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We study the equilibrium of two phases following gravity segregation under the
influence of capillary heterogeneity. Such processes are important in a number
of porous media applications, e.g. determining reservoir composition, secondary
migration, gravity drainage enhanced oil recovery and CO2 storage in aquifers.
Solutions are derived for three-dimensional saturation distribution Sw(x, y, z) and
given as an analytical formula apart from a constant P0

c which is determined by
numerical integration. The first solution assumes hydrostatic pressure and applies to
cases without capillary entry pressure (Pc(Sw = 1) = 0). The solution can be used
for validation of numerical simulations and we show a close match for a number of
cases. A second analytical solution is derived, extending the first, to cases of random
log-normally distributed permeability fields. A formula for ensemble average saturation
solution is presented and a comparison to solutions of various realizations is discussed.
When capillary entry pressure is present, the solution based on hydrostatic pressure
may be inaccurate due to entry pressure trapping which occurs when regions of Sw= 1
are present. Using numerical simulation, we extend the solution to include estimations
of entry pressure trapping for a range of parameters and show its applicability. The
comparison of analytical and numerical results helps illustrate and draw insight on
the trapping mechanism.

Key words: porous media

1. Introduction
Two-phase gravity segregation in porous media is a process by which phases

separate into layers according to their density, with the heavier (e.g. liquid) phase
at the bottom and lighter (e.g. gas) phase at the top. When steady-state is reached,
the phases are in equilibrium, flow ceases and phases are perfectly layered. Capillary
pressure effects substantially impact this process leading to saturation gradients,
i.e. regions of mixed phases. Spatial variation of capillary pressure functions with
permeability is often referred to as capillary heterogeneity and has an even more
significant impact, leading to trapped, immobile regions in which the fluid and
gas do not segregate at all. This process is important in a number of applications
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890 A3-2 A. Rabinovich and K. B. Cheng

pertaining to various scales, from reservoir to laboratory, e.g. determining reservoir
composition, secondary migration, gravity drainage enhanced oil recovery and CO2
storage in aquifers. In this work we derive an analytical solution to gravity–capillary
equilibrium saturation distribution and apply it to investigate many different cases. Our
main focus is comparing the analytical solution to dynamic numerical simulations for
validation and to understand discrepancies between them. This allows us to determine
the capabilities and limitations of both solutions as well as to obtain insight on
capillary heterogeneity trapping.

A large body of existing literature deals with gravity segregation under the influence
of capillary pressure effects. The first class of investigations aim at characterizing
hydrocarbon reservoirs (Lee 1989; Wheaton 1991; Shapiro & Stenby 1996; Montel
et al. 2007; Bedrikovetsky 2013). These are closely related to this work since they
consider no external pressure gradient (e.g. wells) or natural background flow and
are interested in the equilibrium conditions of the phases under gravity and capillary
forces. However, they focus on determining the composition of the phases taking
into account thermal gradients, whereas our focus is on the impact of capillary
heterogeneity. Additional relevant literature is related to gravity drainage enhanced oil
recovery (e.g. Hagoort 1980; Donato, Tavassoli & Blunt 2006), yet these investigations
also tend to simplify the effects of capillarity.

Capillary heterogeneity effects are studied in a rich body of literature related to
geologic carbon storage (Perrin & Benson 2010; Krevor et al. 2011; Krause 2012;
Wei et al. 2014; Kuo & Benson 2015; Li & Benson 2015; Pini & Benson 2017). In
this application, capillarity is responsible for trapping of CO2 within the surrounding
aquifer brine and is considered to be of paramount importance for safe and long
term sequestration (Hovorka et al. 2004; Han et al. 2010; Pentland et al. 2011; Deng
et al. 2012; Krevor et al. 2012; Green & Ennis-King 2013; Krevor et al. 2015). When
considering the post-injection migration and trapping of CO2 it is often assumed that
gravity and capillary forces dominate, as we assume in this work. Many numerical
and analytical investigations have been published in effort to estimate the migration
of CO2 following injection into an aquifer.

The first and most common type of study assumes that gravity segregation
occurs rapidly and therefore the problem is reduced to a two-dimensional (or
one-dimensional) lateral migration of the plume, occurring near the caprock at
the aquifer top. Then the vertical equilibrium approximation can be employed,
which has been implemented in numerical models and analytical solutions (often
assuming a sharp interface) (Nordbotten & Celia 2006; Dentz & Tartakovsky 2009;
Gasda, Nordbotten & Celia 2009; MacMinn & Juanes 2009; Juanes, MacMinn &
Szulczewski 2010; Loubens & Ramakrishnan 2011; Nordbotten & Dahle 2011; Gasda,
Nilsen & Dahle 2013; Andersen, Gasda & Nilsen 2015; Nilsen, Lie & Andersen 2016;
Malekzadeh, Heidari & Dusseault 2017). Similarly, gravity current models have been
proposed for the migration of CO2 beneath a confining boundary (Hesse et al. 2007;
Hesse, Orr & Tchelepi 2008; Golding & Huppert 2010; Golding et al. 2011).

A second type of study, more relevant to this work, focuses on the trapping that
occurs during vertical migration of the CO2 plume as it rises towards the impermeable
caprock (Bryant, Lakshminarasimhan & Pope 2006; Juanes et al. 2006; Ide, Jessen
& Orr 2007; Hesse & Woods 2010; Gershenzon et al. 2014; Li & Benson 2015;
Trevisan, Krishnamurthy & Meckel 2017a). In particular, the literature related to
upscaling CO2 storage migration employs these types of vertical migration flow
simulations (Mouche, Hayek & Mügler 2010; Saadatpoor, Bryant & Sepehrnoori
2011; Behzadi & Alvarado 2012; Rabinovich, Itthisawatpan & Durlofsky 2015). Due
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Gravity–capillary equilibrium 890 A3-3

to the complexity of solving three-dimensional dynamic CO2 migration problems
(heterogeneity and time evolution must be incorporated to model trapping accurately)
the models used previously were all numerical. Using numerical simulation for
flow with capillary heterogeneity often encounters difficulties. The computational
time becomes extremely long with increasing capillary effects and convergence is
more difficult. Some ambiguities related to the solutions have also been reported
(Rabinovich et al. 2015) and rigorous benchmarking has yet to be conducted.
Furthermore, for stochastic analysis, numerical simulations must be used via a Monte
Carlo approach, which is most likely not feasible due to the computational demand.
Analytical solutions are therefore instrumental to CO2 vertical migration modelling
and can also offer additional insight into the physical processes.

In this work, we derive an analytical solution to three-dimensional (3-D) saturation
distribution in gravity segregation with capillary heterogeneity at equilibrium
conditions. The solution assumes hydrostatic pressure variation and takes advantage
of the capillary pressure – saturation constitutive relation Pc(Sw) to derive a formula
for the saturation spatial variations with permeability and porosity. While similar
solutions have been derived in the past by Nordbotten & Dahle (2010), Nordbotten &
Celia (2011) and Smith (2012), this work has a number of significant novelties. First,
the solution is investigated considering three-dimensional problems with significant
capillary heterogeneity. Comparisons with 3-D simulations are held to show how the
solution can validate numerical codes and also to gain insight by analysing differences
in the solutions. Second, an extension of the analytic solution is derived for random
permeability fields. Finally, another extension is presented incorporating capillary
entry pressure trapping in the solution, without the use of percolation considerations.

The solution is derived separately for two types of Pc curves: with and without entry
pressure. A wide variety of cases with conditions ranging from gravity dominated to
capillary limit are studied by comparing the solution against numerical simulations.
We show that for the case with capillary entry pressure a special and well known
type of entry pressure trapping occurs which does not comply with the hydrostatic
assumption and thus fails to be estimated by the analytical solution.

