BERNSTEIN'S INEQUALITY IN THE BIVARIATE CASE

KENNETH MULLEN

Abstract

Summary. If $X_{1}, X_{2}, \ldots, X_{n}$, is a set of n independent random variables, such that $E X_{i}=0, \operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$, and if t is a real positive number and $\sigma^{2}=\Sigma_{i} \sigma_{i}^{2}$, then Bernstein [2] has given an upper bound for $\operatorname{Pr}\left[\Sigma X_{i} \geq t \sigma\right]$ when the X^{\prime} s are bounded. The best English language discussion of Bernstein's work is probably by Bennett [1]. In this paper we consider the bivariate case where random vectors $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are observed, where $E X_{i}=E Y_{i}=$ $0, \operatorname{Var}\left(X_{i}\right)=\operatorname{Var}\left(Y_{i}\right)=\sigma_{i}^{2}, E X_{i} Y_{i}=\rho \sigma_{i}^{2}$. An expression for the upper bound for $\operatorname{Pr}\left[\Sigma X_{i} \geq t \sigma, \Sigma Y_{i} \geq t \sigma\right]$ is given when both X and Y are bounded.

Derivation.

Theorem. Let t, a, and b be real positive numbers and consider n independent random variables $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ where $E X_{i}=E Y_{i}=0, \operatorname{Var}\left(X_{i}\right)=$ $\operatorname{Var}\left(Y_{i}\right)=\sigma_{i}^{2}, E X_{i} Y_{i}=\rho \sigma_{i}^{2}, \sigma^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}$ and for which $\left|X_{i}\right| \leq R,\left|Y_{i}\right| \leq R$, then

$$
P\left[\sum_{i} X_{i} \geq t \sigma, \sum_{i} Y_{i} \geq t \sigma\right]<\exp \left\{\frac{-t^{2}(2-|\rho|)}{2\left(1+\frac{t R}{3 \sigma}\right)}\right\}
$$

Proof. Consider $e^{a X_{i}+b Y_{i}}$, then

$$
e^{a X_{i}+b Y_{i}}=\left\{1+a X_{i}+\sum_{r=2}^{\infty} \frac{a^{r} X_{i}^{r}}{r!}\right\}\left\{1+b Y_{i}+\sum_{s=2}^{\infty} \frac{b^{s} Y_{i}^{s}}{s!}\right\} .
$$

Expanding, taking expectations, and noting that $E a X_{i}=E b Y_{i}=0$, we get

$$
E e^{a X_{i}+b Y_{i}}=1+a b \rho \sigma_{i}^{2}+\frac{a^{2} \sigma_{i}^{2} A_{i}}{2}+\frac{b^{2} \sigma_{i}^{2} B_{i}}{2}+a b \sigma_{i}^{2}\left(C_{i}+D_{i}+E_{i}\right)
$$

where

$$
\begin{align*}
A_{i} & =\sum_{r=2}^{\infty} \frac{a^{r-2} E X_{i}^{r}}{r!\sigma_{i}^{2} \frac{1}{2}} \\
B_{i} & =\sum_{s=2}^{\infty} \frac{b^{s-2} E Y_{i}^{2}}{s!\sigma_{i}^{2} \frac{1}{2}} \\
C_{i} & =\sum_{r=2}^{\infty} \frac{a^{r-1} E Y_{i} X_{i}^{r}}{r!\sigma_{i}^{2}} \tag{1}\\
D_{i} & =\sum_{s=2}^{\infty} \frac{b^{s-1} E X_{i} Y_{i}^{s}}{s!\sigma_{i}^{2}} \\
E_{i} & =\sum_{r=2}^{\infty} \sum_{s=2}^{\infty} \frac{a^{r-1} b^{s-1} E X_{i}^{r} Y_{i}^{s}}{r!s!\sigma_{i}^{2}} .
\end{align*}
$$

Received by the editors September 3, 1970 and, in revised form, August 10, 1971.

