EXISTENCE THEOREMS ON THE DIRICHLET PROBLEM FOR THE EQUATION $\Delta u+f(x, u)=0$

by GABRIELE BONANNO

(Received 24th February 1994)

Abstract

In this note we consider the Dirichlet problem $\Delta u+f(x, u)=0$ in $\Omega, u=0$ on $\partial \Omega$; here Ω is a bounded domain in $\mathbb{R}^{n}(n \geqq 3)$, with smooth boundary $\partial \Omega$. We prove the existence of strong solutions to the previous problem, which are positive if f satisfies a suitable condition. As a consequence we find that the problem with $f(x, u)=|u|^{(n+2) /(n-2)}+g(x, u)$, may have positive solutions even if g is not a lower-order perturbation of $|u|^{(n+2) \mid(n-2)}$. Next, we examine the case $f(x, u)=|u|^{(4 n+2) /(n-2))}+h(x)$.

1991 Mathematics subject classification: 35J65, 35 J 60.

1. Introduction

Let Ω be a bounded domain in $\mathbb{R}^{n}, n \geqq 3$, with a $C^{1,1}$-boundary $\partial \Omega$, and let f be a real-valued function defined on $\Omega \times \mathbb{R}$. If $q \in] 1,+\infty\left[\right.$, we set $X_{\infty}(\Omega)=$ $\left\{u \in W^{2, q}(\Omega) \cap W_{0}^{1, q}(\Omega): \Delta u \in L^{\infty}(\Omega)\right\}$. Owing to known results (see, for instance, [5, Theorem 9.15]), we see that the set $X_{\infty}(\Omega)$ is independent of q. Moreover, it is easy to see that $X_{\infty}(\Omega)$, equipped with the norm $\|u\|_{X_{\infty}(\Omega)}=\|u\|_{\infty}+\|\Delta u\|_{\infty}$, is a Banach space. Finally, by Lemma 9.17 of [5] and Theorem 6.2 of [1], we have that $X_{\infty}(\Omega) \subset C^{1}(\bar{\Omega})$ and the natural injection is compact.
Consider the problem

$$
\text { (P) } \begin{cases}\Delta u+f(x, u)=0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

A function $u: \Omega \rightarrow \mathbb{R}$ is said to be a strong solution to (P) if $u \in X_{\infty}(\Omega)$ and, for almost every $x \in \Omega$, one has $\Delta u(x)+f(x, u(x))=0$. A strong solution u to problem (P) such that $u(x)>0$ in Ω is said to be a positive solution to (P).

In this note we establish existence theorems concerning strong solutions (Theorem 1) and positive solutions (Theorem 2) to problem (\mathbf{P}). We next observe that, under the assumptions of Theorem 2, the problem $\Delta u+|u|^{((n+2) /(n-2))}+g(x, u)=0, u=0$ on $\partial \Omega$, may have positive solutions even if g is not a lower-order perturbation of $|u|^{((n+2) /(n-2))}$ (Remark 2). Finally, as a consequence of Theorem 1, we obtain a result (Theorem 3) which improves, for significant values of n, Theorem 3.3 of [8].

Our notation is standard and, in any case, we refer to [1] and [5].

Results

Owing to Theorem 9.15 of [5], we see that Δ is a one-to-one operator from $X_{\infty}(\Omega)$ onto $L^{\infty}(\Omega)$. Moreover, because of Remark 1 of [7], for every $u \in X_{\infty}(\Omega)$ we have

$$
\|u\|_{\infty} \leqq B\|\Delta u\|_{\infty}
$$

where

$$
B= \begin{cases}\frac{1}{2 n \pi}\left[\Gamma\left(1+\frac{n}{2}\right)|\Omega|\right]^{2 / n} & \text { if }|\Omega|>1 \tag{1}\\ \frac{1}{2 n \pi}\left[\Gamma\left(1+\frac{n}{2}\right)\right]^{2 / n} & \text { if }|\Omega| \leqq 1\end{cases}
$$

($|\Omega|$ is the Lebesgue measure of Ω and Γ is the Gamma-function).
We have the following results.
Theorem 1. Let f be a real-valued function defined on $\Omega \times \mathbb{R}$. Assume that
(i_{1}) for almost every $x \in \Omega$ the function $z \rightarrow f(x, z)$ is continuous,
(i_{2}) for every $z \in \mathbb{R}$ the function $x \rightarrow f(x, z)$ is measurable,
$\left(\mathrm{i}_{3}\right)$ there exists $r>0$ such that the function

$$
x \rightarrow M(x)=\sup _{|z| \leqq B r}|f(x, z)|,
$$

where B is given by (1), belongs to $L^{\infty}(\Omega)$ and its norm in this space is less than or equal to r.