Capillary trapping of fluids is the result of pore scale mechanisms related to surface
tension and snap-off phenomenon (Lenormand, Zarcone & Sarr 1983; Pinder & Gray
2008; Dullien 2012). However, we focus on the macroscale in which these processes
are encapsulated in the Pc function. We find that trapping in equilibrium conditions
occurs due to capillary heterogeneity in two different configurations. The first is
driven by a capillary pressure vertical gradient in combination with Pc function spatial
variations. The second is a result of entry pressure differences associated with regions
which are fully wetting phase saturated. This entry pressure trapping is not captured
by the analytical solution. Previous literature has addressed this phenomenon and
invasion percolation methods have been developed to model the process (Ioannidis,
Chatzis & Dullien 1996; Carruthers & van Wijngaarden 2000), mostly in numerical
algorithms (Oldenburg, Mukhopadhyay & Cihan 2016; Trevisan, Illangasekare &
Meckel 2017b) or for upscaling purposes (Yortsos et al. 1993; Nooruddin & Blunt
2018). We take a different approach here, modifying the analytical solution using
a heuristic method based on matching simulation trapping results. For a range of
parameter values, the new solution is shown to estimate the overall trapped CO2
adequately.

One of the major challenges in flow modelling of subsurface formations is the
uncertainty associated with the porous rock properties. Permeability (k) is usually
measured in a small number of locations while it typically varies by orders of
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890 A3-4 A. Rabinovich and K. B. Cheng

magnitude over small length scales. It is therefore common to model k as random and
seek the expected value of the flow solution (Haldorsen, Brand & Macdonald 1987;
Dongxiao & Tchelepi 1999; Rabinovich, Dagan & Miloh 2012; Cheng, Rabinovich
& Dagan 2019). In this work we extend the problem for the case without entry
pressure effects to include log-normally distributed random k. An analytical solution
to the expected value of saturation is obtained by ensemble averaging and the result
is validated by comparison to solutions of many realizations.

The paper is organized as follows. In § 2 we detail the problem and relevant
equations. Section 3 presents derivation of the analytical solution including an
ensemble mean solution for the case of random k. Section 4 presents results for
cases without entry pressure trapping (van Genuchten type Pc). Section 5 discusses
results for Brooks–Corey Pc, which incorporates entry pressure trapping, and presents
a method for estimating the trapped CO2. The summary and conclusions of this work
are given in § 6.

2. Problem statement
We consider a porous medium surrounded by impermeable, no-flow boundaries.

This could represent any type of closed reservoir in a field study or sealed rock
sample in a laboratory experiment. The medium contains two phases – wetting (w),
e.g. a liquid and non-wetting (nw), e.g. a gas, with different densities ρw and ρnw. The
phases are distributed throughout the domain with some initial saturation Sinit

w (x, y, z),
where Sw is wetting phase saturation, Sw + Snw = 1 and a Cartesian system is used
for spatial coordinates. The phases will migrate due to buoyancy and capillary forces
until a steady-state is reached, when the fluid and gas are in equilibrium. We seek the
saturation distribution Sw(x, y, z) at equilibrium, i.e. the final location of the phases.

The equations for the general problem described above are considered to be those
describing immiscible flow of two incompressible phases in an incompressible rock
and given by mass conservation

φ
∂Sj

∂t
+∇ · uj = 0, (2.1)

and Darcy’s law

uj =−
krj

µj
k · ∇(pj + ρjgz), (2.2)

where φ is the porosity of the rock, krj the relative permeability to phase j ( j=w or
j= nw), µj the viscosity of phase j, pj the pressure of phase j, uj the Darcy velocity
of phase j, k the absolute permeability tensor, g is gravitational acceleration and z is
the vertical coordinate. Pressures of the non-wetting phase and the wetting phase are
related by

pnw − pw = Pc(Sw), (2.3)

where Pc(Sw) is the capillary pressure curve.
When considering gravity driven flow, as opposed to flow driven by injection or

production wells, capillary pressure is usually significant and different structures
of Pc(Sw) curves will have a drastic effect on the solution. While some gravity
segregation models assume the same curves throughout the domain, it is generally
more accurate to take into account the spatial change of Pc(Sw). This is typically
modelled using the Leverett J-function as follows:

Pc(Sw, k, φ)= αC

√
φ

k
J(Sw), (2.4)
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Gravity–capillary equilibrium 890 A3-5

where C is a fitting parameter and α is the J-function scaling coefficient, which
accounts for interfacial tension, contact angle and unit conversion. Isotropic permeabi-
lity is assumed here so that k is a scalar function. This is not a requirement for
the derivation, but assumed for simplicity to avoid defining Pc as a function of the
directional components of k (often taken as the average). Two of the most widely
used J-functions are the van Genuchten (VG) (van Genuchten 1980) & Brooks–Corey
(BC) (Brooks & Corey 1966) models given by

JVG(Sw)= [(S̃w)
−1/m
− 1]1−m (2.5)

and
JBC(Sw)= (S̃w)

−1/λ, (2.6)

respectively, where S̃w = (Sw − Swi)/(1 − Swi), Swi is the irreducible water saturation
and λ, m are fitting parameters. It is evident that hysteresis is not considered in our
capillary pressure models (Hilfer 2006; Pini & Benson 2017). Furthermore, the BC
model incorporates capillary entry pressure, i.e. Pc(Sw= 1) 6= 0 while in the VG model
entry pressure is zero.

We are interested in the solution after the phases have equilibrated and there is no
longer any flow. Under these conditions phase velocities are zero everywhere, i.e. uj=

0, and we immediately obtain from (2.2) that

pw + ρwgz= const., (2.7a)
pnw + ρnwgz= const., (2.7b)

which is the hydrostatic phase pressure variation. Subtracting (2.7a) from (2.7b) leads
to an expression for the capillary pressure distribution

Pc = P0
c +1ρgz, (2.8)

where 1ρ = ρw − ρnw and P0
c (the capillary pressure at z = 0) is a constant to be

determined. Next, we integrate (2.1) over the entire domain and apply the divergence
theorem to arrive at the equation∫

V
S̃w(x, y, z) dV =

∫
V

S̃init
w dV, (2.9)

where the integration here is a volume integral (i.e. triple integral) over the domain
volume V and S̃init

w = (S
init
w − Swi)/(1− Swi). Equation (2.9) is simply a statement that

total saturation in the domain remains constant over time since we consider a closed
reservoir with no flow through the boundaries. It can be expressed in terms of average
saturation, i.e. 〈S̃w〉 = 〈S̃init

w 〉, where 〈〉 denotes averaging over the entire domain.
The final equation for our problem is the capillary pressure-saturation relationship

which can be generally expressed as Pc= f (φ, k, Sw), where f is some known function
obtained through laboratory experiments on rock samples. In this work, f is given by
(2.4) and (2.5) or (2.6). Equations (2.8), (2.9) and (2.4) are a system of three equations
which can be solved to obtain P0

c , Pc(z) and Sw(x, y, z). In general, the saturation
solution will be obtained by inverting (2.4) and will depend on spatial variation of
porosity and permeability as well as the hydrostatic capillary pressure.

We now formulate the governing equations in dimensionless form by defining the
following non-dimensional parameters: Nb = αC/(1ρgh2), k̃= k/h2, P̃0

c = P0
c/(1ρgh),
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890 A3-6 A. Rabinovich and K. B. Cheng

P̃c=Pc/(1ρgh) and z̃= z/h, where h is the domain height and Nb is the Bond number
representing a ratio between capillary and gravity forces. Substituting these in the
governing equations (2.8) and (2.4) we arrive at

P̃c = P̃0
c + z̃, (2.10)

and

P̃c =Nb

√
φ

k̃
J(Sw). (2.11)

The third governing equation is already dimensionless and remains in the form
presented in (2.9).

