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Abstract. In this paper, the new techniques and results concerning the structure theory of
modules over noncommutative Iwasawa algebras are applied to arithmetic: we study Iwasawa
modules over p-adic Lie extensions k1 of number fields k ‘up to pseudo-isomorphism’. In

particular, a close relationship is revealed between the Selmer group of Abelian varieties,
the Galois group of the maximal Abelian unramified p-extension of k1 as well as the Galois
group of the maximal Abelian p-extension unramified outside S where S is a certain finite set of

places of k. Moreover, we determine the Galois module structure of local units and other
modules arising from Galois cohomology.
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1. Introduction

The starting point of the Iwasawa theory of ðnoncommutativeÞ p-adic Lie groups was

M. Harris’ thesis [15] in 1979. For an elliptic curve E over a number field k without

complex multiplication, he studied the Selmer group SelðE; k1Þ over the extension

k1 ¼ kðEð pÞÞ which arises by adjoining the p-division points of E to k: Then, the

Galois group G ¼ Gðk1=kÞ is an open subgroup of Gl2ðZpÞ – due to a celebrated

theorem of Serre [38] – and so a (compact) p-adic Lie group. Following Iwasawa’s

general idea, he studied the Pontryagin dual SelðE; k1Þ
_ of the Selmer group as

module over the Iwasawa algebra LðGÞ ¼ Zp½½G��, i.e. the completed group algebra of

G with coefficients in Zp:

In the late 90s J. Coates and S. Howson [4, 6, 7, 17] as well as Y. Ochi [33] revived

this Iwasawa-theoretic approach. Among other things, they proved a remarkable

Euler characteristic formula for the Selmer group, studied ranks, torsion-properties

and projective dimensions of standard local and global Iwasawa modules.

The contributions of this work to the Iwasawa theory of p-adic Lie groups are

obtained by applying some new techniques we have developed in [40]. There we

introduced the concept of pseudo-null modules over L ¼ LðGÞ; which is based on

a general dimension theory for Auslander regular rings (for the definition, see

Subsection 2.2 and note that L is a noncommutative ring in general). Therefore it

is fundamental for our applications that LðGÞ is an Auslander regular ring if G is

a compact p-adic Lie group without p-torsion (cf. [40, Thm. 3.26]). As a first example

Compositio Mathematica 138: 1–54, 2003. 1
# 2003 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1025413030203 Published online by Cambridge University Press

https://doi.org/10.1023/A:1025413030203


in which this approach proves effective, we consider the following generalization of a

theorem of R. Greenberg [13] and T. Nguyen-Quang-Do [31] (who considered the

case G ffi Zd
p): For a finite set S of places of a number field k let k1 j k be a Galois

extension unramified outside S such that the Galois group G ¼ Gðk1=kÞ is a

torsion-free p-adic Lie-group and let kS be the maximal outside S unramified

extension of k: Then there is a basic result on the structure of the Galois

group XS ¼ GðkS=k1Þ
ab
ð pÞ of the maximal Abelian p-extension of k1 unramified

outside S considered as LðGÞ-module, which is by definition the maximal Abelian

pro-p quotient of the Galois group GSðk1Þ :¼ GðkS=k1Þ:

THEOREM (Theorem 4.5). If H2ðGSðk1Þ;Qp=ZpÞ ¼ 0; then the LðGÞ-module XS
does not contain any nontrivial pseudo-null submodule.

Once having available the concept of pseudo-null modules one is tempted to study

Iwasawa modules ‘up to pseudo-isomorphism’. We will write M 
 N if there exists a

L-homomorphism M! N whose kernel and cokernel is pseudo-null. Since in

general 
 is not a symmetric relation we consider also the quotient category

L-mod=PN with respect to subcategory PN of pseudo-null L-modules, which is a

Serre subcategory, i.e. closed under subobjects, quotients and extensions.

Now it turns out that – as in the classical Zp-extension case – the LðGÞ-module XS
is closely related to the modules Xnr and XScs which denote the Galois groups of the

maximal Abelian unramified pro-p-extension of k1 and the maximal Abelian unra-

mified pro-p-extension of k1 in which every prime above S is completely decom-

posed, respectively. In the next theorem, Gv denotes the decomposition group of G

at a place n; Sf is the set of finite places in S; E1ðM Þ the Iwasawa adjoint

Ext1
LðM;LÞ of a L-module M and Mð�1Þ means the twist of M with the Galois

module Zpð�1Þ :¼ Homðm;Qp=ZpÞ:

THEOREM (Theorem 4.9). If mp1  k1; and dimðGnÞ5 2 for all n 2 Sf; then

Xnrð�1Þ 
 XScsð�1Þ 
 E1ðtorL XSÞ:

If, in addition, G ffi Zr
p, r5 2; then even the following holds:

Xnrð�1Þ 
 XScsð�1Þ 
 ðtorL XSÞ
�;

where � means that G operates via the involution g 7! g�1:

In this context we should mention that it is still an open question – even for

G ffi Zr
p; r5 2 – whether in general Xnr is pseudo-isomorphic to the dual

ðClðk1Þð pÞ
_
Þ
� of the direct limit of the p-primary ideal class groups in a p-adic

tower of number fields with involution �� (which can also be defined for noncom-

mutative p-adic Lie groups under additional assumptions, see Proposition 2.4)

Xnr 
 ðClðk1Þð pÞ
_
Þ
�?
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In the Zp-case this is a well-known theorem due to Iwasawa, see 4.17 for further

discussion.

Drawing our attention to cohomology groups associated with an Abelian

varieties A defined over k; we set k1 ¼ kðAð pÞÞ and mention that H1ðGSðk1Þ;

Að pÞÞ_ has no nonzero pseudo-null submodule (Theorem 4.39). With respect to

the ( p)-Selmer group SelðA; k1Þ of A over k1 ¼ kðAð pÞÞ we generalize a result

of P. Billot in the case of good, supersingular reduction, i.e. gAkn ð pÞ ¼ 0; at any

place dividing p: Over a Zp-extension an analogous statement was proved by

K. Wingberg [41, Cor. 2.5]. We shall write Ad for the dual Abelian variety of A:

Assume that Gðk1=kÞ is a pro-p-group without any p-torsion. Then the following

holds (Corollary 4.38):

Xcs �Zp
ðAd
ð pÞÞ_ 
 E1ðtorLðSelðA; k1Þ

_
ÞÞ:

We also refer the reader to our joint work with Y. Ochi [35] where we prove under

certain conditions that the Pontryagin dual of the Selmer group of an elliptic curve

without CM and good ordinary reduction at any place dividing p does not contain

any nonzero pseudo-null L-submodule.

Furthermore, we proved a structure theory for the Zp-torsion part of a L-module

M in [40]. Up to pseudo-isomorphism any Zp-torsion L-module is of the formL
iL=p

ni :

In particular, we obtained a natural definition of the m-invariant mðM Þ :¼
P

i ni of

M: Defining mðM Þ :¼ mðtorZp
M Þ for an arbitrary L-module M; this invariant is

additive on short exact sequences of L-torsion modules. Hence, we can formulate

and prove a generalization of Theorem 11.3.7 of [29]:

THEOREM (Theorem 4.18). Let k1 j k be a p-adic pro-p Lie extension such that G is

without p-torsion and Fp½½G�� is an integral ring ðe.g. if G is uniformÞ. Then

G ¼ GðkSð pÞ=k1Þ is a free pro-p-group if and only if mðXSÞ ¼ 0 and the weak Leopoldt

conjecture holds, i.e. H2ðGSðk1Þ;Qp=ZpÞ ¼ 0:

In Theorem 4.19 we describe how the weak Leopoldt conjecture and the vanishing

of mðXSÞ – if considered simultaneously – behave under change of the base field.

Furthermore, we get a formula for the m-invariants for different S:

We briefly outline further results. In Section 3 we generalize Wintenberger’s result

on the Galois module structure of local units. Let k be a finite extension of Qp and

assume that k1 j k is a Galois extension with Galois group G ffi G er D; where G is a

pro-p Lie group of dimension 2 (e.g. G ¼ Zp eZp) and D is a profinite group of

possibly infinite order prime to p; which acts on G via r: D! AutðGÞ: Then we

characterize the LðGÞ-module structure of the Galois group Gab
k1
ð pÞ ¼ Gðk1ð pÞ=k1Þ;

where k1ð pÞ is the maximal Abelian p-extension of k1; see Theorem 3.10.

Then we apply these results to the local study of elliptic curves E with CM, i.e. we

determine the structure of local cohomology groups with certain division points of E

as coefficients.
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Section 4 is devoted to the study of ‘global’ Iwasawa modules. Besides the themes

already mentioned above, we study the norm-coherent S-units of k1 ES :¼

lim �
k 0
ðO�k 0;S �ZpÞ by means of Jannsen’s spectral sequence for Iwasawa adjoints.

Using Kummer theory, we compare ES to

ESðk1Þ :¼ ðESðk1Þ �Z Qp=ZpÞ
_;

where ESðk1Þ ¼ lim�! k 0
ESðk

0Þ denotes the (discrete module of) S-units of k1: In

particular, we show that E0ðESÞ ffi E0E0ðESðk1ÞÞ; where E0ðM Þ denotes HomLðM;LÞ
for any L-module M; and thus rkLES ¼ rkLES ¼ r2ðkÞ under some assumptions,

see Corollary 4.27. If E0ðESÞ is projective, its structure can be described more

precisely. A criterion which tells us when this is the case is given in Proposition 4.28.

GENERAL NOTATION AND CONVENTIONS

We follow the notation in the paper [40], which is similar to that used in [29]. In

particular, this means:

(i) For a discrete (resp. compact) Zp-module N with continuous action by some

profinite group G, N_ ¼ HomZp;contðN;Qp=ZpÞ is the compact (resp. discrete)

Pontryagin dual of N with its natural G-action. If N is p-divisible,

TpðN Þ ¼ HomðQp=Zp;N Þ ¼ lim
 �
i

p iN

denotes the Tate module of N; where p iN denotes the kernel of the multiplication

by pi: For G ¼ Gk the absolute Galois group of number or local field k; we define

the rth Tate twist of N by NðrÞ :¼ N�Zp
TpðmÞ

�r for r 2 N and NðrÞ :¼

N�Zp
HomðTpðmÞ

�r;ZpÞ for �r 2 N; where m denotes the Gk-module of all roots

of unity and by convention TpðmÞ
�0
¼ Zp with trivial G-action. Finally, we set

N � :¼ lim
�!
i

Homðp iN; mp1Þð¼ TpðN Þ
_
ð1ÞÞ:

(ii) For a finitely generated Abelian p-primary group A we denote by Adiv the

quotient of A by its maximal p-divisible subgroup.

