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In this paper, by using the technique of product nets, we are able to prove a 
weak convergence theorem for an almost-orbit of right reversible semigroups of 
nonexpansine mappings in a general Banach space X with Opial's condition. This 
includes many well known results as special cases. Let C be a weakly compact 
subset of a Banach space X with Opial's condition. Let G be a right reversible 
semitopological semigroup, S — {T(t) : t £ G} a nonexpansive semigroup on C, 
and «(•) an almost-orbit of <S. Then {u(t) : t £ G} is weakly convergent (to a 
common fixed point of S) if and only if it is weakly asymptotically regular (that 
is, {u(ht) — u(t)} converges to 0 weakly for every h £ G). 

1. INTRODUCTION 

Let C be a nonempty subset of a Banach space X. A mapping T : C >-¥ C is said 
to be nonexpansive if 

\\Tx-Ty\\^\\x-y\\ 

for every x,y £ C. In [8], Opial proved the first weak convergence theorem in a 
Hilbert space: Let C be a bounded closed convex subset of a Hilbert space H and 
let T : C >-¥ C be a nonexpansive mapping. Then for each x £ C, {Tnx} converges 
weakly to a fixed point of T if and only if T is weakly asymptotically regular, that is, 
Tn+1x — Tnx converges weakly to 0. 

Let G be a semitopological semigroup , that is, G is a semigroup with a Hausdorff 
topology such that for each s £ G the mappings s t • s and s s • t from G 
to G are continuous. G is called right reversible if any two closed left ideals of G 
have nonvoid intersection. In this case, (G, ̂ ) is a directed system when the binary 
relation on G is defined by a < b if and only if { a } U Ga D { 6 } U Gb, for 
a, b £ G. Right reversible semigroups include all commutative semigroups and all 
semitopological semigroups which are right amenable as discrete semigroups. Now let 
S = {T(t) : t £ G } be a family of self-mappings of C. Recall that S is said to be a 
nonexpansive semigroup on C if the following conditions are satisfied: 

(1) T(ts)x = T(t)T(s)x for all t, s £ G and x £ C, 
(2) ||T(t)x - T(t)y\\ ^ \\x - y\\ for all t £ G and x, y £ C. 
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We denote by F(S) the set of all common fixed points of T(t), t € G. 
We say that a function u(-) : G *-¥ C is an almost-orbit of <S if 

(1) lim\sup\\u(ht)-T(h)u(t)\\} = 0. 

It is clear that for each x € C, the orbit {T(t)x) is an almost-orbit of S. 
A Banach space X is said to satisfy Opial's condition if { x a } converges weakly to 

x implies 
limsup | | x a — x\\ < limsup\\xa — y\\ 

a a 
for all y 7 ^ X . 

In recent years, much effort has been devoted to studying asymptotic behaviour for 
(asymptotically) nonexpansive mappings and semigroups, (See [1, 2, 3, 4, 5, 6, 7, 9, 
10].) Most of the work was carried out in a uniformly convex Banach space whose 
norm is either Frechet differentiable or satisfying Opial's condition. 

In the present article, by using the technique of product nets, we are able to 
prove a weak convergence theorem for an almost-orbit of right reversible semigroups 
of nonexpansine mappings in a general Banach space X with Opial's condition. This 
includes many known results as special cases. Our theorem seems to be new, even if 
X is a uniformly convex Banach space, since C need not to be convex and G is a 
non-commutative semigroup. 

2. MAIN RESULTS 

THEOREM 1 . Let C be a wea&iy compact subset of a Banach space X with 
Opial's condition. Let G be a right reversible semitopological semigroup, let S = 
{T(t) : t € G} be a nonexpansive semigroup on C, and let u(-) be an almost-orbit 
of S. Then {u(t) : t € G} is weakly convergent (to a fixed point) if and only if it is 
weakly asymptotically regular (that is, u(ht) — u(t) converges weakly to 0 for every 
heG). 

To prove Theorem 1, we need the following simple lemmas. 

LEMMA 2 . (See [2].) Let {vi(t) :teG} and {v2(t) : t e G} be almost-orbits of 
S. Then, lim||ui(£) - ^2(*)| | exists. In particular, for each f € ^ ( S ) , lim||wi(t) - / | | 

exists. 

LEMMA 3 . Let C be a weakly compact subset of a Banach space X with Opial's 
condition, S = {T(t) : t 6 G} a nonexpansive semigroup on C, and u(-) an almost-
orbit of S. Suppose that every weak limit point of {u(t) : t 6 G} is a common fixed 
point of S. Then {u(t) :t e G} converges weakly. 
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PROOF: Let LUW(U) be the set of all weak limit points of a subnet of the net 

{u(t) : ( £ ( ? } . Clearly, CJW(U) is nonvoid since C is a weakly compact subset. Let 

Vi £ oiw(u), i = 1,2 and v\ = w — Um u(ta), v2 = w — lim u(tß), where { t Q : a € ^4} 
a€.A / 3 6 B 

and {tß : ß £ B} are two subnets of G, for directed sets A and B . Suppose that 

v\ ^ v2 • Then, by Lemma 2 and Opial's condition 

Um||u(i) - vi\\ = tim\\u(ta) - vi\\ 

< lim | |u(t a ) - « a | | 
a£A 

= lig.\\u(t)-v2\\. 