2.1. Problem assumptions
All the assumptions used in the formulation and in the next section for deriving
the solution are detailed as follows: (i) flow obeying Darcy’s law, (ii) immiscible
fluids, (iii) incompressible medium and fluids, (iv) isotropic permeability, (v) Leverett
J-function scaling of the capillary pressure, (vi) J-function of type VG or BC and
(vii) equilibrium conditions.

3. Analytical solution

We now derive a solution to the problem formulated in the previous section. It
is important to point out that the solution described by (2.9)–(2.11) does not fully
account for entry-pressure trapping of phases. When entry pressure is introduced in
(2.6), regions with non-zero capillary pressure can be fully saturated with water. This

occurs when P̃c < P̃e, where P̃e = Nb

√
φ/k̃ is the entry pressure. The non-wetting

phase will invade these regions only if the surrounding capillary pressure exceeds P̃e.
In these regions, equation (2.10) does not hold and yet the condition uj = 0 is still
fulfilled. We will refer to this type of trapping involving fully saturated regions as
entry pressure trapping. In the following, we continue to derive a solution without
considering entry pressure trapping, which will be discussed in detail in § 5.

Taking capillary pressure described by (2.11) together with a J-function of the form
in (2.5) or (2.6), leads to P̃c> 0. However, equation (2.10) is not compatible with this
requirement and may result in negative P̃c values. We therefore modify (2.10) to avoid
negative capillary pressure

P̃c =

{
P̃0

c + z̃, z̃>−P̃0
c

0, z̃ 6−P̃0
c .

(3.1)

We note that we have considered here 1ρ > 0 (heavier wetting phase) by convention,
however, this equation can apply to both cases of 1ρ > 0 and 1ρ < 0 (heavier non-
wetting phase). In the first case, z= 0 is at the top of the domain so that Pc decreases
with depth, while for the latter case, z = 0 is at the bottom of the domain and Pc

increases with depth.
We can now obtain a formula for the saturation distribution by substituting (2.11)

with the J-function from (2.6) or (2.5) in (3.1) and solving for S̃w. This results in the
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Gravity–capillary equilibrium 890 A3-7

solution

S̃w =


 1

Nb

√
k̃(x, y, z)
φ(x, y, z)

(P̃0
c + z̃)

1/(1−m)

+ 1

−m

, z̃>−P̃0
c

1, z̃ 6−P̃0
c,

(3.2)

for the VG J-function and

S̃w =


 1

Nb

√
k̃(x, y, z)
φ(x, y, z)

(P̃0
c + z̃)

−λ , z̃> P̃e − P̃0
c

1, z̃ 6 P̃e − P̃0
c,

(3.3)

for the BC J-function. Despite the exclusion of capillary entry trapping in the solution,
there is still an impact of P̃e, which can be seen in (3.3), where saturation is 1 if
P̃c 6 P̃e.

The constant P̃0
c is obtained by substituting (3.2) or (3.3) in (2.9) and solving the

integral equation. For some special cases the integral can be solved analytically. This
is the case for a homogeneous medium (k = const. and φ = const.) with BC type
capillary pressure, which leads to the equations

(P̃0
c)

1−λ
− (1+ P̃0

c)
1−λ
= (λ− 1)P̃λe

∫
V

S̃init
w dV, if P̃e − P̃0

c > 1, (3.4a)

P̃0
c −

P̃λe(P̃
0
c)

1−λ

1− λ
=
λP̃e

λ− 1
− 1+

∫
V

S̃init
w dV if P̃e − P̃0

c < 1. (3.4b)

However, for most cases with general functions k̃(x, y, z) and φ(x, y, z), equation (2.9)
can be solved numerically to obtain P̃0

c , particularly when considering discrete, non-
continuous, permeability and porosity distributions. This is the approach we take to
obtain the results presented in this work.

3.1. Ensemble mean solution
Many applications of flow modelling in porous rocks must incorporate permeability
uncertainty, i.e. k values are generally unknown and vary by orders of magnitude over
small distances. A common approach for dealing with this problem is to consider k
as a random space function (RSF) with known statistical properties and to seek the
ensemble mean of the variable of interest. We now extend the previous formulation
by considering k to be a stationary and isotropic RSF, log-normally distributed so that
the Y = ln k (log permeability) is characterized by the mean 〈Y〉 = ln kG and variance
σ 2

y . The probability density function of Y is then given by

F(Y)=
1√

2πσ 2
y

exp

[
−(Y − ln kG)

2

2σ 2
y

]
. (3.5)

The ensemble average over many realizations of permeability k can be calculated by
the following expression:

〈S̃w〉E =

∫
∞

−∞

S̃w( ỹ, z̃) · F( ỹ ) dỹ, (3.6)

where 〈〉E denotes ensemble average (or expected value) and ỹ= ln k̃.
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890 A3-8 A. Rabinovich and K. B. Cheng

First, we consider the case of VG capillary pressure. Substituting (3.2) in
equation, (3.6) we arrive at

〈S̃w〉E =


∫
∞

−∞

[
A(P̃0

c, z̃) exp[
ỹ

2(1−m)
] + 1

]−m

F( ỹ ) dỹ, z̃>−P̃0
c

1, z̃ 6−P̃0
c,

(3.7)

where A= [(P̃0
c + z̃)/(Nb

√
φ)]1/(1−m) includes all the deterministic parameters. Porosity

is considered here to be constant as it typically varies much less than k. The integral
in (3.7) can be solved numerically, however, we continue the derivation to arrive at
a fully analytical expression. The details are presented in appendix A and the final
result is given by

〈S̃w〉E =


∞∑

n=0

(
−m

n

)
{ AnB(n) erfc[C(n)], z̃>−P̃0

c

+A−n−mB(−n−m) erfc[−C(−n−m)] },
1, z̃ 6−P̃0

c,

(3.8)

where

B(χ)= 1
2 exp{χ [χσ 2

y − 4(m− 1) ln k̃G]/[8(m− 1)2]},

C(χ)=−
χσ 2

y + 2(m− 1)[2(m− 1) ln A− ln k̃G]√
8σ 2

y · (m− 1)
,

and
(
−m

n

)
=−m · (−m− 1) · . . . (−m− n+ 1)/n! are the binomial coefficients for any

real valued m and natural number n. The solution for mean saturation is thus given
by (3.8) together with (2.9) which is used for obtaining P̃0

c in A.
Next, we consider BC capillary pressure and substitute equation (3.3) into (3.6). The

piecewise function in this case depends on the variable of integration ỹ since P̃e is a
function of permeability. Therefore we separate the integration limits into two ranges
as follows:

〈S̃w〉E =

(
P̃0

c + z̃
Nb
√
φ

)−λ ∫ ỹ∗

−∞

exp[−λỹ/2]F( ỹ ) dỹ+
∫
∞

ỹ∗
F( ỹ ) dỹ, (3.9)

where ỹ∗ = −λ ln D is the value of ỹ in which P̃e = P̃0
c and D = (P̃0

c + z̃)/(Nb
√
φ).