(iii) Let G be a profinite group and H a closed subgroup of G. For a LðHÞ-module

M, we define IndGHM :¼Mb�LðHÞ LðGÞ (compact or completed induction), where
b� denotes completed tensor product, and CoindGHM :¼ HomLðHÞðLðGÞ;M Þ
(co-induction).

(iv) If G is any profinite group, by Gð pÞ and G ab we denote the maximal pro-p

squotient and the maximal Abelian quotient G=½G;G� of G; respectively. For

an Abelian group A we also denote by Að pÞ its p-primary component.

(v) Let k be a field. For a Gk-module A, we write AðkÞ :¼ H 0ðGk;AÞ.

(vi) By a Noetherian ring, we mean a left and right Noetherian ring (with a multi-

plicative unit). By pdLðM Þ we denote the projective dimension of M while

pdðLÞ denotes the global dimension of L:
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(vii) The dual of an Abelian variety A is denoted by Ad:

(viii) We refer the reader to Subsection 2.4 for the definitions of Rabð pÞ; N abð pÞ; X;

Y; J and Z:

2. Algebraic Properties of L-Modules

2.1. NOTATION AND PRELIMINARIES

We recall some basic facts on p-adic Lie groups and their Iwasawa algebras which

are thoroughly discussed in [40]; the reader who is not familiar with them is recom-

mended to read first or parallel Sections 1–3 of [40]. For any compact p-adic Lie

group G the completed group algebra L ¼ LðGÞ is Noetherian (see [24]V 2.2.4). If,

in addition, G is pro-p and has no element of finite order, e.g. if G is uniform, then

LðGÞ is an integral domain, i.e. the only zero-divisor in LðGÞ is 0 (see [30]); for uni-

form G the corresponding statement holds also for the completed group algebra

Fp½½G�� with coefficients in the finite field Fp with p elements. For instance, for

p5 nþ 2; the group GlnðZpÞ has no elements of order p; in particular, GL2ðZpÞ con-

tains no elements of finite p-power order if p5 5 (see [17] 4.7). In any case, the nor-

mal subgroup Gi :¼ kerðGlnðZpÞ ! GlnðZ=piÞÞ of GlnðZpÞ is a uniform pro-p group

for i5 1 if p 6¼ 2 or i5 2 if p ¼ 2 by [10, Thm. 5.2]. We should also mention that G

has finite cohomological dimension cdpG ¼ m if and only if G has no element of

finite p-power order and its dimension as p-adic analytic manifold equals m:

If L is Noetherian and without zero-divisors we can form a skew field QðGÞ of

fractions of L (see [11]). This allows us to define the rank of a L-module:

DEFINITION 2.1. The rank rkLM is defined to be the dimension of M�L QðGÞ as

a left vector space over QðGÞ. Obviously, the rank is finite for any M in the category

L-mod of finitely generated L-modules. For the rest of this section, we assume that

all L-modules considered are finitely generated.

By HoðLÞ we denote the category of ‘L-modules up to homotopy’ and we write

M ’ N; if M and N are homotopy equivalent, i.e. isomorphic in HoðLÞ; which holds

if and only if M� P ffi N�Q with projective L-modules P and Q: In particular,

M ’ 0 if and only if M is projective.

For M 2 L-mod we define the Iwasawa adjoints of M to be

EiðM Þ :¼ ExtiLðM;LÞ; i5 0;

which are a-priori right L-modules by functoriality and the right L-structure of the

bi-module L but will be considered as left modules via the involution of L. By con-

vention we set EiðM Þ ¼ 0 for i < 0: The L-dual E0ðM Þ will also be denoted by Mþ:

It can be shown that for i5 1 the functor Ei factors through HoðLÞ defining a

functor Ei:HoðLÞ ! L-mod: By D we denote the transpose D:HoðLÞ ! HoðLÞ;
which is a contravariant duality functor, i.e. it satisfies D2 ¼ Id: Furthermore, if

pdLM4 1, then DM ’ E1ðM Þ: The next property will be of particular importance:
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PROPOSITION 2.2 (cf. [29, Prop. 5.4.9]). For M 2 L-mod there is a canonical exact

sequence

0�!E1DM�!M �!
fM

Mþþ �!E2DM�! 0;

where fM is the canonical map from M to its bi-dual. In the following we will refer to

the sequence as ‘the’ canonical sequence ðof homotopy theoryÞ.

A L-module M is called reflexive if fM is an isomorphism from M to its bi-dual

M ffiMþþ:

As Auslander and Bridger [1] suggest, the module E1DM should be considered as

torsion submodule of M: Indeed, if L is a Noetherian integral domain this submo-

dule is a torsion module while Mþþ is torsion-free and thus E1DM coincides exactly

with the set? of torsion elements torLM: Hence, a L-module M is called L-torsion
module if fM � 0; i.e. if torLM :¼ E1DM ¼M: We say that M is L-torsion-free if

E1DM ¼ 0: It turns out that a finitely generated L-module M is a L-torsion module

if and only if M is a LðG 0Þ-torsion module (in the strict sense) for some open

pro-p subgroup G 0  G such that LðG 0Þ is integral. Since Mþþ embeds into a free

L-module the torsion-free L-modules are exactly the submodules of free modules

(see [40, before Prop. 2.7] for details).

Sometimes it is also convenient to have the notation of the first syzygy or loop

space functor O:L-mod! HoðLÞ which is defined as follows (see [20, 1.5]): Choose

a surjection P!M with P projective. Then OM is defined by the exact sequence

0�!OM�!P�!M�! 0:

2.2. DIMENSION THEORY FOR THE AUSLANDER REGULAR RING LðGÞ

Let G be any compact p-adic group without p-torsion. In [40] we proved that

L ¼ LðGÞ is an Auslander regular ring, i.e. L has finite projective dimension

d :¼ pdL ¼ cdp Gþ 1 (by a result of Brumer) and satisfies the Auslander condition:

For any L-moduleM, any integer m and any submodule N of EmðM Þ; the grade of N

satisfies jðN Þ5m: Recall that the grade jðN Þ is the smallest number i such that

EiðN Þ 6¼ 0 holds.

Therefore, there is a nice dimension theory for L-modules which we will recall

briefly (for proofs and further references see [40]). A priori, any M 2 L-mod comes

equipped with a finite filtration

T0ðM Þ  T1ðM Þ  � � �  Td�1ðM Þ  TdðM Þ ¼M:

If we call the number d :¼ minfi j TiðM Þ ¼Mg the dimension dðM Þ then TiðM Þ is

just the maximal submodule of M with d-dimension less or equal to i: We should

?A-priori, it is not clear whether this sets forms a submodule if L is not commutative.
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mention that for Abelian G the dimension dðM Þ coincides with the Krull dimension

of suppLðM Þ:

The filtration is related to the Iwasawa adjoints via a spectral sequence, in

particular we have

TiðM Þ=Ti�1ðM Þ  Ed�iEd�iðM Þ

and either of these two terms is zero if and only the other is. Furthermore, the equal-

ity dðM Þ þ jðM Þ ¼ d holds for any M 6¼ 0:

Note that M is a L-torsion module if and only if its codimension

codimðM Þ :¼ d� dðM Þ is greater or equal to 1:

A L-module M is called pseudo-null if its codimension codimðM Þ is greater or

equal to 2: As in the commutative case we say that a homomorphism j:M! N

of L-modules is a pseudo-isomorphism if its kernel and cokernel are pseudo-null. A

module M is by definition pseudo-isomorphic to a module N; denoted M 
 N; if

and only if there exists a pseudo-isomorphism fromM to N: In general, 
 is not sym-

metric even in the Zp-case. While in the commutative case 
 is symmetric at least for

torsion modules, we do not know whether this property still holds in the general

case.

If we want to reverse pseudo-isomorphisms, we have to consider the quotient cate-

gory L-mod=PN with respect to subcategory PN of pseudo-null L-modules, which

is a Serre subcategory, i.e. closed under subobjects, quotients and extensions. By

definition, this quotient category is the localization ðPI Þ�1L-mod of L-mod with

respect to the multiplicative system PI consisting of all pseudo-isomorphisms. Since

L-mod is well-powered, i.e. the family of submodules of any module M 2 L-mod

forms a set, these localization exists, is an Abelian category and the universal functor

q:L-mod! L-mod=PN is exact. Furthermore, qðM Þ ¼ 0 in L-mod=PN if and only

if M 2 PN : Recall that a morphism h: qðM Þ ! qðN Þ in the quotient category can be

represented, for instance, by two L-homomorphisms f:M 0 !M and g:M 0 ! N

where f is a pseudo-isomorphism and such that h � qð f Þ ¼ qðgÞ; it is an isomorphism

if and only if g is a pseudo-isomorphism. If there exists an isomorphism between

qðM Þ and qðN Þ in the quotient category we also write M � N mod PN :

Note that for any pseudo-isomorphism f:M! N the induced homomorphism

E1ð f Þ is a pseudo-isomorphism, too. IfM;N are L-torsion modules, also the converse

statement holds. By the universal property of the localization, we obtain a functor

E1:L-mod=PN ! L-mod=PN ;

which is exact if it is restricted to the full subcategory L-mod51=PN of L-mod=PN
consisting of all L-modules of codimension greater or equal to 1; i.e. L-torsion mod-

ules. More precisely, there is a natural isomorphism of functors:

E1 � E1 ffi Id :L-mod51=PN ! L-mod51=PN :

It is known that any torsion-free module M embeds into a reflexive module with

pseudo-null cokernel while any torsion module M is pseudo-isomorphic to
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E1E1ðM Þ (cf. [40, Prop. 3.13]). Moreover, there is a canonical pseudo-isomorphism

E1ðM Þ 
 E1ðtorLM Þ for any L-module M:

By L-modð pÞ we shall write the plain subcategory of L-mod consisting of Zp-

torsion modules while by PN ð pÞ ‘ ¼ PN \ L-modð pÞ’ we denote the Serre subcate-

gory of L-modð pÞ the objects of which are pseudo-null L-modules. In other wordsM

belongs to PN ð pÞ if and only if it is a L=pn-module for an appropriate n such that

E0
L=pn ðM Þ ¼ 0: Recall that there is a canonical exact functor q:L-modð pÞ !

