of changes in covariates
as input variables, rather than covariates themselves, would render
this approach less susceptible to trended sequences as described
earlier.

Conclusion

The state space framework provides a practical approach for
analyzing phenotypic evolution in fossil lineages that facilitates
model development, including those that incorporate exogenous
environmental variables. We highlighted some additional useful
features, especially the ease of accessing time-series residuals and
enhanced numerical stability and efficiency. Our analysis sug-
gested a novel biological interpretation of evolution in spine count
for S. yellowstonensis based on stabilizing selection to changing
solar insolation levels. Our focus on univariate trait models in this
paper provides a foundation for expanding into more complex,
multivariate models that, for example, allow for estimation of trait
covariances in a time-series setting. Such a multivariate approach
will be essential to understand how solar insolation may jointly
affect all three traits measured by Theriot et al. (2006) and to better
understand in general the evolution of integrated phenotypes
over time.
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Appendix 1. Common Models as Linear State Space Models

Stochastic Integral Models and Their Discretizations

In this section, we will discuss a number of well-knownmodels of trait evolution
in fossil lineages and give a corresponding continuous time equivalent. We will
then show that each of these models can be exactly discretized to correspond to
discretely observed data.

Each of these standard models may be expressed as an Ito integral with a
deterministic integrand. We can then look at how each can then be expressed as
a linear state space model when observed at discrete time points.

First, the definition of a Ito integral for a deterministic integrand is:

X tð Þ=
Z t

0
f t,sð ÞdW sð Þ (A.1.1)

where f t, sð Þ is a deterministic function andW sð Þ is a standard Weiner process
(Oksendal 2013). In other words, for each s,W sð Þ is a normal random variable
with zero mean and variance equal to s. This process also has the property of
independent increments, implying that W tð Þ�W sð Þ is independent of
W vð Þ�W uð Þ as long as s, tð � and u,vð � do not overlap. The fact that W sð Þ
has zero mean for each s implies that X tð Þ does also. Each of the models that we
examine in this paper is a Gaussian process, and using this integral represen-
tation allows us to express the models in a unified way.

An important property of this integral, especially when calculating vari-
ances, is the Ito isometry (Oksendal 2013).

E X2 tð Þ� �
=E

Z t

0
f t,sð ÞdW sð Þ

� �2

=
Z t

0
f t, sð Þð Þ2ds (A.1.2)

Now, wewrite some basicmodels in the form of such an integral along with their
exact discretizations and approximate discretizations where appropriate.

Random Walk (RW)

For the RW model, the deterministic function is simply a constant, σ, and

X tð Þ= σW tð Þ (A.1.3)

Note then, that a discretely observed version of this model, assuming equal
spacing in time, would be

X nΔð Þ=X n�1ð ÞΔð Þþσ W nΔð Þ�W n�1ð ÞΔð Þð Þ (A.1.4)

which we could we write as follows by using the fact of independent increments
of Brownian motion:

Xn =Xn�1þσ
ffiffiffiffi
Δ

p
εn (A.1.5)

where εn is a sequence of independent standard normal random variables, andΔ
is the amount of time between observations. This can be derived directly from
the earlier integral definition with the

ffiffiffiffi
Δ

p
εn corresponding to W nΔð Þ�

W n�1ð ÞΔð Þ. In this discrete version, Xn corresponds to X nΔð Þ.

Directed Random Walk

For this model, we add a deterministic linear directionality to the RW model.

X tð Þ = μtþσW tð Þ (A.1.6)

In a similar way then, a discretely observed version of thismodel, again assuming
equal spacing in time, would be

Xn =Xn�1þμΔþσ
ffiffiffiffi
Δ

p
εn (A.1.7)

with similar interpretations as for the RW.
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Decelerated Evolution (DE)

Voje (2020) considered a model for the evolution of a trait where the step
variance of a RW declines exponentially. In other words, a model that could be
describe with the recursion

Xn =Xn�1þσVe
�r
2 nεn (A.1.8)

where σV and r are positive parameters and εn is a sequence of standard normal
random variables. A natural way to write this as a stochastic integral would be

X tð Þ=X 0ð Þþ
Z t

0
e
�r
2 sσdW sð Þ (A.1.9)

An Euler approximation of this integral would then be defined by the recursion

Xn =Xn�1þσe
�r
2 nΔ

ffiffiffiffi
Δ

p
εn, (A.1.10)

and if we identify σV = σ
ffiffiffiffi
Δ

p
, we notice that this approximation corresponds to

Voje’s original definition. However, we canwrite down an exact discretization of
the stochastic integral.