Solving the integrals in (3.9) and rearranging we arrive at the solution

〈S̃w〉E =
1
2

D−λ exp
[
λ

(
λ

8
σ 2

y − 4 ln k̃G

)]
erfc

−2 ln k̃G − λ ln D+ λσ 2
y√

8σ 2
y


+

1
2

erfc

λ ln D+ ln k̃G√
2σ 2

y

 . (3.10)

The above solution does not incorporate entry-pressure trapping, as mentioned
previously regarding the formulation of (3.3).
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4. Results – no entry pressure
This section will present an analysis of the solution derived previously considering

cases without capillary entry pressure. Capillary pressure is modelled with the VG
relationship given by (2.4) with heterogeneous permeability k(x, y, z) and (2.5) as
the J−function. Throughout this work, analytical solutions will be compared to
numerical results obtained using Stanford’s General Purpose Research Simulator,
(known as GPRS) (Cao 2002) on simulation grids of 25 × 25 × 50. A finer grid of
50 × 50 × 100 was also used to test for convergence, which was in fact achieved.
Furthermore, in the following, the non-wetting phase will be addressed as CO2 and
the wetting phase as water, keeping in mind CO2 storage applications.

A permeability realization is generated using the sequential Gaussian simulation
(Deutsch & Journel 1992) module of the Stanford Geostatistical Modeling Software,
(known as SGeMS) (Remy, Boucher & Wu 2009). The realization is taken to
have geometric mean kG = 100 md, variance of log permeability σ 2

y = 1 (Y = ln k)
and dimensionless correlation length lx = ly = lz = 0.1 in the x, y and z directions
(non-dimensionalized by the domain length in the corresponding direction). The
dimensionless permeability is then substituted in (3.2) and together with the solution
to (2.9) for P̃0

c , we obtain the saturation distribution. Porosity is taken to be constant
(φ=0.25) for simplicity, since it usually has much smaller variations than permeability.
Values of 1ρg = 9.16 kPa m−1, m = 0.75 and h = 0.098 m are assumed and used
also for simulation input.

Figure 1 presents results for CO2 saturation distribution in a slice through the centre
of the cubical domain for three different Bond numbers: a small value of Nb= 7.8, a
medium value of Nb= 78 and a large value of Nb= 780. Parameter values in this work
often seem arbitrary because they are generally calculated from dimensional values
which are used as input in the simulator. The left-hand column of plots (a,c,e) are
analytical results while the right-hand column (b,d, f ) are simulation results. A uniform
initial mixture of water and CO2 is assumed in the domain, i.e. S̃init

w = 0.5 is used in
the simulations leading to 〈S̃init

w 〉 = 0.5. It is clear that there is an excellent agreement
between analytical and numerical solutions for all cases.

Saturation errors (E) are presented in table 1 (‘uniform initial’), calculated by
E=|Snumerical

w −Sanalytical
w | at every grid block. Mean error is calculated as 〈E〉, averaging

over all grid block errors. The portion of the domain with an error above a threshold
value is calculated by Ea = N(E > a)/N, i.e. the number of grid blocks with error
above threshold a divided by the total number of grid blocks (N). The results
presented in table 1 show small errors in all cases and for all measure types. The
above analysis is an example of utilizing the analytical solution for validation of
a numerical code. In this specific case the match is excellent, showing that the
simulation resolution is sufficiently high.

The case of small capillary pressure values corresponding to Nb = 7.8 (figure 1a,b)
shows a gravity dominated regime with almost complete segregation. Still, capillary
pressure is not completely negligible and some spatial variation of S̃CO2 is seen as
a result of trapping. The case of large capillary pressure corresponding to Nb = 780
(figure 1e, f ) shows a capillary dominated regime in which S̃CO2 is distributed
throughout the domain with many regions of trapped phases. Increasing values of Nb
above 780 or decreasing below 7.8 will not have a significant impact on the solutions
in figures 1(a,b) and 1(e, f ), respectively. The case of Nb = 78 in figure 1(c,d) shows
a gravity–capillary regime in which both partial segregation and capillary effects are
present.
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FIGURE 1. The CO2 saturation distribution in a vertical slice through the domain centre.
Plots (a,c,e) are results for analytical solution while (b,d, f ) are numerical simulations. The
first row of plots (a,b) are results for Nb = 7.8, the second row (c,d) is for Nb = 78 and
the last row (e, f ) is for Nb = 780.

Figure 2 presents plane averaged S̃w as a function of z̃. The transition from gravity
dominated to capillary dominated conditions can be observed in the profiles. For Nb=

7.8, P̃c values are small and gravity dominates, which results in significant segregation
between phases (red curve) and many values of S̃w = 0 or 1 in (3.2) (seen when
taking Nb→0). For Nb=780, the P̃c curve is large and therefore capillarity dominates,
leading to capillary limit saturation distribution (light blue line), i.e. variation of S̃w

with z̃ around the value of 〈S̃init
w 〉. The variations are a results of heterogeneity k̃(x, y, z)

and for a homogeneous medium the result would be simply S̃w=〈S̃init
w 〉. In between the
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FIGURE 2. Horizontally averaged saturation as a function of height for different values
of parameter Nb considering VG capillary pressure. Analytical results (solid lines) given
by (3.2) and (2.9) are compared with numerical simulation results (dashed lines).

Uniform initial Bottom injection initial
Nb = 7.8 Nb = 78 Nb = 780 Nb = 7.8 Nb = 78 Nb = 780

Mean error (〈E〉) 0.0024 0.0036 1.4× 10−5 5.2× 10−4 8.7× 10−4 5.3× 10−4

Error above 0.1 (E0.1) 0.03 % 0 % 0 % 0 % 0 % 0 %
Error above 0.05 (E0.05) 1 % 0.003 % 0 % 0.003 % 0 % 0 %

TABLE 1. Error E = |Snumerical
w (x, y, z) − Sanalytical

w (x, y, z)| for different values of Nb and
considering two cases of initial conditions: uniform S̃init

w = 0.5 and bottom injection of
〈S̃init

CO2
〉 = 0.1 (figure 3a).

two limits of gravity and capillary dominance, e.g. Nb = 78 in figure 2, both gravity
and capillary effects are apparent.

Figure 3(a–c) presents results for a different initial saturation distribution, i.e. not
a constant S̃init

w = 0.5 as previously considered. In general, the solution does not
depend on the initial distribution and only requires knowledge of the total initial
saturation (right-hand side of (2.9)). However, the numerical solution is obtained by
simulating the full time evolution from initial condition to steady-state and therefore
may be affected by S̃init

CO2
(due to numerical error). To test this, we assume an arbitrary

saturation distribution shown in figure 3(a), obtained by injecting CO2 at the bottom
of the domain. The steady-state equilibrium results are shown in figures 3(b) and 3(c)
for analytical and numerical results, respectively. Excellent agreement can be seen.
Further validation was conducted by a grid-by-grid error calculation and presented in
table 1 (‘bottom injection initial’) where minuscule errors are shown. It is therefore
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FIGURE 3. The CO2 saturation distribution in a vertical slice through the domain centre
for (a) initial time (S̃init

CO2
(x, y, z)), (b) equilibrium analytical solution and (c) equilibrium

numerical solution.

concluded that for the VG case, the numerical solution does not depend on the initial
distribution, as expected. There is, however, a dependence on the overall average
initial saturation 〈S̃init

CO2
〉. The results in figure 3(b,c) are for the same parameter as in

figure 1(c,d) and thus we can observe the impact of a smaller 〈S̃init
CO2
〉. For the former

case, 〈S̃init
CO2
〉 = 0.5 while for the latter case 〈S̃init

CO2
〉 = 0.1 and in fact the smaller CO2

region is apparent in figures 3(b) and 3(c).

4.1. Ensemble mean results
The ensemble average solution presented in § 3.1 will be discussed now. Figures 4
and 5 present ensemble mean saturation profiles given by (3.8) and (2.9). In
figure 4(a) we present the case of Nb = 7.8, φ = 0.25, m = 0.75, 〈S̃init

CO2
〉 = 0.5,

σ 2
y = 4 and ln k̃G = −25.3 (corresponding to kG = 100 md) using a dashed red line.