L-modð pÞ=PN ð pÞ: Then, there is the following structure theorem on the Zp-torsion

part of a finitely generated L-module:

THEOREM 2.3 (cf. [40, Thm. 3.40]). Assume that G is a p-adic analytic pro-p group

without p-torsion and such that L=p is integral ðe.g. if G is uniformÞ. Let M be in

L-modð pÞ: Then there exist uniquely determined natural numbers n1; . . . ; nr and an

isomorphism M �
L

14i4rL=p
ni mod PN ð pÞ in L-modð pÞ=PN ð pÞ.

We define the m-invariant of a L-module M as mðM Þ ¼
P

i niðtorZp M Þ; where the

ni ¼ niðtorZpM Þ are determined uniquely by the structure theorem applied to

torZpM: This invariant is additive on short exact sequences of L-torsion modules

and stable under pseudo-isomorphisms. Alternatively, it can be described as

mðM Þ ¼ rkFp½½G��

M
i50

p iþ1M=p iM ¼ rkFp½½G��

M
i50

p i torZpM=p iþ1 torZpM:

Very recently, J. Coates, R. Sujatha and P. Schneider [8] found a general structure

theorem for L-torsion modules. They proved that any finitely generated LðGÞ-
torsion module decomposes into the direct sum of cyclic modules up to pseudo-

isomorphism, i.e. in the quotient category L-mod51=PN :

THEOREM (Coates–Schneider–Sujatha). Let G be a p-valued compact p-adic ana-

lytic group. Then, for any finitely generated LðGÞ-torsion module M there exist finitely

many reflexive left ideals J1; . . . ; Jr and an injective LðGÞ-homomorphismL
14i4r L=Ji ,!M=Mps with pseudo-null cokernel, where Mps ¼ TdimðGÞ�2ðM Þ denotes

the maximal pseudo-null submodule of M: In particular, it holds

M �
L

14i4r L=Ji modPN :

For the precise definition of a p-valued compact Lie group see [8] or directly

in Lazard’s article [24]; we just want to mention that any uniform pro-p-group

belongs to this class of pro-p Lie groups, which is stable under taking closed

subgroups.

It is still not known whether the ideals Ji can be chosen as principal ideals as in the

commutative case. Anyway, if we restrict to this kind of modules, we can define a

second involution

�: L-mod51
pr =PN ! L-mod51

pr =PN
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on the full subcategory L-mod51
pr =PN of L-mod5 1=PN consisting of those objects

which are isomorphic (in the quotient category) to a direct sum of cyclic modules of

the form L=Lf; f 2 L: For any such f we set ðL=Lf Þ� :¼ L=Lf �; where �:L! L also

denotes the involution of the group algebra (induced by g 7! g�1). The following

proposition implies among other things that this definition is invariant under

pseudo-isomorphism and therefore it extends to the whole category L-mod5 1
pr =PN :

PROPOSITION 2.4. Let G be a profinite group such that L ¼ LðGÞ is a Noetherian
integral ring. Then the following holds:

ðiÞ For any f 2 L there is an isomorphism E1ðL=LfÞ ffi L=Lf �:
ðiiÞ Assuming that G is a p-adic analytic group without p-torsion the above two invo-

lutions coincide:

�� ffi E1ð�Þ:L-mod5 1
pr =PN ! L-mod5 1

pr =PN

The proof is standard, see for example the proof of Proposition 2.12, where we

denote the involution on L by i:
We conclude this section with a technical result which will be needed in the arith-

metic applications.

PROPOSITION 2.5. Let L be an Auslander regular ring. For any L-module M such

that pdLE0ðM Þ4 1 ðe.g. if pdL ¼ 3 or if pdL ¼ 4 and E4E1ðM Þ ¼ 0Þ its double

dual E0E0ðM Þ is a 2-syzygy of E1E0ðM Þ; i.e. there is an exact sequence

0�!E0E0ðM Þ �!P0�!P1�!E1E0ðM Þ �! 0

with projective modules P0 and P1: Furthermore, in the case of pdL ¼ 3 or 4; it holds

that E1E0ðM Þ ffi E3E1ðM Þ: If, in addition, M itself is reflexive and pdL ¼ 3; then

E3E1M ffi E1ðM Þ_:

Proof. First observe that E0ðM Þ is a 2-syzygy of DðM Þ due to the definition of the

latter module, i.e. pdLE0ðM Þ4 pdL� 2 ¼ 1; if pdL ¼ 3: In the case of pdL ¼ 4 it

holds E3E0ðM Þ ¼ E4E0ðM Þ ¼ 0 and E2E0ðM Þ ffi E4E1ðM Þ due to Björk’s spectral

sequence (see [40, 3.1]). Hence, if E4E0ðM Þ vanishes, it follows that pdLE0ðM Þ4 1.

Now, choosing a projective resolution of E 0ðM Þ

0�!E0ðP1Þ�!E0ðP0Þ �!E0ðM Þ �! 0;

we derive the exact sequence

0�!E0E0ðM Þ �!P0�!P1�!E1E0ðM Þ �! 0:

But E1E0ðM Þ ffi E3E1ðM Þ due to Björk’s spectral sequence for pdL4 4: If M itself

is reflexive and pdL ¼ 3; then E1E1ðM Þ ¼ E2E1ðM Þ ¼ 0; i.e. E1ðM Þ is finite, respec-

tively E3E1ðM Þ ffi E1ðM Þ_: &
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2.3. SOME REPRESENTATION THEORY

In the following lemma we shall write IðGÞ for the kernel of the canonical

map Zp½½G�� ! Zp½½G=G��; where G is any closed normal subgroup of the profinite

group G: By RadG we denote the radical of Zp½½G��; i.e. the intersection of all

open maximal left (right) ideals of Zp½½G��: Finally, we write MG ¼M=IGM for the

module of coinvariants of M and H�ðG;M Þ for the G-homology of a compact

L-module M; which can be defined as left derived functor of �G or alternatively

as TorL� ðZp;M Þ; where Tor denotes the left derived functor of the complete tensor

product �b�L � :

LEMMA 2.6. Let G ¼ GeD be the semi-direct product of a uniform pro-p-group G
of dimension t and a finite group D of order k prime to p. If we write

Un ¼ Gp
n

EG; then for any compact L ¼ LðGÞ-module M, the following statements
are equivalent:

ðiÞ M ffi Ld;
ðiiÞ MG ffi Zp½D�

d as Zp½D�-module and for all n

rkZp
MUn ¼ rkZp

Zp½G=Un�
d
¼ dkptn;

ðiiiÞ MG=p ffi Fp½D�
d as Fp½D�-module and for all n

logp #ðMUn=p
nÞ ¼ logp #ðZ=pn½G=Un�

d
Þ ¼ ndkptn:

Proof. Obviously, (i) implies (ii) and (iii). For the converse let us first assume

that (ii) holds and let m1; . . . ;md 2M be lifts of a Zp½D�-basis of MG: Then the

map f:
Ld

i¼1 Lei !M; which sends ei to mi; is surjective, because IðGÞ  RadG
(compare to the proof of [29]. 5.2.14 (i), d) b) and therefore we can apply

Nakayama’s lemma [29], 5.2.16 (ii), (with RadG instead of M). Hence, the induced

maps fUn :
Ld

i¼1 LðG=UnÞei !MUn ; are surjective, too. But since both modules

have the same Zp-rank by assumption, these maps are isomorphisms and (i) fol-

lows. The implication ðiiiÞ ) ðiÞ is proved analogously noting that

pLþ IðGÞ  RadG: &

For a finite group G we denote by K0ðQp½G�Þ ¼ K
0
0ðQp½G�Þ the Grothendieck

group of finitely generated Qp½G�-modules (which are projective by Maschke’s

theorem). If G is a profinite group and UEG an open normal subgroup we define

the Euler characteristic hUðM Þ of a finitely generated L ¼ LðGÞ-module M to be

the class

hUðM Þ :¼
X
ð�1Þi½HiðU;M Þ �Zp

Qp� 2 K0ðQp½G=U �Þ:

Before stating the next result we recall some facts about the representation theory

of finite groups. So let D be a finite group of order n prime to p: Then, there is a

10 OTMAR VENJAKOB

https://doi.org/10.1023/A:1025413030203 Published online by Cambridge University Press

https://doi.org/10.1023/A:1025413030203


decomposition

Zp½D� ffi
Y

Zp½D�ei; ei ¼
ni
n

X
g2D

wiðg
�1Þg

of Zp½D� in ‘simple’ components (in the sense that they are simple algebras after

tensoring with Qp). If G ¼ G� D; this induces a decomposition of L ¼
Q

Lei ;
Lei ¼ Zp½½G��½D�ei into a product of rings. Here fwig is the set of irreducible Qp char-

acters (^¼ Fp-characters because n is prime to p) of D and ni are certain natural num-

bers associated with wi (see below). The simple algebras Qp½D�ei decompose into the

direct sum of their simple left ideals which all belong to the same isomorphism class,

say Ni; i.e. there is a isomorphism of Qp½D�-modules Qp½D�ei ffi N
ni
i : In particular, ni

is the length of Qp½D�ei and can be expressed as

ni ¼ wðeiÞðdimQp
NiÞ
�1;

where w is the character of the left regular representation of Qp½D�:
Now let G be again a p-adic Lie group and set L :¼ LðGÞ: Recall that a finitely

generated L-module M is a L-torsion module if and only if M is a LðG 0Þ-torsion

module for some open pro-p subgroup G 0  G such that LðG 0Þ is integral.

PROPOSITION 2.7. Let G ¼ G� D be the product of a pro-p Lie group G of finite
cohomological dimension cdpðGÞ ¼ m and a finite group D of order n prime to p and let
UEG be an open normal subgroup. Then, for any finitely generated L-torsion module
M; it holds hUðM Þ ¼ 0:

Remark 2:8: For semi-direct products this statement is false in general. For

example, it is easy to see that for G ¼ Zp e o D with nontrivial o the Euler char-

acteristic of Zp is not zero: hUðZpÞ ¼ ½Qp� � ½QpðoÞ� 6¼ 0:

Proof (of Proposition 2.7). We claim that under the assumptions of the theorem

M possesses a finite free resolution. Indeed, since the Noetherian ring L has finite

global dimension pdL ¼ mþ 1, there is always a resolution of the form

0�!P�!Ldm �! � � � �!Ld0 �! 0;

with a projective module P: Since Mei is a LðGÞ-torsion module (it is even LðG 0Þ-
torsion!) and since Pei is a free LðGÞ-module, it must hold that Pei ffi ðLðGÞÞkidmþ1 as

LðGÞ-modules, where ki ¼ wðeiÞ denotes the Zp-rank of Zp½D�ei and dmþ1 ¼Pm
i¼0ð�1Þidm�i: Consequently, PeiG ffi Z

kidmþ1
p as Zp-modules, respectively PeiG�

Qp ffi Q
kidmþ1

p as Qp-modules holds. But PeiG �Qp must be isomorphic to the direct

sum of m copies of Ni for some m due to the semi-simplicity of Qp½D�: Counting Qp-

dimensions, we obtain m ¼ nidmþ1 and hence PeiG �Qp ffi Qp½D�e
dmþ1

i : Since PeiG is a

projective Zp½D�-module, this implies PeiG ffi Zp½D�e
dmþ1

i ; respectively Pei ffi LðGÞedmþ1

i

(compare to the proof of Lemma 2.6) and P ffi LðGÞdmþ1 : This proves the claim.