Then, problem (P) has at least one strong solution $u \in X_{\infty}(\Omega)$.
Proof. Let $q \in] \frac{n}{2},+\infty[$. Consider the set

$$
K=\left\{v \in L^{q}(\Omega):|v(x)| \leqq M(x) \quad \text { a.e. in } \Omega\right\} .
$$

Obviously, K is a nonempty, convex, closed and bounded subset of $L^{q}(\Omega)$. Therefore, because of reflexivity of $L^{q}(\Omega)$, it is weakly compact (see, for instance [3 , Theorem $13, \mathrm{p}$. 422 and Corollary 8, p. 425]).

Now, let $\psi: X_{\infty}(\Omega) \rightarrow L^{\infty}(\Omega)$ be the operator defined by $\psi(u)=-\Delta u$ for every $u \in X_{\infty}(\Omega)$. Bearing in mind the definition of $X_{\infty}(\Omega)$, Theorem 9.15 of [5] ensures that ψ is a one-to-one operator from $X_{\infty}(\Omega)$ onto $L^{\infty}(\Omega)$.

For every $v \in K$ and every $x \in \Omega$, we set

$$
G(v)(x)=f\left(x, \psi^{-1}(v)(x)\right)
$$

Let us prove that $G(K) \subseteq K$. To this end, fix $v \in K$ and observe that, by Remark 1 of [7] and (i_{3}), we have

$$
\underset{x \in \Omega}{\text { ess sup }}\left|\psi^{-1}(v)(x)\right| \leqq B \underset{x \in \Omega}{\text { ess sup }}|v(x)| \leqq B \underset{x \in \Omega}{\operatorname{ess} \sup } M(x) \leqq B r .
$$

Then,

$$
\left|f\left(x, \psi^{-1}(v)(x)\right)\right| \leqq \sup _{|z| \leqq B r}|f(x, z)| \quad \text { a.e. in } \Omega .
$$

This implies $G(v) \in K$.
Now, let us prove that the operator G is weakly sequentially continuous. Let $v \in K$ and let $\left\{v_{h}\right\}$ be a sequence in K weakly converging to v in $L^{q}(\Omega)$. Due to Lemma 9.17 of [5], $\left\{\psi^{-1}\left(v_{h}\right)\right\}$ converges weakly to $\psi^{-1}(v)$ in $W^{2, q}(\Omega)$. Therefore, since $q>(n / 2)$, the Rellich-Kondrachov Theorem (see [1, Theorem 6.2]) guarantees that the sequence $\left\{\psi^{-1}\left(v_{h}\right)\right\}$ converges to $\psi^{-1}(v)$ in $C^{0}(\bar{\Omega})$. So, by $\left(\mathrm{i}_{1}\right),\left\{G\left(v_{h}\right)\right\}$ converges to $G(v)$ almost everywhere in Ω. Bearing in mind that, for almost every $x \in \Omega$ and every $h \in \mathbb{N}$ one has

$$
\left|G\left(v_{h}\right)(x)\right| \leqq M(x)
$$

the Lebesgue Dominated Convergence Theorem yields $\lim _{h \rightarrow+\infty} G\left(v_{h}\right)=G(v)$ in $L^{q}(\Omega)$. Consequently, $\left\{G\left(v_{h}\right)\right\}$ converges weakly to $G(v)$ in $L^{q}(\Omega)$.
We now have proved that the function $G: K \rightarrow K$ verifies all the assumptions of Theorem 1 of [2]. Then, there is $v \in K$ such that $v=G(v)$. The function $u(x)=\psi^{-1}(v)(x)$, $x \in \Omega$, satisfies our conclusion.

Remark 1. We explicitly observe that the preceding theorem can be regarded as an extension to the case $p=+\infty$ of Theorem 2.3 of [6].

Theorem 2. Let f be a real-valued function defined on $\Omega \times \mathbb{R}$. Assume that all the hypotheses of Theorem I hold. Moreover suppose that
(i_{4}) for almost every $x \in \Omega$ one has

$$
m(x)=\inf _{0 \leqq z \leqq B r} f(x, z)>0 .
$$

Then, problem (P) has at least one positive solution $u \in X_{\infty}(\Omega)$.
Proof. Let us sketch the proof. We define

$$
\begin{gathered}
K_{+}=\left\{v \in L^{q}(\Omega): m(x) \leqq v(x) \leqq M(x) \quad \text { a.e. in } \Omega\right\}, \\
L_{+}^{\infty}(\Omega)=\left\{u \in L^{\infty}(\Omega): u(x)>0 \quad \text { a.e. in } \Omega\right\},
\end{gathered}
$$

$$
X_{\infty}^{+}(\Omega)=\left\{u \in X_{\infty}(\Omega): u(x)>0 \quad \text { in } \Omega\right\} .
$$

Due to the Strong Maximum Principle (see [5, Theorem 9.6]), the operator $\psi_{+}: X_{\infty}^{+}(\Omega) \rightarrow L_{+}^{\infty}(\Omega)$ defined by $\psi_{+}(u)=-\Delta u$ for all $u \in X_{\infty}^{+}(\Omega)$ is a one-to-one mapping from $X_{\infty}^{+}(\Omega)$ onto $L_{+}^{\infty}(\Omega)$. Now, for every $v \in K_{+}$and every $x \in \Omega$, we set $G_{+}(v)(x)=$ $f\left(x, \psi_{+}^{-1}(v)(x)\right)$. The same arguments used in the proof of Theorem 1, show that Theorem 1 of [2] can be applied to G_{+}to conclude the proof.