We also plot horizontally averaged Sw for the same problem parameters using 30
different k realizations via calculations from (3.2) and (2.9) (thin grey lines). It is
clear that the saturation profiles of the 30 realizations surround the ensemble mean
solution closely and the scatter is quite small. This indicates that our derivation for
〈S̃w〉E is correct and that the k sample size is sufficiently large so horizontal averaging
(used to obtain the profiles) leads to fairly similar curves. Furthermore, we plot the
ensemble average of the 30 realizations using a solid green line and show that the
result coincides with the analytical ensemble mean. In fact only a few realizations
are needed to converge to the green line.

Figure 4(b) shows that even the solution for a single realization (solid lines)
follows the ensemble mean profiles (dashed lines) closely for three different cases
with varying parameters. For sufficiently large k samples, corresponding to a fine
grid mesh, the horizontal averaging is responsible for the fairly close match. It is
an expression of ergodic theory, stating that under conditions of k stationarity and
small correlation lengths compared with domain lengths (lx, ly, lz � 1), ensemble
averaging can be substituted with spatial averaging. Figure 4(c) presents results for
statistically anisotropic permeability. It is seen that heterogeneity structures which
are horizontally elongated (lx, ly > lz) lead to significantly more erratic saturation
curves as permeability differences between layers are increased and the condition
lx, ly � 1 is fulfilled to a lesser extent. Nevertheless, the average saturation given
by (3.8) and (2.9) does not depend on anisotropy and despite the large saturation
variations between different layers, the ensemble average of the realizations (green
dashed curve) matches the analytical result (red dashed curve).
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FIGURE 4. Comparison between ensemble mean solution (equation (3.8)) and solutions
using permeability realizations (equation (3.2)) for (a) 30 realizations of the case σ 2

y = 4,
ln k̃G=−25.3, (b) one realization of three cases specified in legend and (c) 30 realizations
for σ 2

y = 4, ln k̃G =−25.3 with lx = ly = 0.25 and lz = 0.1.

The analytical solution given by (3.8) allows us to analyse the impact of
heterogeneity on the saturation either by scanning different parameter values or
by considering the limits of large/small parameters directly in the equations. Figure 5
illustrates the impact of log permeability variance on the solution. For low variance
(e.g. σ 2

y =0.01) the solution tends to that of a homogeneous medium with permeability
k= kG, seen by comparing the black solid and yellow dashed curves. As σ 2

y increases,
there are more capillary effects leading to less variability of saturation and a smaller
fully water saturated zone at the bottom of the domain. However, at the limit of high
variance (e.g. σ 2

y = 100) the solution is not capillary dominated, as was discussed in
figure 2 (Nb= 780) with saturation values around 〈S̃init

w 〉, but rather presents a varying
saturation profile (light blue curve).

5. Results with entry pressure
We now turn to study gravity segregation with BC capillary pressure, i.e. Pc is

given by (2.4) and (2.6). The main difference from the VG case is the capillary
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FIGURE 5. Ensemble mean saturation profiles for varying σ 2
y .

entry pressure, which is non-zero and changes spatially with permeability. Observing
equation (3.3), we see that S̃w=1 is now obtained when z̃< P̃e− P̃0

c , which is spatially
varying with k̃. This means that regions which are completely water saturated can
exist at the same level z̃ as regions with CO2. This does not occur in the VG case.
The second and perhaps more significant impact of P̃e is capillary entry trapping,
which is not captured at all by the equilibrium analytical solution. During the dynamic
migration of the fluids, regions with CO2 will not invade a fully water saturated region
unless their capillary pressure exceeds the entry pressure of the fully saturated zone.
This leads to an equilibrium solution in which some regions with large entry pressure
remain with S̃w = 1 since they are surrounded by zones of low capillary pressure
(trapped water) or regions of small capillary pressure surrounded by S̃w = 1 zones
with large entry pressure (trapped CO2). Our numerical solution, however, includes
the time evolution and incorporates capillary entry trapping (see Li (2011) for details).

Figure 6 presents results for CO2 saturation distribution in a slice through the
domain centre for both analytical (panels a,c,e) and numerical (panels b,d, f )
calculations. Parameters of λ= 2 and uniform S̃init

CO2
= 0.5 are taken. Three values of Nb

are considered spanning from gravity to capillary dominated regimes, as was presented
in figure 1 for the VG case. In fact, there is a similarity between the two figures
since the parameters and the permeability field are the same, however, differences
are apparent (particularly for panels c and d) due to the different P̃c functions.
A comparison between analytical and numerical results in figure 6 shows much
agreement, but also substantial differences. For example, in figures 6(b) and 6(d),
there is trapped CO2 in the lower regions, which are completely water saturated
according to the analytical solution. Errors are presented quantitatively in table 2,
where for the capillary dominated case (Nb = 780, figure 6(e, f )) they are very small.
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FIGURE 6. The CO2 saturation distribution in a vertical slice through the domain centre
for BC capillary pressure. Plots (a,c,e) are results for analytical solution while (b,d, f ) are
numerical simulations. The first row of plots (a,b) are results for Nb= 7.8, the second row
(c,d) is for Nb = 78 and the last row (e, f ) is for Nb = 780.

Error increases with lower values of Nb as the fully water saturated region becomes
larger. This region is where the numerical solution presents entry pressure trapping
of CO2 which cannot be predicted by the analytical solution.

To understand the entry pressure trapping presented in the numerical solution
we plot the capillary pressure P̃c corresponding to figure 6(b). This is presented
in figure 7. It is apparent that the top region, down to approximately z̃ = −0.5, has
hydrostatic P̃c variation in accordance to (3.1). In this region the analytical solution is
in fairly good agreement with the numerical. However, below this region P̃c changes
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FIGURE 7. Dimensionless capillary pressure P̃c in a vertical slice through the domain
centre corresponding to figure 6(b). Inset: enlargement of a region with trapped CO2 as
a result of entry pressure trapping (indicated in figure 6b by a red rectangle).

Uniform initial Bottom injection initial
Nb = 7.8 Nb = 78 Nb = 780 Nb = 7.8 Nb = 78 Nb = 780

Mean error (〈E〉) 0.022 0.016 7.9× 10−4 0.043 0.089 0.037
Error above 0.1 (E0.1) 6.3 % 2.7 % 0.1 % 11.5 % 27 % 8.6 %
Error above 0.05 (E0.05) 8.6 % 4.6 % 0.15 % 14.1 % 31 % 19 %

TABLE 2. Error E = |Snumerical
w (x, y, z) − Sanalytical

w (x, y, z)| for different values of Nb and
considering two cases of initial conditions: uniform S̃init

CO2
= 0.5 and bottom injection of

〈S̃init
CO2
〉 = 0.1 (figure 3a).

erratically from grid block to grid block. The majority of grid blocks in this lower
region are fully water saturated and therefore capillary pressure is not well defined.
The numerical simulator assigns the entry pressure to these grid blocks as virtual
capillary pressure. Thus the observed erratic variation in the lower part of figure 7 is
in fact the impact of permeability variation on entry pressure.

A grid block with trapped CO2 will have lower capillary pressure than all of
its neighbouring grid blocks which results in a CO2 pressure gradient pointing
towards this block (pCO2 = pw + Pc). Since the surrounding blocks are all fully
water saturated, no CO2 can in fact migrate and the CO2 is trapped. An example
for such a grid block is presented in the inset of figure 7, where the centre block
consists of S̃w= 0.38 and is surrounded by S̃w= 1 neighbouring blocks. This enlarged
region can also be observed in figure 6(b), marked with a red rectangle, showing
the trapped CO2. Whether a grid block will contain trapped CO2 or not depends on
the time evolution of capillary pressure and saturation, which makes it very difficult
to estimate analytically using a steady-state approach. In the next section we will
discuss a method for estimating this trapping.
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FIGURE 8. Horizontally averaged saturation as a function of height for different values of
parameter Nb considering BC capillary pressure and uniform S̃init

CO2
= 0.5. Analytical results

(solid lines) given by (3.3) and (2.9) are compared with numerical simulation results
(dashed lines).