ON THE IWASAWA THEORY OF p-ADIC LIE EXTENSIONS 11

https://doi.org/10.1023/A:1025413030203 Published online by Cambridge University Press

https://doi.org/10.1023/A:1025413030203


Furthermore, we observe that
P
ð�1Þidi ¼ 0 and denote the resolution by

F � !M: Using the fact that the Euler characteristic of a bounded complex equals

the Euler characteristic of its homology, we calculateX
ð�1Þi½HiðU;M Þ �Zp

Qp� ¼
X
ð�1Þi½HiðF

� �L Qp½G=U �Þ�

¼
X
ð�1Þi½F � �L Qp½G=U ��

¼
X
ð�1Þi½Qp½G=U �

di �

¼

�X
ð�1Þidi

�
½Qp½G=U �� ¼ 0: &

LEMMA 2.9. Let G be a profinite group, H  G a closed subgroup and UEG an

open normal subgroup. Then for any compact Zp½½H��-module M the following is

true:

ðiÞ ðIndHG ðM ÞÞU ffi IndHU=UG=U ðMU\HÞ and

ðiiÞ HiðU; ðIndHG ðM ÞÞÞ ffi IndHU=UG=U HiðU \H;M Þ for all i5 0:

Proof. The dual statement of (i) is proved in [23] while (ii) follows from (i) by

homological algebra. &

LEMMA 2.10. Let G ¼ G� D be the product of a pro-p-group G and a finite group D
of order prime to p. Then, for any L ¼ Zp½½G��½D�-module M and for any irreducible

character w of D with values in Qp; the following is true:

ðiÞ HomLðM
ew ;LÞ ffi HomLðM;LÞew�1 ;

ðiiÞ EiLðM
ewÞ ffi EiLðM Þ

ew�1 for any i5 0:

Proof. While (ii) is a consequence of (i) by homological algebra the first

statement can be verified at once using the decompositions M ffi
L
Mew and

L ffi
L

Lew :

HomLðM;LÞew�1 ffi HomLðM;Lew Þ

ffi HomLðM
ew ;LewÞ

ffi HomLðM
ew ;LÞ: &

2.4. MODULES ASSOCIATED WITH GROUP PRESENTATIONS

Let C be a class of finite groups closed under taking subgroups, homomorphic images

and group extensions. Given an exact sequence of pro-C-groups 1! H!
G! G! 1; where G is assumed to be finitely generated, we choose a presentation

F ‡G of G by a free pro-C-group F d of rank d and we associate the following
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commutative diagram to it:

ð2:1Þ

Here, R and N are defined by the exactness of the corresponding sequences. In gen-

eral, the p-relation module N abð pÞ of G with respect to the chosen free presentation
(and similarly Rabð pÞ with respect to G instead of G) fits into the following exact

sequence, which is called Fox–Lyndon resolution associated with the above free

representation of G:

0�!N abð pÞ �!LðGÞd�!LðGÞ �!Zp�! 0: ð2:2Þ

Hence, if cdpðGÞ4 2, then N abð pÞ is a projective LðGÞ-module.

Furthermore, the augmentation ideal IF d
, i.e. the kernel of LðF dÞ ! Zp, is a free

LðF dÞ-modules of rank d: IF d
ffi LðF dÞ

d (for a proof of these facts, see [29], Chap. V.6).

Let A be a p-divisible p-torsion Abelian group of finite Zp-corank r with a contin-

uous action of G:

DEFINITION 2.11. For a finitely generated L ¼ LðGÞ-module M we define the

finitely generated L-module M½A� :¼M�Zp
A_ ¼ Homcont:;Zp

ðM;AÞ_ with diagonal

G-action. We shall also write MðrÞ for this r-dimensional twist where r:G! GlrðZpÞ

denotes the operation of G on A_.

Note that the functor � ½A� is exact and that L½A� is a free L-module of rank r (cf.

[35, Lem. 4.2]).

PROPOSITION 2.12. For every i5 0, EiðMðrÞÞ ffi EiðM ÞðrdÞ; where rd is the con-
tragredient representation, i.e. rdðgÞ ¼ rðg�1Þ

t is the transpose matrix of rðg�1Þ:

Proof. By homological algebra (and using a free presentation of M) it suffices

to prove the case i ¼ 0 for free modules. Finally, we only have to check the com-

mutativity of the following diagram which is associated to an arbitrary
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homomorphism f:L! L

:

First note that via the identification Lr¼
cr LðrÞ the matrix representing fðrÞ is

A :¼
P
aggrðg�1Þ; where we assume for simplicity that fð1Þ ¼: a ¼

P
agg 2 Zp½G�:

We denote by i both the involution L! L; g 7! g�1 (also extended to matrices with

coefficients in L) and the isomorphism of left L-modules L! HomLðL;LÞ; g 7!
ð1 7! g�1Þ: Then its easy to see that the following two diagrams commute

where B ¼
P
agg
�1rdðgÞ; because iðaÞ ¼

P
agg
�1: We are done if we can verify

B ¼ iðAtÞ: But

iðAtÞ ¼
X

agg
�1rðg�1Þ

t
¼
X

agg
�1rdðgÞ ¼ B: &

With the notation

X :¼ XH;A :¼ H1ðH;AÞ_; ð2:3Þ

Y :¼ YH;A :¼ ðIG½A�ÞH; ð2:4Þ

J :¼ JH;A :¼ kerðLðGÞ½A�H! ðA_ÞHÞ; ð2:5Þ

we get the following proposition:
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PROPOSITION 2.13 ([35, Lem. 4.5]). We have a commutative and exact diagram

Furthermore, if cdpðGÞ4 2, then N abð pÞ½A� is a projective LðGÞ-module and

ðN abð pÞ½A�ÞH a projective LðGÞ-module.

Remark 2:14. Assume A is trivial as H-module. Then the above diagram can be

easily obtained by twisting Jannsen’s original diagram (i.e. with coefficients Qp=Zp):

diagramðAÞ ¼ diagramðQp=ZpÞ½A�: Also the higher Iwasawa adjoints of the occur-

ring modules can be calculated via Proposition 2.12:

EiðXH;AÞ ffi EiðXH;Qp=Zp
ÞðrdÞ;

EiðYH;AÞ ffi EiðYH;Qp=Zp
ÞðrdÞ;

� � �

The following theorem is a consequence of the diagram. The restriction to p-adic

Lie groups without p-torsion is necessary in order to apply the dimension theory

developed in [40].

THEOREM 2.15. Let cdpðGÞ4 2 and G a p-adic Lie group of dimension h without

p-torsion. If the ‘weak Leopoldt conjecture holds for A and H’, i.e. if H2ðH;AÞ ¼ 0,

then neither Y nor X have nonzero pseudo-null submodules: Th�1ðX Þ ¼ Th�1ðY Þ ¼ 0.

Proof. Apply Proposition 3.10 of [40] to Y, which has pdðY Þ4 1 according to the

above diagram, and note that Th�1ðX Þ  Th�1ðY Þ by Proposition 3.2 of [40]. &

Let

Z ¼ ZH;A :¼ ðD
ð pÞ
2 ðG;AÞ

H
Þ
_; ð2:6Þ

where

D
ð pÞ
2 ðG;AÞ ¼ lim

�!
UoG;n

ðH 2ðU; pnAÞÞ
_

and the direct limit is taken with respect to the p-power map and the dual of the

corestriction. Then there is a description of the LðGÞ-module Y as follows:
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PROPOSITION 2.16. Assume that cdpðGÞ ¼ 2 and that N abð pÞ is a finitely gener-

ated LðGÞ-module. Then Y ’ DZ and E0ðZÞ ffi H2ðH;AÞ_; thus Y is determined by

Z up to projective summands. Suppose, in addition, that H2ðH;AÞ ¼ 0: Then

E1ðY Þ ffi Z:

For a proof of the Proposition, see [29], 5.6.8 and [33], Thm. 3.13.

3. Local Iwasawa Modules

3.1. THE GENERAL CASE

In this section we study the structure of Iwasawa modules arising from ‘p-adic repre-

sentations’ G! AutðAÞ; where G ¼ Gk is the absolute Galois group of a finite exten-

sion k of Q‘ and A is a p-divisible p-torsion Abelian group of finite Zp-corank r:

Having fixed a p-adic Lie extension k1 of k with Galois group G, we write

H ¼ Gð �k=k1Þ  G where �k denotes the algebraic closure of k: We are going to apply

the general results of Section 2.4 to the module

XA :¼ XH;A ¼ H1ðH;AÞ_ ¼ H1ðk1;AÞ
_;

i.e. we will determine the LðGÞ-modules occurring in the canonical exact sequence

0�!E1DðXAÞ �!XA�!E0E0ðXAÞ �!E2DðXAÞ �! 0:

The statements in this section often say that the module XA (or another one) fits into

an exact sequence of LðGÞ-modules. In general, this will not determine its Galois-

module structure uniquely. But if it happens that such a sequence describes XA as

1st or 2nd syzygy of some LðGÞ-module with well-known structure, then the

Galois-module structure of XA is uniquely determined up to homotopy, i.e. up to pro-

jective summands (see Subsection 2.1).

For the sake of completeness and for the convenience of the reader we restate

some general results from [34], but see also [33]. Since we have fixed H; we shall omit

it in the notation and write YA; ZA; etc. Recall that G has finite cohomological

dimension cdp G ¼ m if and only if G has no element of finite p-power order and

its dimension as p-adic analytic manifold equals m:

LEMMA 3.1 (cf. [33]).