Thus we can write

$$
E e^{a X_{i}+b Y_{i}}<\exp \left\{\left(\frac{a^{2} \sigma_{i}^{2}}{2}+\frac{b^{2} \sigma_{i}^{2}}{2}\right) M_{i}+a b \sigma_{i}^{2} G_{i}\right\}
$$

where $M_{i}=\operatorname{Max}\left(A_{i}, B_{i}\right)$,

$$
G_{i}=\rho+C_{i}+D_{i}+E_{i} .
$$

Now if $S(X)=\sum_{i=1}^{n} X_{i}, S(Y)=\sum_{i=1}^{n} Y_{i}$ then

$$
E e^{a S(X)+b S(Y)}<\exp \left\{\left(\frac{a^{2} \sigma^{2}}{2}+\frac{b^{2} \sigma^{2}}{2}\right) M+a b \sigma G\right\}
$$

where $M=\max M_{i}, \boldsymbol{G}=\max G_{i}$.
Let $h(X, Y)$ be a nonnegative function of X and Y with p.d.f. $f(x, y)$, so that $h(X, Y)>K$ when $X \geq C_{1}, Y \geq C_{2}$.

$$
\begin{aligned}
E[h(X, Y)] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f(x, y) d x d y \geq \int_{x \geq C_{1}} \int_{y \geq C_{2}} h(x, y) f(x, y) d x d y \\
& \geq K \int_{x \geq C_{1}} \int_{y \geq C_{2}} f(x, y) d x d y=K \cdot P\left[X \geq C_{1}, Y \geq C_{2}\right]
\end{aligned}
$$

Now if $h(X, Y)=\exp (a X+b Y)$ then

$$
P\left[X \geq C_{1}, Y \geq C_{2}\right] \leq \frac{E \exp (a X+b Y)}{\exp \left(a C_{1}+b C_{2}\right)}
$$

Replace X by $S(X), Y$ by $S(Y), C_{1}=C_{2}=t \sigma$, then

$$
\begin{aligned}
P[S(X) \geq t \sigma, S(Y) \geq t \sigma] & \leq \frac{E \exp (a S(X)+b S(Y))}{\exp ((a+b)(t \sigma))} \\
& <\exp \left\{\left(\frac{a^{2} \sigma^{2}}{2}+\frac{b^{2} \sigma^{2}}{2}\right) M+a b \sigma^{2} G-(t \sigma)(a+b)\right\}
\end{aligned}
$$

This right-hand side is minimized with respect to a and b for

$$
\begin{aligned}
& a \sigma^{2} M+b \sigma^{2} G=t \sigma \\
& b \sigma^{2} M+a \sigma^{2} G=t \sigma
\end{aligned}
$$

i.e. when

$$
\begin{equation*}
M=\frac{t}{\sigma(a+b)}, \quad G=\frac{t}{\sigma(a+b)} \tag{2}
\end{equation*}
$$

Thus we can write:

$$
\begin{equation*}
P[S(X) \geq t \sigma, S(Y) \geq t \sigma]<\exp \left\{\frac{-t \sigma(a+b)}{2}\right\} \tag{3}
\end{equation*}
$$

Now suppose that

$$
\left.\begin{array}{rl}
E\left|X_{i}\right|^{r} \leq \frac{1}{2} \sigma_{i}^{2} r!W^{r-2} \\
E\left|Y_{i}\right|^{s} \leq \frac{1}{2} \sigma_{i}^{2} s!W^{r-2}
\end{array}\right\} \quad \begin{aligned}
& r, s \geq 2 \\
&
\end{aligned}
$$

then since $E X_{i}^{r} \leq E\left|X_{i}\right|^{r}$ we have

$$
A_{i} \leq \frac{1}{1-a W}, \quad B_{i} \leq \frac{1}{1-b W}
$$

Now without loss of generality assume $a>b$ ($a=b$ can be omitted), so that we can state $M_{i} \leq(1-a W)^{-1}$, which being independent of i implies that

$$
\begin{equation*}
M \leq \frac{1}{1-a W} \tag{4}
\end{equation*}
$$

Further suppose that

$$
\begin{aligned}
& E\left|Y_{i}\right|\left|X_{i}\right|^{r} \leq|\rho| \sigma_{i}^{2} r!W^{r-1} \\
& E\left|X_{i}\right|\left|Y_{i}\right|^{s} \leq|\rho| \sigma_{i}^{2} s!W^{s-1} \\
& E\left|X_{i}\right|^{r}\left|Y_{i}\right|^{s} \leq|\rho| \sigma_{i}^{2} r!s!W^{r-1} W^{s-1}
\end{aligned}
$$