Figure 8 presents results for the horizontally averaged water saturation profiles. The
same conclusion that was discussed for figure 6 can be drawn here, i.e. a match
between analytical and numerical results is seen for the case of Nb= 780 while error
is seen at the lower parts in cases Nb= 7.8, 78 for the analytical solution. Overall, the
errors in the case of uniform S̃init

CO2
= 0.5 can be considered reasonable (see left-hand

side of table 2) and the analytical solution is useful. This is not so for the next case,
when we consider smaller amounts of initial CO2 saturation.

Figure 9 presents results for CO2 saturation distribution for the case of S̃init
CO2

as presented in figure 3(a), i.e. following injection of 〈S̃init
CO2
〉 = 0.1 at the domain

bottom. When entry pressure is included the equilibrium solution is no longer
independent of the initial distribution S̃init

CO2
(x, y, z). Results of numerical simulations

are strikingly different than the analytical solution here, particularly for the Nb = 78
case (figure 9c,d). For all three values of Nb the numerical results show significantly
more CO2 at the lower parts of the domain. The right-hand side of table 2 presents
errors for this case, showing the extent of the mismatch. The largest error is for the
case with significant effect of both gravity and capillarity (Nb = 78), where 31 % of
the grid blocks have more than 0.05 error and 27 % have error larger than 0.1.

The capillary dominated case presented in figure 9(e, f ) is of particular significance.
One of the most popular methods for dealing with the computationally demanding
CO2 migration models is to apply capillary limit upscaling (Mouche et al. 2010;
Behzadi & Alvarado 2012; Rabinovich et al. 2015; Rabinovich, Li & Durlofsky
2016; Rabinovich 2018). This method entails assuming capillary equilibrium,
uniform capillary pressure and subsequently the spatial distribution of S̃w is obtained.
Figure 9(e) is the saturation distribution under this assumption (P̃c is approximately
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FIGURE 9. The CO2 saturation distribution in a vertical slice through the centre of the
rectangular domain for BC capillary pressure and initial bottom injection of 〈S̃init

CO2
〉=0.1.

Plots (a,c,e) are results for analytical solution while (b,d, f ) are numerical simulations. The
first row of plots (a,b) are results for Nb = 7.8, the second row (c,d) is for Nb = 78 and
the last row (e, f ) is for Nb = 780.

constant in the domain). However, this assumption does not incorporate entry pressure
trapping during migration, which leads to regions with non-uniform capillary pressure
and additional trapped CO2 in lower regions, as observed in figure 9( f ). This example
leads us to the conclusion that under certain conditions, saturation derived from
capillary limit assumptions may significantly deviate from the actual saturation
distribution (see errors in table 2) and upscaling errors may follow.
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5.1. Estimation of capillary entry pressure trapping

We have previously established that the analytical solution in this work does not
include the capillary entry pressure trapping and therefore may incur significant error.
We now proceed by presenting a heuristic method for extending the solution of (3.3)
and (2.9) to apply to cases with trapping. First, the main assumptions considered here
will be detailed. In the previous results of § 5 we show that the analytical solution
for the case with 〈S̃init

CO2
〉 = 0.5 is reasonably accurate while for 〈S̃init

CO2
〉 = 0.1 there

is significant error. We therefore aim to improve cases with small values of 〈S̃init
CO2
〉,

generally between 0 and 0.15. This is also in line with applications of CO2 storage,
where it is expected that the volumes of injected CO2 will be much smaller than the
aquifer volume. Furthermore, we will limit our discussion to low-medium capillary
numbers, i.e. approximately Nb < 33. This should apply to many cases, particularly
reservoir scale problems, in which h is tens of metres (Nb ∝ 1/h2). Finally, we aim
at estimating only the average saturation in each layer of the domain, i.e. obtaining
〈S̃w〉h( z̃ ), where 〈〉h denotes averaging horizontally. The full solution S̃w(x, y, z) with
entry trapping will not be estimated here.

A couple of tests are conducted on the solutions with entry pressure trapping to
determine sensitivity to some parameters. First, we verify that the solution scales
with 1ρgh2 so we can continue to work with the dimensionless Nb parameter. This
is carried out by conducting simulations with different 1ρ but maintaining the same
Nb and observing no change in the solution. Then, the impact of different injection
locations is tested and results are presented in figure 10(a–d) for the following
configurations, respectively: uniform S̃init

CO2
, uniform injection at the bottom domain

boundary, injection at the centre point of the bottom boundary and injection at a
bottom corner point of the domain.

Each of the four cases leads to a significantly different S̃init
CO2

distribution, however,
all have the same average of 〈S̃init

CO2
〉 = 0.053 and same problem parameters. It can

be seen that the equilibrium solution does change with different initial conditions
as opposed to the VG case which only depends on 〈S̃init

CO2
〉. However, the change

is relatively small and saturation distribution is quite similar in all four cases. We
quantify the amount of trapped CO2 in each case, indicated at the bottom of each
plot. It can be seen that a significant amount of CO2 (almost half) remains trapped
via the entry pressure trapping mechanism, while the rest is in the confined space
at the top four layers of the model. The relatively small impact of S̃init

CO2
distribution

is seen considering the small difference in the trapped 〈S̃w〉 between the four cases.
From here on we will develop the solution for uniform S̃init

CO2
with the understanding

that it should apply to many other S̃init
CO2

distributions. Nevertheless, we only tested
different types of bottom injection and other configurations such as top injection may
present much less trapping as the CO2 will not reach the bottom layers.

The new solution, which includes entry pressure trapping, is given by

S̃w =


 1

Nb

√
k̃(x, y, z)
φ(x, y, z)

P̃new
c ( z̃ )

−λ , P̃e < P̃new
c

1, P̃e > P̃new
c ,

(5.1)
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FIGURE 10. The CO2 saturation distribution in a vertical slice through the centre of
the domain for different initial conditions: (a) uniform, (b) bottom uniform injection,
(c) bottom centre point injection and (d) bottom corner point injection. All cases consist
of 〈S̃init

CO2
〉 = 0.053.

where

P̃new
c ( z̃ )=


P̃0

c + z̃, z̃ > z̃trap

P̃trap
c ( z̃ ), z̃< z̃trap &; x ∈ xtrap

0, z̃< z̃trap & x /∈ xtrap.

(5.2)

It represents the saturation distribution resulting from a new composite capillary
pressure profile P̃new

c , which combines the original capillary pressure P̃0
c + z̃ and the

capillary pressure in the trapping region P̃trap
c ( z̃ ), to be defined in the following. Only

certain regions, i.e. xtrap (to be defined in the following) which are prone to trapping
are given P̃trap

c ( z̃ ) and all other regions have hydrostatic or zero P̃c. The transition
between the two capillary pressure functions occurs at z̃trap, which is simply the
intersection of functions, i.e. P̃trap

c ( z̃trap)= P̃0
c + z̃trap.