ðiÞ If k is a finite extension of Q‘ and k1 is a Galois extension of k, then

Z ¼ A�ðk1Þ
_; where A� ¼ ðTpAÞ

_
ð1Þ by definition,

ðiiÞ E1DðXAÞ ffi E1ðA�ðk1Þ
_
Þ;

ðiiiÞ E2DðXAÞ  E2DðYAÞ ffi E2ðA�ðk1Þ
_
Þ;

ðivÞ If cdpðGÞ4 2 or cdpðGÞ ¼ 3 and Aðk1Þ
_ is Zp-torsion-free, then DXA ’

E1ðXAÞ:
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Proof. (i) is just local Tate duality while (ii) is a consequence of (i):

E1DðXAÞ ffi E1DðYAÞ ffi E1ðZAÞ ffi E1ðA�ðk1Þ
_
Þ

(Note that the first isomorphism holds because JA is torsion-free as LðUÞ-module for

a suitable open pro-p-subgroup U  G, such that LðUÞ is integral.) By the same rea-

son and using the snake lemma, one sees that E2DðXAÞ  E2DðYAÞ: To prove (iv)

just note that in these cases pdXA4 1 by the Diagram 2.13, the defining sequence

(2.5) of JA; corollary [40, Cor. 6.3] and [40, Cor. 4.8]. &

Recall that for a finitely generated Abelian p-primary groupAwe denote byAdiv the

quotient of A by its maximal p-divisible subgroup. The next result generalizes a result

of Greenberg [14]:

PROPOSITION 3.2 (cf. [34, Section 2]). Let n ¼ ½k : Q‘�; ‘ ¼ p; be the finite degree

of k over Qp and k1 a Galois extension of k with Galois group G ffi G eo D, where
G ffi Zp and D is a finite group of order t prime to p; which acts on G via the character
o:D! Z

�
p. If w ¼ o�1 denotes the inverse of the character which determines the action

on the p-dualizing module of G, the canonical sequence becomes

0�!TpA
�ðk1ÞðwÞ �!XA�!P�!M�! 0;

where P is a projective LðGÞ-module of rkLðGÞP ¼ rnt and M fits into the exact sequence

0�!M�!A�ðk1ÞdivðwÞ �! torZp
ðAðk1Þ

_
Þ:

Furthermore,

ðiÞ if A�ðk1Þ is finite, then TpA
�ðk1ÞðwÞ ¼ 0: If, in addition, Aðk1Þ

_ is Zp-free, then

M ffi A�ðk1Þ:

ðiiÞ if A�ðk1Þ
_ is Zp-free, then XA ffi P� TpA

�ðk1ÞðwÞ: In particular, XA is projective,
if A�ðk1Þ ¼ 0:

Proof. First note that according to Lemma 3.1 and [40, Cor. 4.8]

E1DðXAÞ ffi E1ðA�ðk1Þ
_
Þ

ffi E1ðA�ðk1Þ
_=torZp

Þ

ffi ðA�ðk1Þ
_
�Qp=Zpðw�1ÞÞ

_

ffi TpA
�ðk1ÞðwÞ:

To determine E 2DðXAÞ ffi E2E1ðXAÞ we use the short exact sequences ((2.5) and

Proposition 2.13)

0�!XA�!YA�! JA�! 0;

0�! JA�!LðGÞd�!Aðk1Þ
_
�! 0;
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i.e. E1ðJAÞ ffi E2ðAðk1Þ
_
Þ ffi Aðk1ÞdivðwÞ by [40, Cor. 4.8] and

Aðk1ÞdivðwÞ �!E1ðYAÞ �!E1ðXAÞ�! 0

is exact. Forming the long exact Ext-sequence and applying Lemma 3.1 and

[40, Cor. 4.8] again, gives the desired result. &

Let us now consider the case ‘ 6¼ p:

PROPOSITION 3.3 (cf. [34, Section 2]). In the situation of the last theorem but with

‘ 6¼ p there is an isomorphism XA ffi TpA
�ðk1ÞðwÞ:

Proof. In [33], Prop. 3.12, it was calculated that the LðGÞ-rank of XA equals the

LðGÞ-corank of H2ðk1;AÞ, but the latter module vanishes because the order of G is

divisible by p1 (cf. [29], 7.1.8). &

PROPOSITION 3.4 (cf. [34, Section 2]). Let n ¼ ½k :Qp� be the finite degree of k over

Qp and k1 a p-adic Lie extension of k such that its Galois group G has cohomological

dimension cdpðGÞ ¼ 2: Let G  G be an arbitrary open uniform pro-p-subgroup, i.e.

LðGÞ is integral, and let t be the index ðG : GÞ. If w denotes the inverse of the character
which determines the action of G on the p-dualizing module, then the canonical sequence

becomes

0�!XA�!R�!E2DðXAÞ �! 0;

where R is a reflexive LðGÞ-module with rkLðGÞR ¼ rnt: If, in addition, Aðk1Þ
_ is

Zp-free, then E2DðXAÞ fits into the exact sequence

0�!E2DðXAÞ �!TpA
�ðk1ÞðwÞ �!HomðTpAðk1Þ;ZpÞ:

Proof. Using again Lemma 3.1 and [40, Cor. 4.8], the proof is completely

analogous to that in the one-dimensional case of Proposition 3.2. &

Note that in the case p 6¼ l and cdpðGÞ5 2 we have H ¼ 0, i.e. XA ¼ 0; because the

Galois group Gkð pÞ of the maximal p-extension of any local field k over Q‘ is

isomorphic to Zpð1ÞeZp (resp. Zp) if mp  k (otherwise). Thus it does not have

any nontrivial quotient G which satisfies these conditions.

PROPOSITION 3.5 (cf. [34, Section 2]). Let n ¼ ½k :Qp� be the finite degree of k over

Qp and k1 a p-adic Lie extension of k such that its Galois group G has cohomological

dimension cdpðGÞ5 3: Let G  G be an arbitrary open uniform pro-p-subgroup, i.e.

LðGÞ is integral, and let t be the index ðG :UÞ. Then XA ffi E0E0XA is a reflexive

LðGÞ-module with rkLðGÞXA ¼ rnt:

Proof. This follows from Lemma 3.1 and [40, Cor. 4.8] as above. &
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At the end of this part we want to restate the results concerning the ranks of the

considered modules. The result was obtained independently by S. Howson [17, 6.1]

and Y. Ochi [33, Thm. 3.3], see also [34, Thm. 2].

PROPOSITION 3.6 (Howson, Ochi). Let k be a finite extension of Q‘ and k1 be

a pro-p Lie extension of k with Galois group G ¼ Gðk1=kÞ. As before r denotes the

Zp-rank of rankðA_Þ. Assume that L ¼ LðGÞ is integral, then

rkLH1ðk1;AÞ
_
¼

r½k :Qp� if ‘=p,
0 otherwise.

n
Proof ðcf: OchiÞ. Noting the vanishing of H2ðk1;AÞ and that N abð pÞ ffi LðGÞ for

d ¼ ½k : Qp� þ 2 (conferring [20], Thm. 5.1c)), the result follows from the diagram in

Proposition 2.13 and the above remarks with respect to the case ‘ 6¼ p: &

3.2. THE CASE A ¼ Qp=Zp

3.2.1. Local Units

If we specialize to the important case A ¼ Qp=Zp with trivial Galois action, we are

able to determine the module structure more exactly using local class field theory:

X :¼ XQp=Zp
ffi Habð pÞ? is the Galois group of the maximal Abelian p-extension of

k1; which is canonically isomorphic to the inverse limit X ffi Aðk1Þ :¼ lim �
k 0

Aðk 0Þ

of the p-completions Aðk 0Þ of the multiplicative groups of finite subextensions k 0 of k

in k1 :Aðk 0Þ ¼ lim �
m
ðk 0Þ�=ðk 0Þ�p

m

; where the limit is taken via the norm maps. Since

the Galois module structure of Aðk 0Þ is well known if tensored with Qp, we get

THEOREM 3.7. Let n ¼ ½k :Q‘�; ‘ ¼ p; be the finite degree of k over Qp and k1 a

Galois extension of k with Galois group G ffi G e o D, where G ffi Zp and D is a finitely
generated profinite group of order prime to p; which acts on G via the character

o:D! Z�p. We write k0 for the fixed field of G and denote by w ¼ o�1 the inverse of

the character which determines the action on the p-dualizing module of G.

ðiÞ If mp1  k1; i.e. k1 is the cyclotomic Zp-extension of k0 and G ¼ G� D; then it
holds Aðk1Þ ffi Ln �Zpð1Þ:

ðiiÞ Let mðk1Þð pÞ be finite. Then there is an exact sequence of L-modules

0�!Aðk1Þ � IG�!Lnþ1
�!mðk1Þð pÞðwÞ �! 0:

For any presentation

1�!K�!F d 0 �!G�! 1

by a free profinite groupF d 0 on d
04 nþ 1 generators, there exists an exact sequence

0�!Aðk1Þ�!Ln�d
0þ1
� K abð pÞ �!mðk1Þð pÞðwÞ �! 0:

?This notation refers to diagram (2.1) of Section 2.4 where we represent the absolute local Galois

group G of k by a free profinite group of rank d ¼ ½k :Q‘� þ 2 according to [29], Theorem 7.4.1.
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Remark 3:8. (i) The existence of a presentations in (ii) is always guaranteed by

[19] Theorem 4.3. Indeed, one can choose d 0 ¼ 2.

(ii) Using the Krull–Schmidt and Maschke’s theorem, it is easily proved (see the

proof below) that

E0ðIGÞðoÞ � IG ffi Zp½½G��
2;Mm�1

i¼1

IGðoiÞ � IG ffi Zp½½G��
m;

wherem denotes the order of o: Hence, from the isomorphism K abð pÞ � IG ffi Zp½½G��
d

according to the Lyndon sequence (2.2), we get isomorphisms (for m4 d )

K abð pÞ ffi Zp½½G��
d�2
� E0ðIGÞðoÞ

ffi Zp½½G��
d�m
�
Mm�1

i¼1

IGðoiÞ:

In particular, if o is an involution and d ¼ 2, then K abð pÞ ffi E0ðIGÞðoÞ ffi IGðoÞ
holds.