Xn =Xn�1þ
Z nΔ

n�1ð ÞΔ
e�

r
2sσdW sð Þ (A.1.11)

We can again look at the second term on the right and calculate the variance
using Ito’s isometry

Var

Z nΔ

n�1ð ÞΔ
e�

r
2sσdW sð Þ

 !
= σ2

Z nΔ

n�1ð ÞΔ
e�rsds (A.1.12)

So, solving the integral on the right-hand side of the above equation, we find

σ2Δ nð Þ= σ2 1
r
e�rnΔ erΔ�1

� �
(A.1.13)

Applying a Taylor expansion with Δ small, we see that

σ2Δ nð Þ≈ σ2e�rnΔΔ (A.1.14)

and this corresponds to the Euler approximation.

Stasis (ST)

The ST model assumes that each observation is independent and identically
distributed, typically with a normal distribution. So, Xn is normal with mean c
and variance σ2S , which we could write as

Xn = cþσSεn (A.1.15)

where the εn is a sequence of independent and identically distributed random
variables. Effectively, there is no continuous version of this model. One way to
think of this model, however, is as a discretely observed Ornstein-Uhlenbeck
(OU) process with sufficient spacing between the observations relative to the
parameter α. TheOUprocess is stationary,meaning that after a sufficient time, the
initial condition is trivially relevant and the relationship between observations at
two times depends only on the distance between those observations. Because the
OU process is Gaussian, the variance and covariances define the process. The
covariance between two observations of a (zero-mean) OU process is given by

Cov X tð Þ,X sð Þð Þ= E X tð ÞX sð Þ½ �= σ2

2α
e�α∣t�s∣ (A.1.16)

So, if the observations are sufficiently spaced, this covariance is effectively zero
(as long as α is not too small). Therefore, the STmodel could be viewed as anOU
process that is approximately stationary and sufficiently spaced with the rela-
tionship between the variances being σ2S = σ

2= 2αð Þ, where σ2 is the infinitesimal
variance of the OUmodel. If we look at equation (14), with αΔ being large, then
the we see that the OU model is effectively the ST model.

Appendix 2. Simulations and Model Selection

To ensure comparability of results, we re-used code from previous studies to
simulate data from the fivemodels, including the paleoTS R packagemaintained
by Hunt and supplementary materials from Voje (2020). We used paleoTS to
simulate data for the stasis (ST), randomwalk (RW), directional trend (DT), and
Ornstein-Uhlenbeck (OU) models and code from Voje (2020) to simulate data
for the decelerated evolution (DE) model. However, we found that prior
simulation studies explored parameter values and data-sampling regimes in a
way that varied both observational and biological timescales simultaneously
(Hunt 2006, 2008; Voje 2020), making their separate effects on performance
difficult to disentangle. We chose simulation parameters to feature substantial
levels of model uncertainty in order to illustrate dependence on sampling scales.

Formodel selection, we calculatedmodel goodness-of-fit using the corrected
Akaike information criterion (AICc), which is modified for better performance in
small sample sizes (Hunt 2008). In general, the AICc provides an unbiased
estimator of a model’s expected likelihood for small sample sizes, and picking
themodel with the best (i.e., lowest) AIC score will asymptotically converge on the
true distribution when it is unique to a single model (Burnham and Anderson
2002). We also calculated Akaike weights for each model using the AICc scores
(Wagenmakers and Farrell 2004), which approximate the probability that amodel
is the best out of the candidates considered. For model estimation, we used the
linear Kalman filter in the state space models and compared the results of our
procedures to those in paleoTS and Voje’s code.

Parameter Estimation

We find that estimation accuracy and uncertainty are not uniformly influ-
enced by sampling timescales. We show simulation results for the RW and DT
models (Fig. A2.1), OU model (Fig. A2.2), and DE model (Fig. A2.3). We
explored three scenarios for modifying sample timescales: first, increasing
sampling with constant total duration (shrinking Δ ); second, increasing
duration and increasing sample size (uniform Δ ); and third, increasing
duration while holding sample size constant (increasing Δ). The ST model
is not shown but is effectively an independent, identically distributed (i.i.d.)
process with time-indexed observations, and so estimation of bσ2 will depend
on sample size but not total duration or Δ.

For the RW and DT models, the results in Figure A2.1 show that increasing
total timewhile keeping the sample size fixed does not affect bσ2 but does improvebμ. Note that the sufficient statistic for bμ is the value of the process at the terminal
point of the time series, so intermediate values do notmatter for estimation, only
the endpoint. Increasing duration with constantΔ improves both bσ2 and bmu, but
for different reasons:bμis improving because the total time observed is increasing,
but bσ2 is improving because there are more steps observed.