While the new modified solution is presented in (5.1), (5.2) as an analytical function,
the calculation of P̃trap

c ( z̃ ) and xtrap will be described on a discretized domain. The
first step is to determine the grid blocks which are prone to CO2 entry pressure
trapping, i.e. those in xtrap. They will be defined as grid blocks with entry pressure
which is smaller than the entry pressure of all adjacent grid blocks, similar to what
was observed in figure 7. Figure 11(a) presents the entry pressure P̃e pertaining to the
case plotted in figure 9(b) with Nb = 7.8. All of the grid blocks in xtrap are circled
and shown to consist of small entry pressure. A comparison with figure 9(b) shows
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FIGURE 11. (a) Dimensionless capillary entry pressure P̃e=αC
√

k/φ/(1ρgh) in a vertical
slice through the centre of the domain corresponding to figure 9(b). Grid blocks in
xtrap, i.e. surrounded by lower P̃e, are circled. The colour bar is in a logarithmic scale.
(b) Profiles of 〈P̃e〉h, horizontally averaged only for x ∈ xtrap considering different k
realizations with σ 2

y as indicated in the legend.

that many of the circled grid blocks do have some trapped CO2 saturation, however,
many others do not. Overall only around 50 % of the grid blocks in xtrap have trapped
CO2. Therefore, we cannot obtain high accuracy for predicting the blocks that will
have entry pressure trapping. Nevertheless, the total number of blocks with trapping
is matched very well with the total number of blocks in xtrap. This allows for a good
match in 〈S̃w〉h profiles as will be presented later on. We emphasize that the analysis
was done on Nb = 7.8 and for other Nb values there will be a different number of
grid blocks involved in trapping. This is not captured by xtrap, which does not depend
on Nb.

The capillary pressure P̃trap
c ( z̃ ) is defined using horizontally averaged entry pressure

over all grid blocks in xtrap, i.e. 〈P̃e〉h,x∈xtrap . It is illustrated in figure 11(b) for four
different k realizations with changing variance σ 2

y . It can be seen that 〈P̃e〉h,x∈xtrap

decreases with increasing σ 2
y , as the entry pressure in blocks belonging to xtrap

decreases due to the larger permeability extremes occurring when variance is larger.
The impact of changing Nb is simply a shift of the curves by a factor, since P̃e is
proportional to Nb. Altogether, the entry pressure trapping given by P̃new

c in (5.1) is
rather heuristic and designed to give rough estimations. We therefore allow for an
additional dimensionless factor f̃ to correct for errors and P̃trap

c is defined as follows

P̃trap
c = f̃ (Nb, σ

2
y ) · 〈P̃e〉h,x∈xtrap . (5.3)

The factor f̃ is obtained by matching S̃w from (5.1) with numerical solutions.
For each simulation, we find f̃ that minimized the objective function

∫ z̃trap

z̃=−1 |〈S̃w〉h −

〈S̃w〉
simulation
h | dz and the results are plotted in figure 12 (filled circles). Altogether

30 numerical simulations were conducted for a range of Nb and σ 2
y values and the

required f̃ was found to behave logarithmically with Nb. A function was fitted to
these 30 data points allowing to express the correction factor analytically as follows:
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FIGURE 12. Correction factor f̃ as a function of Nb for different k realizations with
varying σ 2

y . A global fit given by (5.4) is plotted with colours corresponding to σ 2
y values.

f̃ = β ln(0.65Nb + γ )+ δ,

β =−0.0123σ 4
y + 0.213σ 2

y + 0.157,
γ = 0.0328σ 4

y + 0.367σ 2
y − 0.017,

δ =−0.0168σ 4
y − 0.159σ 2

y + 0.551.

 (5.4)

Equation (5.4) is plotted in figure 12 (curves), where it can be seen that the function
fits the data points fairly well. In the following we will test the solution given by
(5.1)–(5.4) on a number of cases, some of which are not of the 30 cases used to
construct the correction factor presented in figure 12. This will serve to demonstrate
applicability.

Figure 13 presents results for numerical simulations (colour curves) alongside the
new analytical solution incorporating trapping given by (5.1)–(5.4) (black curves). The
plane averaged CO2 saturation is shown as a function of z̃. Parameters for these cases
are generally Nb = 7.8, S̃init

CO2
= 0.11 (uniform), σ 2

y = 1 and λ = 2, except when other
values are specified in the figure legends. In all cases the saturation profiles show a
smooth top region in which the hydrostatic P̃c is governing the solution and a lower
region with erratic changes in which saturation is due to capillary entry trapping. The
intersection of the two regions at z̃trap can be seen. In all cases the analytical solution
is observed to be roughly coinciding with the numerical results for the top region
and adequately approximating the lower trapping region. Estimation is not necessarily
accurate for each layer separately, however, both solutions fluctuate around the same
average.

A quantitative comparison is presented in table 3 for each of the cases in figure 13.
The results are the percentage of trapped CO2, i.e. ratios between trapped CO2
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FIGURE 13. Horizontally averaged CO2 saturation as a function of z̃ for varying
(a) variance of log permeability, (b) Bond number, (c) initial saturation and (d) capillary
pressure parameter (λ) in (2.6). Simulation results (coloured curves) are compared with
analytical solution (black curves) and the x axis is in a logarithmic scale.

Numerical Analytical

Figure 13(a)
σ 2

y = 1 34.1 % 35.3 %
σ 2

y = 2 59 % 56.7 %
σ 2

y = 4 70 % 71 %

Figure 13(b)
Nb = 7.8 21.2 % 21.8 %
Nb = 23.5 41.8 % 42.9 %
Nb = 39 51 % 51.2 %

Figure 13(c)
S̃init

CO2
= 0.08 26.8 % 29.9 %

S̃init
CO2
= 0.2 9.7 % 10.4 %

S̃init
CO2
= 0.3 5.7 % 6.1 %

Figure 13(d)
λ= 4 31.4 % 33 %
λ= 1.33 14.3 % 15.8 %
λ= 0.5 5.4 % 6.3 %

TABLE 3. Comparison between numerical and analytical estimation of trapped CO2 for
the cases presented in figure 13(a–d). Values in table represent the ratio between trapped
CO2 and total CO2, i.e. 〈S̃CO2 〉̃z<̃ztrap/〈S̃CO2〉.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

13
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.133


890 A3-24 A. Rabinovich and K. B. Cheng

(defined as the CO2 in the region z̃< z̃trap) and total CO2. In general, good agreement
between the analytical and numerical results is seen.

Figure 13 allows us to investigate the dependence of the solution on various
parameters. Figure 13(a), shows the increase in trapping when the variance of the log
permeability field increases. This is due to an increase in entry pressure difference
between blocks in xtrap and adjacent blocks, allowing for more capillary pressure
build-up in xtrap blocks, i.e. more trapped CO2 saturation. In the analytical solution,
this is a result of the factor f̃ in (5.3), which increases with σ 2

y (see figure 12).
Figure 13(b) shows that trapping increases with larger Nb and this is expected since
increasing Nb leads to more capillary effects, as seen in (2.6). Figure 13(d) shows
the impact of initial saturation on 〈S̃w〉h profiles. While the top hydrostatic region is
significantly affected by S̃init

CO2
, the trapping zone does not change. This is because, in

general, S̃init
CO2

does not play a role in the balance between capillary and gravity forces.
However, if there is a region in which S̃init

CO2
is sufficiently small, it may reduce the

trapping as there will be a lack of CO2 to remain trapped. In our case of mild entry
pressure trapping (Nb = 0.1, σ 2

y = 1) and uniformly distributed S̃init
CO2

there is sufficient
initial saturation in all three cases presented. Only below S̃init

CO2
= 0.05 do we begin to

observe a reduction in trapping.
Figure 13(c) presents the results for varying λ, which are rather interesting. Here, it

can be seen that decreasing λ decreases the amount of trapped CO2, despite the fact
that capillary pressure will increase as seen in (2.6). In fact, the upper part of the
curve shows that capillary pressure is increasing with smaller λ as the smooth curves
dip lower indicating more CO2 present in the lower parts of the domain. So we find
that smaller λ is generally associated with increased trapping in the hydrostatic (upper)
part but a decrease in entry pressure trapping in the lower part. The reason is that
while changing λ will affect the Pc curve, it does not impact the entry pressure. The
reduction of entry pressure trapping is simply a result of mass conservation as there
is more CO2 trapped in the upper parts in the hydrostatic region of the solution.