Proof. Let us first consider the case that D is a finite group, which grants that

LðGÞ is Noetherian. Then the statements are consequences of Theorem 3.2 once

having determined the structure of P ¼ E0E0X: We will apply the Krull–Schmidt

theorem and we first observe that for any open normal subgroup UEG and
�G :¼ G=U it holds: XU �Qp ffi PU �Qp and, if k 0 denotes the fixed field of U; there

are exact sequences of �G-modules

0�!U abð pÞ �!ðIGÞU�!Zp½ �G� �!Zp�! 0;

0�!XU�! �Gab
k 0 ð pÞ �!U abð pÞ �! 0:

Hence, by Maschke’s theorem and using �Gab
k 0 ð pÞ �Qp ffi Qp½ �G�

n
�Qp (cf. [29], 7.4.3),

we get

PU �Qp � ðIGÞU �Qp ffi Qp½ �G�
nþ1;

i.e. P� IG ffi Lnþ1:

Now, taking U-coinvariants of the augmentation sequence

0�! IG�!Zp½½G�� �!Zp�! 0

and tensoring with QpðoiÞ gives

Qp½ �G� �Qpðoiþ1Þ ffi ðIGðoiÞÞU �Qp �QpðoiÞ:

For (i) just note that IG is projective and o trivial because D acts trivially on G;
hence: IG ffi Zp½½G��: The first sequence in (ii) is immediate while the second one results

from the isomorphismK abð pÞ � IG ffi Zp½½G��
d according to the Lyndon sequence (2.2).
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Now let us assume that D is infinite. If D0  D is an open subgroup then the func-

tor obtained by taking D0-coinvariants is exact because H1ðD
0;M Þ ¼ 0 for any

L-module M: Since the automorphism group is virtually pro-p; there is an open nor-

mal subgroup D0 of D which acts trivially on G; in particular any open normal sub-

group D0 of D which is contained in D0 is normal in G: Now a free presentation of G

1�!K�!F d 0 �!G�! 1

induces a free presentation of G 0 :¼ G=D0

1�!KD0 �!F d 0 �!G=D0 �! 1:

Using the Lyndon sequence, it is easy to verify that ðIGÞD0 ffi IG=D0 and K abð pÞD0 ffi

Kab
D0 ð pÞ: Now the strategy is as follows. Take a LðGÞ-module M and show that for

any D0 as above its D0-coinvariants are isomorphic to certain finitely generated

LðG 0Þ-modules of the same type, e.g. Aðk 0Þ � IG 0 ; where k 0 is the fixed field of k1
by D0: Then it follows easily (using a compactness argument to grant the existence

of a compatible system of isomorphisms) that M ffi Aðk1Þ � IG: As an example

we prove the first statement in (ii): choose a surjection LðGÞnþ1
‡ mðk1Þð pÞðwÞ and

define M to be the kernel of it. Taking D0-coinvariants and comparing it with the

result for k 0; i.e. for (finite) D=D0; we obtain an isomorphism MD0 ffi Aðk 0Þ � IG 0

by Schanuel’s lemma (see [20, 1.3] for a generalized version). The other statements

follow by similar arguments.

The second isomorphism of the remark can be deduced by summing up

ðIGðoiÞÞU �Qp for 04 i4m: For the first one, use that due to the projectivity of IG

E0ðIGÞU �Qp ffi HomZp½½G��ðIG;Zp½½G��ÞU �Qp

ffi HomZp½ �G�
ððIGÞU;Zp½ �G�Þ �Qp

ffi HomQp
ððIGÞU;QpÞ �Qp

holds. &

THEOREM 3.9. In the situation of the last theorem but with ‘ 6¼ p there is an

isomorphism

X ffi
Zpð1ÞðwÞ if mp  k0;
0 otherwise.

n
The next theorem generalizes results of Wintenberger [42] who restricts himself to the

case in which G is Abelian. It applies for example to G ffi Zp �Zp: Recall that R,

respectively Rabð pÞ, were defined via diagram (2.1).

THEOREM 3.10. Let n ¼ ½k :Qp� be the finite degree of k over Qp and k1 a Galois

extension of k with Galois group G ffi G�r D; where G is a pro-p Lie group of dimension
2 and D is a profinite group of order prime to p; which acts on G via r:D! AutðGÞ: Let
k0 be the fixed field of G and let w ¼ det r�1 denote the inverse of the character which

determines the action on the p-dualizing module of G.
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ðiÞ If mðk0Þð pÞ ¼ 1, then X� L ffi Rabð pÞ: If r is trivial, then X ffi Ln:
ðiiÞ If mp1  k1 and G is without p-torsion and such that its dualizing module is not

isomorphic to mp1 ; then there is an exact sequence of L-modules

0�!X� L�!Rabð pÞ �!Zpð1ÞðwÞ�! 0:

If r is trivial, then

0�!X�!Ln�!Zpð1Þ �! 0

is exact.

ðiiiÞ If mðk1Þð pÞ and D are finite, then X ffi E0E0ðX Þ is reflexive, i.e. there is an exact

sequence

0�!X�!Rabð pÞ �!L�! mðk1Þð pÞ:

If, in addition, mðkÞð pÞ ¼ 1; but mðk1Þð pÞ 6¼ 1 and w�1 6¼ wcycl; then the right map is

also surjective ðin particular X is not free in this caseÞ.

Remark 3:11: For extensions k1 j k of the type G ffi G� D with G ffi Zs
p; s5 3 and

finite D; we can consider the relative situation

0�!Xðk1ÞG 0 �!XðK1Þ�!Zp�! 0;

where G 0 is direct factor of G isomorphic to Zp, i.e. G ffi G 0 �Zs�1
p ; and K1 is the

fixed field of k1 with respect to G 0: By induction and applying Diekert’s theorem

([29]) one reobtains at once Wintenberger’s results (but now more generally with

not necessarily Abelian D): For any irreducible character w 6¼ 1; wcycl the component

Xðk1Þ
ew is a free LðGÞew -module of rank n Xðk1Þ

ew ffi ðLðGÞewÞn: But since we already

know that pdL X ¼ s� 2 for s5 3; X can not be projective in this case, i.e. Xðk1Þ
e1

or Xðk1Þ
ewcycl is definitely not of this type.

We will prove the theorem only for finite D because the general case follows

similarly as in Theorem 3.7. Just note that also in this case the automorphism group

of G is virtually pro-p (see [10, 5.6]). But before giving the proof we need some

preparation:

LEMMA 3.12. Let G ¼ G� D be the product of a pro-p Lie group G with cdpðGÞ ¼ 2

and a finite group D of order prime to p: Then Rabð pÞ ffi Lnþ1:

Proof. Let Un :¼ p
nGEG: By the Lyndon sequence (2.2) and using Proposition

2.7, we calculate the Euler characteristic hUn ðR
abð pÞÞ ¼ hUnðZpÞ þ hUn ðL

nþ1
Þ ¼

hUn ðL
nþ1
Þ: The result follows. &

LEMMA 3.13. If in the situation of the theorem mðk1Þð pÞ is infinite, then both E0ðX Þ

and E0E0ðX Þ are projective.

Proof. Since E0ð�Þ preserves projectives and E0E0E0ðX Þ ffi E0ðX Þ by [40, Prop.

3.11], it is sufficient to prove the statement for E0E0ðX Þ: But according to Propo-

sition 2.5, the latter module is the 2-syzygy of E3E1ðX Þ: We claim that Y ’ X� L;
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i.e. that E3E1ðX Þ ffi E3E1ðY Þ ffi E3ðmðk1Þð pÞ
_
Þ ¼ 0; which implies the lemma.

Indeed, due to Poincaré-duality

H2ðG; mðk1Þð pÞÞ
_
ffi HomGðmðk1Þð pÞ;D

ð pÞ
2 Þ ¼ 0;

if D
ð pÞ
2 6¼ mp1 : Hence, Y ’ X� L by the second description of 4.5(b) in [20]?. &

Proof of the Theorem. Let Um ¼ p
mGEG and denote the fixed field of Um by km:

From the exact sequence

1�!Gk1 �!Gkm �!Um�! 1

we obtain the associated homological Hochschild–Serre sequence

0 ¼ H2ðkm;ZpÞ �!H2ðUm;ZpÞ �!XUm �!G ab
km
ð pÞ �!H1ðUm;ZpÞ �! 0:

After tensoring with Qp; it follows that

XUm �Qp �H1ðUm;ZpÞ �Qp ffi Qp½ �G�
n
�Qp �H2ðUm;ZpÞ �Qp;

where we used Maschke’s theorem and �Gab
km
ð pÞ �Qp ffi Qp½ �G�

n
�Qp (cf. [29], 7.4.3).

On the other hand, the Euler characteristic of the projective module Rabð pÞ can be

calculated by means of the Lyndon sequence:

½Rabð pÞUm �Qp� ¼hUm ðR
abð pÞÞ

¼hUm ðZpÞ þ hUmðL
nþ1
Þ

¼½Qp� � ½H1ðUm;ZpÞ �Qp� þ ½H2ðUm;ZpÞ �Qp� þ

þ ½Qp½ �G�
nþ1
�

and, hence, XUm �Qp �Qp½ �G� ffi R
abð pÞUm �Qp:

Assume that mðk0Þð pÞ ¼ 1; i.e. torZp
Aðk0Þ ¼ 1 and XU0

is Zp-free. Therefore, since

t is prime to p, it follows that XU0
is Zp½D�-projective. If r is trivial, we conclude, by

the calculation above under consideration of hUmðZpÞ ¼ 0 (by Lemma 2.7) and using

the Krull–Schmidt theorem, that XU0
ffi Zp½D�

n. Applying Lemma 2.6, gives the

desired result in this case. Anyway, these arguments show that X is projective also

in the case with non-trivial r; i.e. we obtain X� L ffi Rabð pÞ in the general case.

In order to prove (ii), we apply Theorem 3.4: Since X� L ’ Y in this case (see the

proof of Lemma 3.13), we obtain

E2DðX Þ ffi E2DðY Þ

ffi E2ðZpð�1ÞÞ

ffi Zpð1ÞðwÞ;

?For G ¼ Z2
p this statement was proved by Jannsen ([20], 5.2(c)): Though there the claimed

isomorphism Rabð pÞ ffi Ld�1 is only correct if r is trivial, the arguments (which we restated above) still

prove X� L ’ Y:
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where we applied Lemma 3.1 and [20, 2.6]. Note that

w�1ðxÞ ¼ detðAdxÞ ¼ det rðxÞ:G! D !
detr

Z�p

(cf. [24] V 2.5.8.1). We still have to determine the module P ¼ E0E0ðX Þ; which is

projective according to Lemma 3.3: it is easily seen that PUm �Qp ffi XUm �Qp;

i.e. P� L ffi Rabð pÞ; by the above calculations. If r is trivial, Lemma 3.2 gives

the desired result.

