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ABSTRACT 
Lifetime prognoses are fundamentally important to improve products regarding safety, costs, availability 
and sustainability. To modelling the lifetime of a system or its components and subsystems different 
methods and model approaches are available, which are not compatible in any case. Depending on the 
system, use case and available data, the existing model approaches and modelling methods are 
differently suitable for a precise lifetime prediction. In this contribution a procedure was developed to 
help in the selection of suitable approach-method combinations. For this purpose, the compatibility of 
method types with the different model approaches was assessed and criteria for the pre-selection of 
suitable approaches and methods for lifetime modelling were defined. The selection procedure was 
applied to the example of entities for electric powertrains of aircraft in early design stages. Finally, the 
results were summarized and evaluated. The insights gained in this paper can help to enhance lifetime 
models of products in early design phases. 
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1 INTRODUCTION 

Lifetime prognosis of systems is increasingly important to reduce operational and production costs, 

plan adjusted maintenance cycles and improve safety, reliability and availability (Wang, 2010). 

Moreover, there are increasing requirements concerning sustainability, that result in the demand to 

minimize the environmental impact of products during their life cycle. To address different life cycle 

options like reuse, recycling, upgrade or maintenance, it is mandatory to develop suitable system 

architectures in early design stages (Inkermann, 2022). Therefore, models for lifetime prognosis of 

systems are needed (Umeda et al., 2007), however, in early design stages and in the case of new 

technologies, there is a high uncertainty of lifetime prognoses. A lifetime model adapted to the system 

must be developed to predict lifetime as precise as possible. If a lifetime model is suitable for the 

considered system depends on properties and available data. The main research question of this 

contribution is: What are fundamental criteria for the pre-selection of suitable lifetime models of 

defined systems? The goal is to develop a procedure for the selection of lifetime models and to 

improve lifetime prognoses for systems in early design stages to optimise system architectures 

regarding costs, performance, safety and sustainability. 

1.1 Challenges of lifetime prognosis due to lifetime heterogeneity 

High-tech systems in particular consist of numerous subsystems (e.g. electric motors) and their 

components (e.g. motor coil, rotor, stator etc.), which are referred to as system entities in this paper.  

An example are electric powertrains for aircraft, which should be used for short-haul flights in the 

future (Karpuk and Elham, 2021). A simplified electric powertrain is shown in Figure 1. It consists of 

a battery and a battery management system (BMS) for power supply, switches and insulated-gate 

bipolar transistors (IGBT) to increase safety in case of failures, a high voltage bus (HV bus) to manage 

the power supply of different entities and a converter to control and adjust the current for the electric 

motor. 

 

Figure 1. Simplified topology of an electric aircraft powertrain (according to Stückl (2016)) 

Thereby, the numerous entities of the powertrain are subject to different damage mechanisms, 

interactions and requirements. These influence factors lead to different lifetimes of entities and 

consequently to lifetime heterogeneity on system level (Umeda et al., 2007). Each entity lifetime has 

to be estimated as exact as possible considering different use cases with diverging influence factors 

like temperature, material behaviour or mechanical loads. In addition, there is a lifetime heterogeneity 

on entity level due to different lifetime properties like physical properties, customer acceptance or 

legal regulations, see Figure 2. 

 

Figure 2. Concept of lifetime heterogeneity on system and entity level 
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Moreover, availability of data is often different for single entities in early design stages, where the 

considered system only exists virtually and no final design is defined. For components and subsystems 

used in similar design for other applications (e.g. IGBT, propeller) more information about lifetime or 

damage behaviour are available as for entities modified for completely new applications (e.g. electric 

motors in aircraft). To consider the damage behaviour of entities and the availability of measurement 

data for lifetime prognosis, a new concept by dividing lifetime models into underlying model 

approaches and modelling methods was used. In this contribution model approaches for lifetime 

prognosis define concepts to determine end of lifetime (e.g. degradation) and illustrate influence 

factors on lifetime. Properties must be defined to calculate end of lifetime (e.g. a specific failure rate). 