Remark 2. Consider the problem

$$
\left(\mathrm{P}_{+}\right)\left\{\begin{array}{cl}
-\Delta u=u^{p}+g(x, u) & \text { in } \Omega \\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

where $p=(n+2) /(n-2)$ is critical from the viewpoint of Sobolev embedding. In the paper [4] this problem is studied assuming that the function $g: \Omega \times[0,+\infty[\rightarrow \mathbb{R}$ is a lower-order perturbation of u^{p}, namely

$$
\text { (*) } \quad \lim _{u \rightarrow+\infty} \frac{g(x, u)}{u^{p}}=0 .
$$

We emphasize that Theorem 2 may be applied also when the preceding condition is not satisfied. In fact, consider the equation $-\Delta u=|u|^{p}+\lambda(1+|u|)^{p}$, where λ is a positive real parameter. Of course, in this case, condition $\left(^{*}\right)$ is not satisfied. Nevertheless, Theorem 2 can be used when, for instance, $n=3,|\Omega| \leqq 1$, and $\lambda \in] 0,\left((1-B)\left(2^{5} B\right)\right)[$ (by choosing $r=1 / B)$.

Now we set

$$
C(n)=\frac{\frac{4}{n+2}\left(\frac{n-2}{n+2}\right)^{((n-2) / 4)}}{B^{(n+2) / 4)}},
$$

where B is given by (1), and

$$
B(n)=\frac{\frac{4}{n+2}\left(\frac{n-2}{n+2}\right)^{((n-2) / 4)}}{\left(\frac{n-1}{n-2} \frac{1}{\sqrt{n}}\right)^{((n+2) / 2)}}
$$

It is a simple matter to see that, for significant choices of n (as $n=3,4,5,6,7$ and others), the constant $C(n)$ is considerably larger than $B(n)$. Therefore, the following result improve, for these n, Theorem 3.3 of [8].

Theorem 3. Let $h \in L^{\infty}(\Omega)$. Suppose that

$$
\|h\|_{\infty} \leqq C(n)
$$

Then, the problem

$$
\left(\mathrm{P}^{\prime}\right) \begin{cases}\Delta u+|u|^{((n+2) /(n-2))}+h(x)=0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has at least one strong solution $u \in X_{\infty}(\Omega)$.
Proof. Let us apply Theorem 1. To this end, choose, for every $x \in \Omega$ and for every $z \in \mathbb{R}$

$$
f(x, z)=|z|^{((n+2) /(n-2))}+h(x) \quad \text { and } \quad r=\left(\frac{n-2}{n+2}\right)^{((n-2) / 4)}\left(\frac{1}{B}\right)^{((n+2) / 4)} .
$$

Of course, the function f so defined satisfies all the assumptions of Theorem 1. Indeed

$$
\begin{aligned}
& \sup _{|z| \leqq B r}|f(x, z)| \leqq|B r|^{((n+2) /(n-2))}+\|h\|_{\infty} \leqq \\
& B^{((n+2) /(n-2))}\left[\left(\frac{n-2}{n+2}\right)^{((n-2) / 4)}\left(\frac{1}{B}\right)^{((n+2) / 4)}\right]^{((n+2) /(n-2))}+C(n) \leqq\left(\frac{n-2}{n+2}\right)^{((n-2) / 4)}\left(\frac{1}{B}\right)^{((n+2) / 4)}
\end{aligned}
$$

By Theorem 1, there exists $u \in X_{\infty}(\Omega)$ such that $\Delta u(x)+|u(x)|^{((n+2) /(n-2))}+h(x)=0$ almost everywhere in $\Omega, u(x)=0$ on $\partial \Omega$ and this completes the proof.

Remark 3. We observe that Theorem 3.3 of [8] yields weak solutions to problem (P^{\prime}), while the preceding result gives strong solutions, belonging to $X_{\infty}(\Omega)$.

REFERENCES

1. R. A. Adams, Sobolev Space (Academic Press, 1975).
2. O. Arino, S. Gautier and J. P. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkcial. Ekvac. 27 (1984), 273-279.
3. N. Dunford and J. T. Schwartz, Linear Operator I (Interscience Publishers, Inc., New York, 1958).
4. H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math. 36 (1983), 437-477.
5. D. Gllbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition (Springer-Verlag, 1983).
6. S. A. Marano, Existence theorems for a semilinear elliptic boundary value problem, Ann. Polon. Math. 60 (1994), 57-67.
7. G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 3 (1976), 697-718.
8. M. Zuluaga, Existence of solutions for some elliptic problems with critical Sobolev exponents. Rev. Mat. Iberoamericana 5 (1989), 183-193.

Istituto di Matematica
Universitá di Reggo Calabria
Via E. Cuzzocrea, 48
89128 Reggio Calabria
Italy