The first statement of (iii) is just Theorem 3.4 and Lemma 3.1. By Proposition 2.5,

we obtain an exact sequence

0�!X�!P�!Ls�! mðk1Þð pÞ

for some s: Splitting up the sequence, taking the long exact HiðUm;�Þ-sequences and

using the above calculations, one immediately sees that PUm �Qp ffi R
abð pÞUm�

Qp �Qp½ �G�
s�1; i.e. P ffi Rabð pÞ � Ls�1: After possibly changing the basis of Ld

and using the Krull–Schmidt theorem, one easily sees that we can get rid off the

summand Ls�1:

In order to prove the last statement, we assume that w�1 6¼ wcycl and consider the

exact sequence

0 ! E1ðX Þ_ ! E1ðY Þ_ ! E1ðI Þ_���� ����
mðk1Þð pÞ Qp=Zpðw�1Þ:

The decomposition of the sequence with respect to the irreducible Qp-characters of D
gives ðE1ðX Þ_Þwcycl ¼ mðk1Þð pÞ

wcycl ¼ mðk1Þð pÞ: &

3.2.2. Principal Units

When l ¼ p; we are also interested in the L-structure of the inverse limit of the prin-

cipal units U1
ðk1Þ :¼ lim �k 0 U

1
ðk 0Þ; where k 0 runs through all finite subextensions

of k1 j k and the limit is taken with respect to the norm maps.

PROPOSITION 3.14. Let k be a finite extension of Qp and k1 a Galois extension

of k.

ðiÞ If k1 contains the maximal unramified p-extension of k; i.e. if p1 divides the

degree of the residue field extension associated with k1 j k; then U1
ðk1Þ ffi Aðk1Þ:

ðiiÞ In the other case there is the following exact sequence

0�!U1
ðk1Þ�!Aðk1Þ�!Zp�! 0:
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Proof. For finite extensions K 0 jK j k of k with associated residue field extensions

l0 j l j k consider the following commutative diagram with exact rows

0 ! U1
ðK 0Þ=pm ! AðK 0Þ ! Zp=p

m ! 0
 

NK 0=K

 

NK 0=K

 

½l0: l�

0 ! U1
ðK Þ=pm ! AðK Þ ! Zp=p

m ! 0:

While in case (i) the inverse limit lim �K;m Zp=p
m vanishes, because for any m and

any K there is an extension K 0 such that pm j ½l0: l�; in the second case it is isomorphic

to Zp: &

THEOREM 3.15. Assume in the situation of Theorem 3:10 that k1 contains mp1 but
not the maximal unramified p-extension of k: Then there exists an exact sequence

0�!U1
ðk1Þ � L�!Rabð pÞ �!M�! 0;

where M fits into the exact sequence

0�!Zp�!M�!Zpð1ÞðwÞ �! 0:

In particular, if r is trivial, there exists an exact sequence

0�!U1
ðk1Þ�!Ln�!M�! 0:

Proof. Evaluating the long exact Ei-sequence associated with the exact sequence

from the proposition above and noting that pdLU1
ðk1Þ4 1 due to pdLAðk1Þ4 1

and pdLZp ¼ 2; one obtains that

(i) E0ðU
1
ðk1ÞÞ ffi E0ðX Þ;

(ii) E1DðU1
ðk1ÞÞ ¼ 0 and an exact sequence,

(iii) 0�!Zp�!E2DðU1
ðk1ÞÞ�!Zpð1ÞðwÞ�! 0:

Here we used that E2E2ðZpÞ ffi Zp; because Zp is a Cohen–Macaulay module of

dimension 2. The result follows from the canonical sequence. &

Remark 3:16. In the situation of Theorem 3.7 with trivial action of D the structure

of the principal units is described in [29] as follows:

(i) If mp1  k1; then

U1
ðk1Þ ffi Ln �Zpð1Þ:

(ii) If mðk1Þð pÞ is finite, then there is an exact sequence

0�!U
1
ðk1Þ�!Ln�! mðk1Þð pÞ:

(iii) If k1 j k is unramified, then U1
ðk1Þ ffi Aðk1Þ:

But the proof of [29] works also if o is not trivial.
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3.3. THE LOCAL CM-CASE

As a consequence of Theorem 3.10 we can also determine up to homotopy the

structure of XA ¼ H1ðk1;AÞ
_ in the trivializing case, i.e. kðAÞ  k1:

THEOREM 3.17. Let n ¼ ½k:Qp� be the finite degree of k over Qp and k1 a Galois

extension of k with Galois group G ffi G e rD; where G is a pro-p Lie group of dimension
2 and D is a finite group of order t prime to p; which acts on G via r:D! AutðGÞ: Let
k0 be the fixed field of G and let w ¼ det r�1 denote the inverse of the character which

determines the action on the p-dualizing module of G. For any A with rkZp
A_ ¼ r such

that kðAÞ  k1 the following is true.

ðiÞ If mðk0Þð pÞ ¼ 1, then XA � Lr ffi Rabð pÞ½A�; in particular, if r is trivial: XA ffi Lnr:
ðiiÞ If mp1  k1 and G is p-torsion-free and its dualizing module is not isomorphic to

mp1 ; then there is an exact sequence of L-modules

0�!XA � Lr�!Rabð pÞ½A� �!A_ð1ÞðwÞ �! 0:

In particular, if r is trivial, then

0�!XA�!Lnr�!A_ð1Þ �! 0

is exact.

ðiiiÞ If mðk1Þð pÞ is finite, then XA ffi E0E0ðXAÞ is reflexive, i.e. there is an exact

sequence

0�!XA�!Rabð pÞ½A� �!Lr�!mðk1Þð pÞ½A�:

If, in addition, mðkÞð pÞ ¼ 1; but mðk1Þð pÞ 6¼ 1 and w�1 6¼ wcycl; then the right map

is also surjective ðin particular, XA is not free in this caseÞ.

Proof. In this case the subgroups H;R and N act trivially on A ¼ Aðk1Þ; i.e.

XA ffi X ½A�: &

This result applies to the following situation: Let K be a imaginary quadratic num-

ber field, F a finite, Abelian extension of K and E an elliptic curve defined over F with

complex multiplication (CM) by the ring of integers OK of K such that FðEtorÞ is an

Abelian extension of K: Assume that the rational prime p splits in K; i.e. pOK ¼ p �p;
p 6¼ �p; and that E has good reduction at all places lying over p: Set

G ¼ GðFðEð pÞÞ=FÞP the decomposition group at some P j p: According to [9, 1.9],

the prime P ramifies totally in FðEðpÞÞ jF and decomposes only finitely (and is unra-

mified) in FðEð �pÞÞ jF: Therefore the decomposition group G is an open subgroup of

GðFðEð pÞÞ=FÞ; i.e. of type Z2
p � D where D is a finite Abelian group. Thus we obtain

an exact sequence

0�!H1ðFðEð pÞÞP;Eð pÞÞ
_
�!LðGÞ2n�!TpE�! 0;

where n ¼ ½Fp:Qp�: By the same argument, but now using Theorem 3.7(ii), there
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exists an exact sequence

0�!H1ðFðEðpÞP;EðpÞÞ
_
�!LðG 0Þn�!mðFðEðpÞPÞ½EðpÞ� �! 0;

where G 0 ¼ GðFðEðpÞÞ=FÞP; and a similar one for �p:

4. Global Iwasawa Modules

Let k1 be a p-adic Lie extension of the number field k contained in kS with Galois

group G and let A be a p-divisible p-torsion Abelian group with Zp-corank r and on

which GSðkÞ ¼ GðkS=kÞ acts continuously where S is a finite set of places of k con-

taining all places Sp over p and all infinite places S1 (and by definition all places

at which A is ramified). Here kS denotes the maximal S-ramified extension of k;

i.e. the maximal extension of k which is unramified outside S: In order to derive

information about the L ¼ LðGÞ-modules HiðGðkS=k1Þ;AÞ we would like to apply

the diagram (2.1) to the group G ¼ GS :¼ GðkS=kÞ: On the other hand we have to

guarantee that G is finitely generated as a profinite group which, unfortunately, is

not known for the group GS: But using a theorem of Neumann, i.e. the inflation

maps are isomorphisms

HiðGðO=k1Þ;AÞ ffi HiðGSðk1Þ;AÞ; i5 0;

for any ð p;SÞ-closed extension O of k (i.e. O is a S-ramified extension of k which does

not possess any nontrivial S-ramified p-extension) and for any p-torsion GðO=k1Þ-
module A; we are free to replace GSðkÞ for example by the Galois group

G :¼ GðO=kÞ where O is the maximal S-ramified p-extension of k 0ðAÞ and k 0 is a

Galois subextension of k1=k such that Gðk1=k
0Þ is an open (normal) pro-p-group.

Regarding this technical detail, we assume in what follows that k1 is contained in

such a ð p;SÞ-closed field O: Then, since G has an open pro-p Sylow group, it is

finitely generated and has cdpðGÞ4 2 for odd p: Note that YS;A :¼ YGðO=k1Þ;A (2.4)

and XS;A :¼ XGðO=k1Þ;A (2.3) do not depend on the choice of O: The next lemma

shows among other things that the corresponding module Z (2.6) only depends on

k1; A and S: Recall that TpA ¼ HomðQp=Zp;AÞ denotes the ‘Tate module’ of A:

We shall write H�ctsðGSðkÞ;TpAÞ ffi lim n
H�ðGSðkÞ; pnAÞ for the continuous cochain

cohomology groups (see [29, II. Section 3.]).

LEMMA 4.1. Let k; k1 and A be as above. Then

ZS;A :¼ ZGðO=k1Þ;A ffi lim
 �

kk0k1

H 2
ctsðGSðk

0Þ;TpAÞ:

A basic structure result is the following theorem:

THEOREM 4.2. Let G a p-adic Lie group without p-torsion. If the ‘weak Leopoldt

conjecture holds for A and k1’, i.e. H2ðGSðk1Þ;AÞ ¼ 0, then neither YS;A nor

XS;A ffi H1ðGSðk1Þ;AÞ
_ have nonzero pseudo-null submodules.
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Proof. The conditions of Theorem 2.15 are fulfilled. &

Furthermore, the L-rank of XS;A can be determined, using diagram (2.4):

THEOREM 4.3 (Ochi [34]). Let k1 j k be a p-adic pro-p extension. Assume that

kðAÞ j k is a pro-p-extension and that L is an integral domain. Then

rkLH1ðGSðk1Þ;AÞ
_
� rkLH2ðGSðk1Þ;AÞ

_
¼ r2ðkÞr

Here r2ðkÞ denotes as usual the number of complex places of k:

Thus, if the weak Leopoldt conjecture holds for A and k1; one obtains a simple

formula for the L-rank of H1ðGSðk1Þ;AÞ
_: So, we conclude with a brief discussion

and motivation concerning this conjecture:

In [21] Jannsen extended the strong Leopoldt conjecture, which is equivalent to the

vanishing of H2ðGSðkÞ;Qp=ZpÞ; to the following setting: Let X be a smooth projec-

tive variety of pure dimension over k and assume that S contains Sp; S1 and all

places Sbad where X has bad reduction. Then the étale cohomology TiðnÞ :¼

Hi
�etðX�k

�k;ZpðnÞÞ is a compact GSðkÞ-module which is finitely generated over Zp;

here �k denotes as usual an algebraic closure of k: Hence AiðnÞ :¼ TiðnÞ �Zp
Qp=Zp

is a p-divisible discrete GSðkÞ-module, for X ¼ SpecðkÞ and i ¼ 0 isomorphic to

ðQp=ZpÞðnÞ: Assuming p 6¼ 2 or that k is totally imaginary his conjecture (cf. [21,

Conjecture 1, Lem. 1]) predicts

H2ðGSðkÞ;A
iðnÞÞ ¼ 0 if

(i) i+1<n, or

(ii) iþ 1 > 2n:

�

Thus, if this conjecture true for fixed X; i as well as n for all number fields contained

in k1; it implies obviously the weak Leopoldt conjecture for AiðnÞ over k1: While in

the ‘unstable’ range n4 iþ 14 2n the cohomology group H2ðGSðkÞ;A
iðnÞÞ is nontri-

vial in general, it is supposed to vanish after going up a ‘nice’ p-adic Lie-extension

(cf. Corollary 4.8 for an example of this phenomena).