Model approaches have to be implemented by modelling methods, which are mathematical principles 

to describe the properties determining lifetime. Equations or algorithms to model these factors are 

based on theoretical considerations like fracture mechanics or tribology and system data. 

1.2 Research focus to improve lifetime prognoses 

To develop precise lifetime models in early design stages, when no final product design and only 

virtual concepts of the system exist, methods and approaches are needed which are suitable for the 

considered system or entity. Therefore, overviews of fundamental properties, examples, advantages 

and disadvantages of existing methods and approaches for lifetime modelling will be presented. 

Existing reviews on lifetime modelling are studied to provide comprehensive information with no 

focus on specific lifetime models. The derived overviews consider the similarities of existing 

elaborations and are based on a larger number of publications than the results of a new review. The 

gained information are used to develop a procedure for the pre-selection of suitable methods and 

approaches for lifetime evaluation in early design stages. At first, the compatibility of individual 

model approaches with various modelling methods will be analysed. Based on this, criteria for the 

selection of model approaches and modelling methods will be formulated with the help of previous 

work. These criteria take into account properties of the regarded entity as well as availability of 

measurement data. In the last step, the developed criteria are applied to pre-select approaches and 

methods for lifetime modelling of entities from electric aircraft powertrain. 

By analysing methods and approaches of lifetime models, preparing overviews of properties, 

advantages and disadvantages of modelling methods and model approaches, the evaluation of their 

compatibility and the definition of pre-selection criteria in consideration of available measurement 

data and damage mechanisms, assistance is given to improve lifetime prognosis of components and 

subsystems. The selection assistance for lifetime models developed in this contribution is an addition 

to previous studies, were just overviews of lifetime models were presented, and will support further 

research to forecast the lifetime heterogeneity of electric powertrains for aircraft. 

2 LIFETIME MODELLING 

To analyse existing approaches and methods for lifetime modelling, available reviews of this field 

were studied. Therefore, the tool "Harzing's Publish or Perish" (Harzing, 2007) and the search string 

"review AND life OR lifetime AND model OR modelling OR estimation OR prognostic" were used for 

a title search in the online library Google Scholar, citation records were ignored. Since scientific fields 

and topics like medicine or demography were not excluded, 205 articles were detected in the first step. 

After analysing paper titles and scanning the content eight reviews remained, which are discussed in 

Chapter 2.2. The knowledge gained by studying the reviews is the foundation of this paper and was 

complemented by expanded researches on single topics. 

2.1 Approaches for lifetime models 

With the findings from research three fundamental concepts for lifetime prognosis were derived. In the 

following they will be explained in detail. 

2.1.1 Degradation 

Degradation is the negative and continuous change of physical properties over time, with malfunctions 

and loss of performance as possible results (McPherson, 2010). Degradation can be defined as a 

function d of time t, internal entity properties x⃗ int, external impacts of the environment x⃗ ext and 

operational conditions x⃗ op. 
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𝑑 = 𝑓(𝑡, 𝑥 𝑖𝑛𝑡 , 𝑥 𝑒𝑥𝑡, 𝑥 𝑜𝑝). (1) 

The function d is defined as one or more properties which are relevant for the functional performance of 

the product, e.g. the capacity loss of a battery or the maximum crack length in materials. Additionally, a 

critical value of the degradation function dcrit is defined whereby the product doesn't meet the 

requirements anymore and thus end of lifetime tL is reached, see Figure 3, left (Petit et al., 2016).   

2.1.2 Probability measure and failure rate 

The lifetime of a product with in a defined use case can be described with the probability measure of 

failure. The probability measure is a function F(t), which indicates the probability of a system or 

entity failure over time based on determined boundary conditions. The time derivative of F(t) is the 

probability density function δ(t). With F(t), δ(t) the failure rate λ(t) can be calculated based on 

equation (2), which is the probability of failure in an infinitesimal time span, if the system or entity is 

functioning until the defined time point (Härtler, 2016). 