where $r, s \geq 2, W$ is a constant, then

$$
\begin{aligned}
C_{i} & \leq \frac{|\rho| a W}{1-a W} \\
D_{i} & \leq \frac{|\rho| b W}{1-b W} \\
E_{i} & \leq \frac{|\rho| a b W^{2}}{(1-a W)(1-b W)}
\end{aligned}
$$

Noting that the right-hand sides are independent of i, we have

$$
\begin{align*}
G & \leq|\rho|\left\{1+\frac{a W}{1-a W}+\frac{b W}{1-b W}+\frac{a b W^{2}}{(1-a W)(1-b W)}\right\} \\
& =\frac{|\rho|}{(1-a W)(1-b W)} \tag{5}
\end{align*}
$$

Let us now choose W so that

$$
\begin{equation*}
1-b W \leq|\rho| \tag{6}
\end{equation*}
$$

then from (4), (5), and (6)

$$
M=\frac{t}{\sigma(a+b)} \leq \frac{1}{1-a W} \leq \frac{|\rho|}{(1-a W)(1-b W)}
$$

Taking the left most inequality yields

$$
a \geq \frac{t-\sigma b}{\sigma+t W}
$$

which, when put into (3) gives

$$
P[S(X) \geq t \sigma, S(Y) \geq t \sigma]<\exp \left\{\frac{-t^{2} \sigma}{2} \frac{(1+b W)}{\sigma+t W}\right\}
$$

Using (6) gives

$$
P[S(X) \geq t \sigma, S(Y) \geq t \sigma]<\exp \left\{\frac{-t^{2}(2-|\rho|)}{2(\sigma-t W)}\right\}
$$

or

$$
\begin{equation*}
P[S(X) \geq t \sigma, S(Y) \geq t \sigma]<\exp \left\{\frac{-t^{2}(2-|\rho|)}{2\left(1+t \frac{W}{\sigma}\right)}\right\} \tag{7}
\end{equation*}
$$

Of particular interest are bounded variables satisfying
for which

$$
\left|X_{i}\right| \leq R, \quad\left|Y_{i}\right| \leq R
$$

$$
\begin{gathered}
E\left|X_{i}\right|^{r} \leq \sigma_{i}^{2} R^{r-2}, \quad E\left|Y_{i}\right|^{s} \leq \sigma_{i}^{2} R^{r-2} \\
E\left|Y_{i}\right|\left|X_{i}\right|^{r} \leq|\rho| \sigma_{i}^{2} R^{r-1} \\
E\left|X_{i}\right|\left|Y_{i}\right|^{s} \leq|\rho| \sigma_{i}^{2} R^{s-1} \\
E\left|X_{i}\right|^{r}\left|Y_{i}\right|^{s} \leq|\rho| \sigma_{i}^{2} R^{s-1} R^{r-1}
\end{gathered}
$$

so that $W=3 R$ is the smallest value of W that can be used. Then (7) becomes

$$
\begin{equation*}
P[S(X) \geq t \sigma, S(Y) \geq t \sigma]<\exp \left\{\frac{-t^{2}(2-|\rho|)}{2\left(1+\frac{t R}{3}\right)}\right\} \tag{8}
\end{equation*}
$$

and the proof is complete. When $|\rho|=1$ and we have in effect only one random variable, then (8) reduces to the univariate case (see Reference [1]). When $|\rho|=0$, (8) is the product of two univariate cases.

References

1. George Bennett, Probability inequalities for the sum of independent random variables, J. Amer. Statist. Assoc. 57 (1962), 33-45.
2. S. Bernstein, Sur une modification de l'inéqualitéde Tchebichef (in Russian, French Summary), Ann. Sci. Inst. Sew. Ukraine Sect. Math. I, 1924.

University of Guelph,
 Guelph, Ontario