In the same way, we have lim||u(£) — v2\\ < lim||u(i) — This is a contradiction. 

Consequently, v\ = v2 and hence we have the desired result. D 

PROOF OF THEOREM 1: We only need to prove the "if" part. Suppose that 

u(ht) — u(t) converges weakly to 0 for every h £ G. In view of Lemma 3, it is enough 

to show that u)w(u) C F(S). Let y £ uw(u) and {ta : a £ A} be a subnet of G such 

that 

w — lim u(ta) = y. 

Then for any h £ G 

w - lim u(hta) = y. 

Let Ii be the family of all finite nonempty subset of X* (the dual of X), N the set 

of positive integers, and I — h x N — {(B,n) : B £ Ix, n £ N}. Then, for any 

ß = (B,n) £ I, we write Piß — B and P2ß = n. In this case, ( 7 , ^ ) is a directed 

system when the binary relation "<"on I is defined by ßi ^ ß2 if and only if 

Pißi Q Piß2 and P2ßx ^ P2ß2. 

Let r be the weak topology on C. Let 

Oß = {x £ C : \f(x) - f(y)\ < V/ £ P,ß) for ß£l. 

It is easily seen that {Oß : ß £ 1} is a r-open base at y and Oß1 D Oß2 if ß\ ^ ß2. 

Put 

<p(t) = sup||u(At) - T{h)u(t)\\, 
h€G 

b(t) = limsup||u(ttQ) - y\\, 
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and 

b = inf{&(«) :seG}. 

For P £ I, one can choose sp € G such that 

(2) b{sp)^b+~^. 

Since 

b(st) = limsup||u(st£Q) — y\ 
^ limsup||u(sttQ) — T(s)j/|| (Opial's condition) 

^ limsup(||u(atta) - T{s)u{tta)\\ + \\T(s)u{tta) - T(s)y\\) 
^ limsup||u(riQ) - y\\ 

= b(t) 
for all t,s € G, we have 

(3) b ̂  b{tsp) ̂  b(s0) ̂ b+-^-
for all t € G and P e l . Since for h € G, u(hspta) converges weakly to y as a € A, 
for each P & I there exists ap € A such that 

(4) u(hspta) 6 0/3 
for all a ^ ap. One can also choose ap & A such that 

(5) sup</?(tta) < - ! - r 

teG -rip 
for all a^- ap. It then follows from (2) that there exists ape A such that 

(6) Hspta)-y\\^b+-^, 
for all a ^ «1. Since (3) implies that b(hsp) = limsup||u(/is /3tQ) - y\\ ^ 6, aeA 
there exists ap € A such that 

(7) ap^ap(i = 1,2,3) 
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and 

(8) \Hhsr3ta,)-y\\>b-~. 
Now (4), (6) and (7) imply that 

(9) u(hsata0) 6 O0 

and 

(9) implies that u(hspta0) is convergent weakly to y. Combining (5) with (8) and (10), 
we have 

\\u(hspta0) - T(h)y\\ ̂  \\u(hspta0) - T(h)u(spta)\\ + \\T(h)u(s0ta) - T(h)y\\ 

^ \Hhs0ta/})-y\\ + —. 
This implies that limsup||u(/is^tQ^) -T(h)y\\ ^ limsup||u(/is/gtQ / J) -y\\. By Opial's 

condition, we have T(h)y = y. This completes the proof. D 
Now, using Theorem 1, we provide weak convergence theorems for almost-orbits 

of nonexpansive mappings and semigroups. Let T be a nonexpansive mapping from C 
into itself and let {xn} be an almost-orbit of T , that is, 

lim [sup | | i n + m - T m x n | | l = 0. 

Let S = {T(t) : t ^ 0} be a nonexpansive semigroup on C and u(-) : R+ —> C an 
almost-orbit of 5 , that is, 

lim[sup||u(t + s) - T(t)u(s)||] = 0. 

Put G = { 0 , 1 , 2 , . . . } , 5 = { r : t e G} in Theorem 1. Then we get the following weak 
convergence theorem for nonexpansive mappings. 
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THEOREM 4 . Let X be a Banach space with Opial's condition, C a weakly 
compact subset of X, T : C >-> C a nonexpansive mapping, and {xn} an almost-orbit 
of T. Then {xn} is weakly convergent (to a fixed point ofT) if and only if it is weaJdy 
asymptotically regular (that is, { x n + i — x „ } converges to 0 weakly). 

Put G = R+, S = {T(t) : t 6 G) in Theorem 1. We get a weak convergence 
theorem for nonexpansive semigroups. 

THEOREM 5 . Let X be a Banach space with Opial's condition, C a weakly 
compact subset of X, S = {T(t) : T ^ 0} a nonexpansive semigroup, and u(-) an 
almost-orbit of S. Then {u ( t ) } converges weakly to some point of F(S) if and only 
if it is weakly asymptotically regular (that is, {u(t + h) - u(t)} converges weakly to 0 
as t -¥ 0 for all h^O). 
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