𝜆(𝑡) =
𝛿(𝑡)

1−𝐹(𝑡)
. (2) 

Often the failure rate is a function similar to the middle graph shown in Figure 3. At the beginning 

early failures, e.g. due to manufacturing faults, lead to high failure rates. Than the failure rate declines, 

stays nearly constant and increases because of continuing damage processes (Finkelstein, 2008). 

 

Figure 3. Degradation (left), failure rate (middle) and load cycles (right) as basic model 
approaches for lifetime prognosis 

2.1.3 Load cycles 

If a product is exposed to cyclic loads the number of cycles to failure can be recorded. By 

measurements under different load amplitudes models can be derived which are functions of the 

number of cycles n and the specific load. Thereby, environmental conditions and influences have to be 

as similar as possible for the different measurements (Weißbach, 2015). Under variation of operational 

and external conditions and with additional measurements it is possible to model the function of load 

cycles to failure Nf depending on further influence factors (Stroe, 2014). An example for Nf is shown 

in Figure 3, right. 

𝑁𝑓 = 𝑓(𝑛, 𝑥 𝑒𝑥𝑡, 𝑥 𝑜𝑝). (3) 

In contrast to degradation, Nf is a model of a failure criteria and not of continuous functionally 

relevant properties. Either the chronological sequence of cyclic loads has to be consistent or the 

damage behaviour of the considered system has to be time independent (Weißbach, 2015). 

2.2 Methods to modelling lifetime 

Some of the selected paper focus on specific types of modelling methods, e.g. curve fitting (Kalayci et 

al., 2020; Li et al., 2019), stochastic methods (Si et al., 2011) or intelligent methods, which often use 

machine learning (Li et al., 2019; Fang et al., 2018). Further contributions try to create general 

overviews of modelling methods (Chen et al., 2011; Lipu et al., 2018; Su and Chen, 2017; Heng et al., 

2009), but don't consider all aspects from other examinations. Consequently, an own classification of 

methods for lifetime modelling was developed to take into account the similarities of existing 

overviews and to classify modelling method types more comprehensively, see Figure 4. 

https://doi.org/10.1017/pds.2023.313 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.313


ICED23 3129 

 

Figure 4. Classification of methods for lifetime prognosis 

Physics-based methods are based on mathematical equations derived from theoretical considerations 

which describe the damage behaviour of a system while empirical methods use measurement data for 

lifetime prognosis (Zagórowska et al., 2020). The advantages and disadvantages of method types 

deduced from this categorization and some examples to methods are summarized in Table 1. 

Table 1. Advantages and disadvantages of modelling methods 

Method and examples Advantages Disadvantages Sources 

Computer aided 

methods 

e.g. FEM, CFD 

No or few measurement 

data required; 

Models applicable for 

different use cases 

Good theoretical 

knowledge necessary;  

Results can only replace 

measurement data 

Mlikota et al. 

(2017) 

Mathematical 

modelling 

e.g. SEI models for 

batteries 

No or few measurement 

data required; 

Models applicable for 

different use cases 

Complex formulation,  

Very good theoretical 

knowledge necessary;  

Models often applicable for 

one defined system only 

Zagórowska et 

al. (2020); 

Prada et al. 

(2012) 

(Semi-)empirical curve 

fitting 

e.g. exponential 

functions, Coffin-

Manson model 

Simple modelling; 

Low calculation effort; 

Simple implementation 

High number of 

measurement data required; 

Models applicable for one 

system only and designed 

for a specific use case 

Li et al. (2019); 

Heng et al. 

(2009) 

Intelligent methods 

e.g. neural networks, 

particle swarm 

optimization  

Can be used for many 

different problems; 

No parameters of the 

system required (e.g. 

material properties) 

Very high number of 

measurement data required; 

High calculation effort; 

Optimization methods often 

for enhancement of other 

methods only (e.g. data fit) 

Li et al. (2019); 

Su and Chen 

(2017); 

Heng et al. 

(2009) 

Indirect methods 

e.g. hidden Markov 

models, Kalman filter 

Can be used for many 

different problems; 

Several methods can be 

used despite of incomplete 

or incorrect data 

For recondition of 

measurement data - for 

lifetime prognosis further 

methods are required; 

For some methods missing 

relation between results and 

measurement data 

Heng et al. 