In contrast, the OUmodel parameters in Figure A2.2 show several different
types of response to timescales. Both bα and bσ2 improve for both the scenarios,
with increasing sampling with constant duration or increasing duration. As Δ
becomes larger in row 3, however, estimation gets worse, because exp �Δð Þgoes
to zero and the process starts to look i.i.d., so that bα and bσ2 are both being fit
to a normal distribution with mean θ and variance σ2= 2αð Þ . The initial
value parameter, bZ, is unaffected in all three scenarios, because better estimation
of the restoring force, α, can only improve precision for the initial condition up
to a point. Similar tobμ’s behavior in the RWandDTmodels, the OU equilibrium
value parameter, bθ, does not converge under the increased sampling intensity.
Neighboring observations are positively correlated, so adding more time points
within a fixed interval gives diminishing returns for estimating the mean, but if
T is increasing, the observations are spaced farther apart and so are more
independent.

For the DE model, the variance decay parameter br in Figure A2.3 shows
improved precision in the increasing sampling intensity and increasing
duration, constant-sampling scenarios but remains biased below the true
value for the simulation setups we examined. The DE model shows phenom-
enologically the same behavior in bZ0 and bσ2 as the OUmodel but for different
reasons. As the step variance of the process decays exponentially to zero with
time, observing the process over a longer duration provides progressively less
information.
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Model Selection Performance

Figure A2.4 shows how model selection performance, measured in terms of the
average Akaike weight of the true model, varies with sampling. Columns in the
figure show increasing total duration. Rows show denser sampling as total
duration shrinks. Diagonals from top left to bottom right show increasingly
dense sampling within a fixed total duration.

ST is almost exclusively conflated with OU. Increased data appear
to slightly worsen false positives for OU when ST is true, likely because

the AICc has a bias for nested models toward the model with more
parameters. RW is most frequently confused with DT and OU models.
The average Akaike weight does not vary significantly with sampling
timescales, again likely because of the AICc’s bias toward complex models.
As expected, the evidence for DT improves significantly as total duration
grows. OU shows improvement with greater duration and sampling den-
sity. The same is true for DE, which is mainly competitive with ST for small
sample sizes.

Figure A2.1. Parameter estimation for random walk (RW) and directional trend (DT) models using varying ratios of stepwise and total observational timescales. The left column
shows estimation of the diffusion parameter for the RW model. The middle and right columns show estimation of the diffusion and the drift parameters, respectively, for the DT
model. The true parameter values are σ2 = 25 and μ= 5. We use different values for the sample size N= 20,40,80,160f g, the size of the increments Δ= 1=8,1=4,1=2,1f g, and the
terminal time T = 2:5,5,10,20f g. Box plots show 100 replicates.
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Figure A2.2. Parameter estimation on simulated data from the Ornstein-Uhlenbeck (OU)model for different combinations of sample size, time step, and total duration. Each of the
columns shows parameter estimation for α,σ,Z0, and θ, respectively. True values are α=0.50, σ2 = 20, Z0 = 40, and θ = 50, as represented with dashed red lines. We varied the sample
size N= 20,40,80,160f g, the size of the increments Δ= 1=8,1=4,1=2,1f g, and the terminal time T = 2:5,5,10,20f g. Box plots show 100 replicates.
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Figure A2.3. Parameter estimation for decelerated evolution (DE) model on simulated data using varying combinations of sample size, time step, and total duration. The columns
show parameter estimation of r,σ , and Z0 , respectively. Dashed red lines show the true values of r =�1, σ2 = 20, and Z0 = 40. We used sample sizes N= 20,40,80,160f g, time
increments of Δ= 1=8,1=4,1=2,1f g, and terminal times T = 2:5,5,10,20f g. Box plots show 100 replicates.
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Figure A2.4.Model selection performance using the Akaike information criterion (AIC) on simulated data for varying ratios of stepwise and total observational timescales. In each
panel, the true model is labeled on the x-axis, and the stacked histogram shows the average Akaike weight for each model. Perfect model performance would show each bar as
completely filled by the corresponding true model’s shade on the legend (ST as white, RW as light gray, DT as medium gray, etc.). The true model parameters are ST: θ = 50,ω = 20;
RW: σ2step = 20; DT:Drift = 5, σ

2
step = 25; OU: θ = 50, α= 20, σ

2
step = 20; and DE: r = �1, σ2step = 20. The initial condition for all the models is Z0 = 40, the variance of the evolutionary step is

Vp = 5, and the vector of population sample size is m= 50. We varied sample size N= 20,40,80,160f g , the size of the increments Δ= 1=8,1=4,1=2,1f g , and the terminal time
T = 2:5,5,10,20f g. ST, stasis; RW, random walk; DT, directional trend; OU, Ornstein-Uhlenbeck; DE, decelerated evolution.
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