5.2. Ensemble mean results
We now present calculations for ensemble mean saturation profiles in the case of
BC capillary pressure, i.e. including entry pressure trapping. The solution given by
(3.10) does not incorporate entry-pressure trapping and therefore a correction must be
applied, as done previously in § 5.1. We identify that the saturation ensemble average
of trapping regions for cases of small 〈S̃init

CO2
〉 and small to medium Nb (cases of interest

here) is constant. Therefore, we propose to model the top region with hydrostatic Pc
using equation (3.10) and the bottom, trapping region, using constant saturation. The
solution is formulated as follows:

〈S̃w〉E =

{
FE( z̃, P̃0

c, σ
2
y , λ, k̃G), z̃ > z̃∗

S̃∗, z̃< z̃∗,
(5.5)

where FE is given by (3.10). Height z̃∗ is the elevation of the intersection between
FE and S̃∗, obtained by solving FE = S̃∗ and the constant P̃0

c is obtained, as usual, by
employing (2.9).

The saturation S̃∗ is calculated as follows. We solve the problem for a single
realization, either from numerical simulation or analytically via equations (5.1) and
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(5.2). We then find a constant value of capillary pressure P̃∗c = (P̃0
c + z̃)/Nb that

when substituted into (3.3) results in a saturation profile 〈S̃w〉h matching the single
realization solution. More specifically, we focus on matching the trapping region.
Then, S̃∗ is calculated by averaging over all possible permeabilities, i.e.

S̃∗=
∫
∞

−∞


 1

Nb

√
k̃(x, y, z)
φ(x, y, z)

P̃∗c

−λ F( ỹ ) z̃> P̃e − P̃0
c

F( ỹ ) z̃ 6 P̃e − P̃0
c

dỹ=FE(D∗, σ 2
y ,λ, k̃G), (5.6)

where D∗ = P̃∗c/
√
φ.

Results for equations (5.5) and (5.6) (denoted ‘analytical mean’) are plotted in
figure 14(a,b) for four cases. Simulation results for five realizations are plotted
for each case (thin curves) along with the average of all five simulations (dashed
curves). There is significant scatter of the saturations with z̃ in the trapping regions,
particularly for the cases with anisotropic permeability structure. A comparison
between results for anisotropic and isotropic permeability in each plot shows that the
former have more variations with depth than the latter, also observed in figure 4 for
VG capillary pressure. The overall trapping, however, is reduced in the anisotropic
cases compared to the isotropic and this is most likely due to the fact that larger
horizontal correlations promotes horizontal migration, which allows more paths to
escape trapping.

Averaging saturation results from five realizations is clearly not enough to arrive
at the accurate ensemble average, particularly for the highly varying anisotropic
case. However, we have limited the number of simulations due to computational
cost. Nevertheless, the results clearly show that the average of the realizations varies
closely around the analytical ensemble mean for all four cases. This is particularly
clear in the isotropic cases where the average of the realization saturations in the
trapping region is almost constant with depth, coinciding with the analytical mean.
Overall, the figures show the usefulness of the new ensemble average solution given
by (5.5) and (5.6).

6. Summary and conclusions
This work derives an analytical solution to equilibrium gravity segregation

with three-dimensional capillary heterogeneity. The fundamental solution assumes
hydrostatic pressure variation and a Pc(φ, k, Sw) constitutive relation to arrive
at a formula for S̃w(x, y, z). Mass conservation is applied in order to obtain the
constant P0

c appearing in the solution. The solution is exact and does not employ any
approximations. It is therefore accurate for all cases without capillary entry pressure,
i.e. for homogeneous media or capillary pressure curves in which Pc(S̃w = 1) = 0
(van Genuchten in our examples). The saturation distribution is analysed considering
the impact of various dimensionless parameters: Bond number Nb, capillary pressure
power m or λ, permeability distribution k̃(x, y, z) and average initial saturation 〈S̃init

w 〉.
Validations of numerical simulators for problems with 3-D capillary heterogeneity
have hardly been published (Hoteit & Firoozabadi 2008) and the new solution could
be very useful for such validation.

The case of Pc with entry pressure Pc(S̃w= 1) 6= 0 (Brooks–Corey in our examples)
is investigated by comparing the analytical and numerical solutions. The entry pressure
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FIGURE 14. Horizontally averaged CO2 saturation 〈S̃CO2〉h as a function of z̃ for five
different realizations, ensemble mean of the five realizations and analytical solution
(equations (5.5) and (5.6)) for (a) Nb = 23.5, Sinit

CO2
= 0.3 and (b) Nb = 39, Sinit

CO2
= 0.11.

trapping mechanism is explained with examples illustrated using numerical results.
It is shown that for large S̃init

w uniformly distributed in the domain, the analytical
solution does not estimate the entry pressure trapping but errors are reasonable and
it is still applicable. However, for small 〈S̃init

w 〉, which is relevant to CO2 storage
applications in which a small volume of non-wetting phase is injected in the lower
part of an aquifer, the errors are very large. This has an important implication
regarding approximations which neglect entry pressure trapping, often used in CO2
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storage modelling. A modification to the analytical solution is presented to account
for entry pressure trapping. It is based on a heuristic formula, obtained by matching
the numerical results and applies to a limited range of Bond numbers, i.e. Nb < 33.
The modified solution is shown to produce accurate estimates of the overall trapped
CO2 and it is used to investigate the impact of different parameters on trapping.

The solutions for cases with and without entry pressure trapping are extended to
consider random log-normally distributed k. The expected value of the saturation is
derived analytically for the case without entry pressure trapping to arrive at a formula
depending on Nb

√
φ, m, σ 2

y , ln kG and 〈S̃init
w 〉. We show that solutions for realizations of

k with the same σ 2
y and kG are all varying within a small range around the ensemble

mean solution 〈S̃w〉E. This leads to the conclusion that for a large enough sample
size of permeability measurements the average solution can be used with sufficient
accuracy to predict gravity–capillary equilibrium of two fluids.
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Appendix A. Derivation of 〈S̃w〉E for the VG model
Starting from (3.7), we now present the derivation of (3.8), focusing on the case of

z̃ > P̃0
c (since the solution is simply 1 for z̃ < P̃0

c). The expression in the integral of
(3.7) can be expanded using a Taylor (binomial) series expansion as follows:(

A exp
[

ỹ
2(1−m)

]
+ 1
)−m

=

∞∑
n=0

(
−m

n

)
An exp

[
nỹ

2(1−m)

]
, (A 1)

for A exp[ ỹ/(2(1−m))]< 1, and(
A exp

[
ỹ

2(1−m)

]
+ 1
)−m

=

∞∑
n=0

(
−m

n

)
A−(n+m) exp

[
(n+m)ỹ
2(m− 1)

]
, (A 2)

for A exp[ ỹ/(2(1−m))] > 1, where
(
−m

n

)
are the binomial coefficients. Substituting

(A 1) and (A 2) into (3.7) and integrating separately on (−∞, ỹL) and ( ỹL,∞) we
arrive at

〈S̃w〉E =

∞∑
n=0

(
−m

n

){
An
∫ ỹL

−∞

exp
[

nỹ
2(1−m)

]
F( ỹ ) dỹ

+ A−(n+m)
∫
∞

ỹL

exp
[
(n+m)ỹ
2(1−m)

]
F( ỹ ) dỹ

}
, (A 3)

where ỹL = 2(1 − m) ln A. Substituting (3.5) into (A 3) and solving the integrals we
arrive at the final expression presented in (3.8).
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