(2009); 

Peng et al. 

(2010) 

Stochastic methods 

e.g. Weibull 

distribution, Wiener 

process 

Calculation of probability 

measure enables risk 

analysis; 

Low calculation effort; 

Simple implementation 

Very high number of 

measurement data required; 

Models applicable for one 

system only and designed 

for a specific use case 

Härtler (2016); 

Li et al. (2019) 
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A detailed explanation of single methods and their examples can be found in the given literature. It has 

to be noted that distinct modelling principles with different data bases exist for empirical methods 

(Soualhi et al., 2023), see Table 2. Additionally, there are manifold hybrid modelling methods 

combining different methods (Su and Chen, 2017). 

Table 2. Modelling principles of empirical methods 

Model principle Description 

Similarity-based Prognosis based on measurement data of similar systems, at first no use of 

measurement data of the considered system but later for model optimization  

Recursive Prognosis based on actual measurement data of the considered system, due to 

that continuous evaluation parameter necessary 

Direct Use of actual measurement data and existing data of similar systems  

3 PROCEDURE FOR THE SELECTION OF APPROACHES AND METHODS 

To find suitable approach-method combinations for defined entities the procedure shown in Figure 5 

was developed. For this purpose, the compatibility of methods and approaches for lifetime modelling 

was assessed and an overview was prepared. General criteria for the pre-selection of approaches and 

methods were derived with the help of previous work. 

 

Figure 5. Procedure for the development of a suitable lifetime model 

3.1 Compatibility of approaches and methods for lifetime modelling 

Not all modelling methods are suitable for every model approach. This is also valid for the different 

modelling principles of the individual empirical methods (see Table 2). For example, no probability 

distributions are determined in curve fitting methods (Si et al., 2011; Zagórowska et al., 2020), so they 

are unsuitable for calculating failure rates. Normally, recursive modelling methods are only 

appropriate for models of degradation since current and continuous values of the system are required. 

As a result, there is no possibility of comparison with similar systems (Si et al., 2011; Soualhi et al., 

2023). For this reason, most intelligent methods cannot be used with recursive modelling, since they 

are often based on machine learning using reference data (Su and Chen, 2017). With the help of the 

literature used so far, an overview was created in which the compatibility of methods and approaches 

for lifetime modelling is evaluated. For empirical methods, the similarity-based (s), recursive (r) and 

direct (d) modelling principles were evaluated separately. A + for good compatibility, a Ø for 

moderate compatibility and a – for poor compatibility were used as symbols in the evaluation, see 

Table 3. 

Table 3. Compatibility of approaches and methods for lifetime modelling 

Method Degradation Failure rate Load cycles 

Computer aided Ø – + 

Mathematical modelling + – Ø 

Curve fitting s: +     r: +     d: +   s: –     r: –     d: –     s: +     r: –     d: Ø     

Intelligent s: +     r: –     d: +    s: +     r: –     d: +     s: +     r: –     d: +    

Indirect s: Ø    r: Ø    d: Ø     s: +     r: +     d: +   s: Ø    r: Ø    d: Ø    

Stochastic s: –     r:  –     d: –    s: +     r: –     d: +   s: Ø    r: –     d: Ø    

3.2 Criteria for the selection of suitable model approaches 

Systems and their entities are subject to various damage mechanisms, which lead to a different 

evolution of damage over time (Hartzel et al., 2010) and not all model approaches are suitable for a 

precise lifetime prognosis. Based on their properties determined in Chapter 2.1, criteria for the 

selection of model approaches based on the damage behavior of entities were derived and their 

fulfillment by the individual approaches was evaluated. A summary of the results can be seen in Table 

4. Again, a + was used for good, a Ø for partial and a – for poor fulfillment of the respective criterion. 
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Table 4. Suitability of model approaches for different damage behaviour criteria 

Damage behaviour criteria Degradation Failure rate Load cycles 

High scattering of failure Ø + Ø 

No monotonic increase of failures over time – + Ø 

Damage mechanisms not identified or measurable – + + 

Influence factors of damage behaviour unknown – Ø Ø 

Chronological sequence of influence factors unknown Ø Ø – 

High criticality of damage or failure Ø + – 

 

Since degradation models depict the change of continuously increasing damage parameters (McPherson, 

2010), they are particularly suitable for time ranges with monotonically increasing system failures. If the 

damage mechanisms are unknown, degradation models cannot be created. Especially when modelling 

the lifetime using load cycles, the simulation of chronological sequence of influencing factors is 

important (Haibach, 2006). If a system is safety-critical, a lifetime prognosis must also enable a risk 

analysis (Si et al., 2011). This is only possible by statistically determining the failure rate. 

3.3 Criteria for the selection of suitable modelling methods 

When a model approach adapted to the damage behavior of the system has been determined, a 

compatible modelling method for lifetime prognosis can be selected (see Table 3). Which of the 

possible types of methods are most suitable depends for example on the maximum allowed 

computational effort (Li et al., 2019) and the present theoretical knowledge (Zagórowska et al., 2020). 

However, selection criteria that enable an objective evaluation and do not depend on individual 

properties and requirements of the user refer to the available measurement values and physical 

properties of the considered system (Härtler, 2016). With the help of the advantages and disadvantages 

of different types of methods described in Table 1, criteria for the selection of modelling methods 

were prepared based on the available data. An evaluation of the fulfillment of the criteria by the 

individual methods was carried out analogously to Chapter 3.2. The results are summarized in Table 5. 

Table 5. Suitability of modelling methods for different data criteria 

data criteria Computer 

aided 

Mathe-

matical 

Curve 

fitting 

Intelligent Indirect Stochastic 

Data of system 

properties not available 

– – Ø + + + 

No measurement data 

of damage mechanisms  

+ Ø – – – – 

No lifetime data of 

similar systems 

+ + Ø – + – 

No in situ data of the 

considered system 

+ + Ø Ø + Ø 

Small amount of 

measurement data 

+ + Ø – Ø – 

Low quality of data  Ø Ø Ø Ø + – 

 

In the case of no, few or imprecise measurement data, particularly stochastic and intelligent methods 

are unsuitable. Mathematical modelling and computer-aided methods require sufficient information 

about the system properties. For curve fitting measurement data of the damage mechanisms and, in the 

case of semi-empirical variants, system properties are required. Indirect methods are often used to 

optimize measurement values, which is difficult with small amounts of data (Heng et al., 2009). 

3.4 Application of the procedure to an electric powertrain 

Based on previous research (Bauer and Inkermann, 2022), the developed procedure was applied to an 

electric motor and a battery for electric powertrains of aircraft. To do this, the damage behavior was 

evaluated first using the criteria from Table 4. It should be noted that the electric motor is composed of 

several entities with different damage behavior, including ball bearings, rotor and coils (Al Badawi 

and AlMuhaini, 2015). This leads to lifetime heterogeneity and makes an evaluation more difficult.  
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The damage behavior is summarized in Table 6. The most important difference between the battery 

and the electric motor is that damage and failures increase monotonously over time in the battery 

(Rechkemmer, 2020), but not in the electric motor because of early failures due to manufacturing 

faults or overloading (Mellah and Hemsas, 2022), which increases scattering of system errors. 

Table 6. Damage behaviour of battery and electric motor 

Damage behaviour criteria Battery Electric motor 

High scattering of failure No Yes 

No monotonic increase of failures over time No Yes 

Damage mechanisms not identified or measurable No No 

Influence factors of damage behaviour unknown No No 

Chronological sequence of influence factors unknown No No 

High criticality of damage or failure Failure is critical Failure is critical 

 

Based on the evaluation of the damage behavior and Table 4 with the criteria for the selection of model 

approaches for lifetime prognosis, it follows that modelling using load cycles is less suitable for batteries 

because of the criticality of failures in air traffic. The same applies to electric motors, for which 

degradation models are also rather unsuitable due to scattering and non-monotony of failures. An 

exception is the insulation of the motor coils, which is subject to thermal degradation (Zhu et al., 2014).  

To determine suitable modelling methods, the compatibility with remaining model approaches should be 

evaluated first. For the battery, the approaches of degradation and failure rate were assessed as suitable. 

Both are compatible with almost all types of processes according to Table 3. Therefore, available 

measurement data are important for the selection of modelling methods. For early system design, the 

following boundary conditions are assumed with regard to the data criteria listed in Table 5: 

• System properties not known exactly, comparison with similar systems necessary 

• Measurement data of damage mechanisms available from similar systems for other applications 

• No in situ data of the considered system available 

• Chronological sequence of influence factors widely known 

• few data from very similar systems, many data from systems that are only of the same type 

• Good accuracy of measurement data (often from laboratory tests) 

Under these conditions, physical modelling methods can only be used by estimating system properties, 

which can reduce their accuracy. Although indirect methods can be used in principle, but they do not 

make sense in the case of precise measurements of damage mechanisms from different systems, as 

they often only serve to further improve the measurement data of a system (Heng et al., 2009). The 

available data are also less suitable for intelligent and stochastic methods, since many measurements 

from systems which are as similar as possible required. Existing data can be sufficient for curve 

fitting, but because of differences between the associated systems, model parameters must be 

estimated, which can significantly reduce the accuracy of the prognosis (Bauer and Inkermann, 2022). 

In general, due to the lack of in situ data of the considered system, only similarity-based empirical 

methods can be used. Overall, the approach-method combinations summarized in Table 7 are assessed 

as useful for batteries and electric motors. For a final selection of approaches and methods, the exact 

requirements of the model, the usability of available data for the considered application and limitations 

such as maximum computational effort are important. 

Table 7. Suitable approach-method combinations for battery and electric motor 

Subsystem Model approach Modelling method 

 

Battery 

Degradation Computer-aided methods 

Mathematical modelling 

Curve fitting (similarity-based) 

Intelligent methods (similarity-based) 

 

Electric motor 

Load cycles 

(only if few data available) 

Computer-aided methods 

Mathematical modelling 

Curve fitting (similarity-based) 

Failure rate 

(with enough data of similar systems) 

Stochastic methods (similarity-based) 

Intelligent methods (similarity-based) 
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4 CONCLUSION AND DISCUSSION 

Lifetime prognoses of systems and their constituting entities are an important prerequisite to ensure 

security, availability and cost reduction of products, as well as to plan life cycle options in early design 

stages. In this contribution, a separation of lifetime models to model approaches and modelling methods 

was developed. Model approaches like degradation or failure rate were explained and an overview of 

different modelling methods was created to highlight their advantages and disadvantages. Depending on 

system, damage behaviour and available data, the existing model approaches and modelling methods are 

differently suitable for a precise lifetime prediction. A procedure was proposed to help to select suitable 

approach-method combinations for lifetime prognosis. To answer the main research question of this 

paper, fundamental selection criteria for lifetime models were defined. The compatibility of method 

types with the different model approaches was assessed and the results were presented. Subsequently, 

criteria for the damage behavior (e.g. scattering and criticality of failure) of the considered system for the 

selection of model approaches and criteria for the available data (e.g. data quality, data from similar 

systems) for the selection of modelling methods were defined. The selection procedure developed was 

applied to the example of an electric motor and a battery for electric powertrains of aircraft in early 

design stages. Finally, the model approaches assessed to be suitable and the associated modelling 

methods were summarized. The proposed selection procedure is only suitable for pre-selecting 

approaches and methods for lifetime modelling. The final selection depends on the requirements and the 

individual properties of the system and its use cases. Furthermore, an evaluation of the selection criteria 

must be carried out partly subjectively by estimating the influence of data properties for entire types of 

modelling methods with the help of literature. The differing properties of individual examples of 

methods for lifetime modelling are partially neglected. In addition, no hybrid modelling methods were 

considered in this article. In further researches, lifetime models for entities of an electrical powertrain for 

aircraft should be developed. The pre-selection procedure for lifetime models proposed in this article 

helps to develop lifetime models adapted to the use case and the entities. 
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