It is a result of Iwasawa that over the cyclotomic Zp-extension of any number field

the original weak Leopoldt (i.e. for A ¼ Qp=Zp) holds and consequently for

ðQp=ZpÞðnÞ for all n 2 Z (see [29, 10.3.25] for a cohomological proof). This leads to

Remark 4:4. The weak Leopoldt conjecture for A and k1 holds for example if

kðAÞ and the cyclotomic Zp-extension of k are contained in k1: The claim follows by

expressing H2ðGSðk1Þ;AÞ (considered as Abelian group) as direct limit lim �k 0
H2ðGSðk

0
cycÞ;Qp=ZpÞ

r; where k 0 runs through the finite extensions of k in k1:

For a discussion about the weak Leopoldt conjecture over the cyclotomic Zp-

extension of a number field for other p-adic representations than above we refer

the reader to Section 1.3 and Appendix B of [36].
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4.1. THE MULTIPLICATIVE GROUP Gm

4.1.1. The Maximal Abelian p-Extension of k1 Unramified Outside S

We still consider p-adic Lie extensions k1 j k with Galois group G ¼ Gðk1=kÞ such

that k1 is contained in the maximal S-ramified extension kS of k: Here, as before,

S denotes a finite set of places of k containing all places Sp over p and all infinite

places S1: For K j k finite let Sf ðK Þ be the set of finite primes in K lying above S:

In this paragraph we specialize to the case A ¼ Qp=Zp and we shall write XS for

the L ¼ LðGÞ-module XS;Qp=Zp
(2.3)

XS :¼ XS;Qp=Zp
¼ H1ðGSðk1Þ;Qp=ZpÞ

_
ffi GðkS=k1Þ

ab
ð pÞ;

and respectively for YS (2.4) and ZS (2.6).

In this case, Theorem 4.2 is a generalization of the theorems of Greenberg [13] and

Nguyen-Quang-Do [31], who considered the case G ffi Z
d
p: Indeed, it confirms

Greenberg’s suggestion that an analogous statement also should hold for p-adic

Lie extensions.

THEOREM 4.5. Let G be a p-adic Lie group without p-torsion. If the ‘weak Leopoldt

conjecture holds for k1’, i.e. H2ðGSðk1Þ;Qp=ZpÞ ¼ 0, then XS ffi GSðk1Þ
ab
ð pÞ has no

nonzero pseudo-null L-submodule.

Remark 4:6: Recall that the weak Leopoldt conjecture for k1 holds if the

cyclotomic Zp-extension of k is contained in k1:

We will also consider the L-modules

Xnr ¼ GðL=k1Þ; XScs ¼ GðL
0=k1Þ;

where L is the maximal Abelian unramified pro-p-extension of k1 and L0 is the

maximal subextension in which every prime above S is completely decomposed.

For an arbitrary number field K, we denote the ring of integers (resp. S-integers) by

OK (resp. OK;S) and its units by EðK Þ :¼ O�K (resp. ESðK Þ :¼ O�K;S). Then we define

E :¼ lim
 �
k 0

ðO�k 0 �ZpÞ; ES :¼ lim
 �
k 0

ðO�k 0;S �ZpÞ;

where the limit is taken with respect to the norm maps. This should not be confused

with the discrete module of units (resp. S-units) Eðk1Þ ¼ lim�!
k 0
Eðk 0Þ (resp.

ESðk1Þ ¼ lim�!
k 0
ESðk

0ÞÞ:

Finally, we write for the local-global modules

AS ¼
M
Sfð kÞ

IndGn
G An; US ¼

M
Sfð kÞ

IndGn
G Un;

where An ¼ Aðk1;nÞ (resp. Un ¼ U1
ðk1;nÞ) are the local modules introduced in

Section 3.2. The above modules are connected via global class field theory and the

Poitou–Tate sequence as follows
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PROPOSITION 4.7 (Jannsen). There are the following exact and commutative

diagrams of L-modules:

ðiÞ
0 �! H2ðGSðk1Þ;Qp=ZpÞ

_
�! E �! US �! XS �! Xnr �! 0����  

\\\

 

\\\
���� ‡

0 �! H2ðGSðk1Þ;Qp=ZpÞ
_
�! ES �! AS �! XS �! XScs �! 0

ðiiÞ

0�!E�!ES�!
M

SunðkÞ
IndGn

G Zp�!Xnr�!XScs�! 0;

where Sun :¼ fn 2 SðkÞ j p1ıfng and fn ¼ fð k1;n=knÞ denotes the degree of the

extension of the corresponding residue class fields.

ðiiiÞ

0�!XScs�!ZS;Qp=Zpð1Þ �!
M

Sfð kÞ
IndGn

G Zp�!Zp�! 0;

and, if mp1  k1;

0�!Xcsð�1Þ �!ZS�!
M

Sfð kÞ
IndGn

G Zpð�1Þ �!Zpð�1Þ �! 0:

In particular, XScs ¼ Xcs :¼ X
Sp
cs is independent of S in this case.

ðivÞ N abð pÞ ðsee ð2:1Þ–ð2:2ÞÞ is a finitely generated, projective LðGðk1Sð pÞ=kÞÞ-module
and, if the free presentation of G ¼ Gðk1Sð pÞ=kÞ ðcf. Section 2:4Þ is chosen such

that d5 r 01 þ r2 þ 1; then

N abð pÞGSðk1Þð pÞ ffi
M
S 01

IndGn
G Zp � LðGÞd�r2�r

0
1
�1;

where S 01 is the set of real places of k which ramify ði.e. become complexÞ in k1;

r 01 is the cardinality of S
0
1; and r2 is the number of complex places of k:

Proof. The assertions (i) and (iii) are obtained by taking inverse limits of the

Tate–Poitou sequence (see [20, Thm. 5.4]) and recalling Lemma 4.1 while (ii) follows

from (i) by the snake lemma and Proposition 3.14. &

From these diagrams and the fact that L is Noetherian it follows that the modules

Xnr;X
S
cs are finitely generated. Furthermore, S. Howson [17, 7.14–7.16] and Y. Ochi

[33, 4.10] independently proved that Xnr and XScs are L-torsion. Actually, this result

was first proved by M. Harris [15, Thm. 3.3] but, as S. Howson remarked, his proof

is incomplete because it relies on the false ‘strong Nakayama’ lemma ([15, Lemma

1.9]), see the discussion in [2]. However, in a recent correction Harris [16] has given

a new proof of the result. In the case G ffi Zd
p; this result is originally proved by

Greenberg [12].
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COROLLARY 4.8. ðiÞ If H2ðGSðk1Þ;Qp=Zpð1ÞÞ ¼ 0 ðe.g. if dimðGnÞ5 1 for all

n 2 SfÞ, then XScs is a L-torsion module.
ðiiÞ If dimðGnÞ5 1 for all n 2 Sf; then Xnr is a L-torsion module.

For example, the conditions of the corollary are satisfied if k1 contains the cyclo-

tomic Zp-extension.

Proof ðcf: ½34�Þ. The first statement follows from 2.16 while the second one

is a consequence of the first one and the above proposition (To calculate the

(co)dimension of IndGn
G Zp use [40, 4.8, 4.9]. Note that the condition ‘dimðGnÞ5 1

for all n 2 Sf’ implies, using Tate–Poitou duality,

H2ðGSðk1Þ;Qp=Zpð1ÞÞ ¼ III2ðGSðk1Þ; mp1Þ

¼ lim
�!
k 0;n

III1ðGSðk
0Þ;Z=pnÞ_

¼ lim
�!
k 0

ClSðk
0Þ �Z Qp=Zp

¼ 0
because ClSðk

0Þ is finite. &

THEOREM 4.9. If mp1  k1; and dimðGnÞ5 2 for all n 2 Sf; then

Xnrð�1Þ 
 XScsð�1Þ 
 E1ðYSÞ 
 E1ðtorLYSÞ ffi E1ðtorLXSÞ:

If, in addition, G ffi Zr
p; r5 2; then even the following holds:

Xnrð�1Þ 
 XScsð�1Þ 
 ðtorL XSÞ
�;

where � means that G operates via the involution g 7! g�1:

Remark 4:10. In case torL XS is isomorphic in L-mod=PN to a direct sum of

cyclic modules of the form L modulo a (left) principal ideal the Proposition 2.4

implies that

E1ðtorL XSÞ � ðtorL XSÞ
� modPN

holds under the conditions of the theorem.

Proof. Note that H2ðGSðk1Þ;Qp=ZpÞ ¼ 0; since Remark 4.4 applies. The first two

pseudo-isomorphisms follow again from Proposition 4.7 using [40, 4.8,4.9] and 2.16.

The third one is just [40, Prop. 3.13]. Note that there is even an isomorphism

torLYS ffi torL XS because the augmentation ideal IG is torsion-free. &

The following consequence generalizes a result of McCallum [25, Thm. 8] who con-

sidered the Zr
p-case:
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COROLLARY 4.11. With the assumptions of the theorem the following holds.

ðiÞ There is a pseudo-isomorphism torL XS 
 E1ðXScsð�1ÞÞ:

ðiiÞ If dimðGÞ5 3; then there is an isomorphism torL XS ffi E1ðXScsð�1ÞÞ:

Proof. The cokernel K :¼ cokerðXScsð�1Þ ,!ZS ffi E1ðYSÞÞ is pseudo-null, i.e.

E1ðK Þ ¼ 0: If dimðGÞ5 3; then E2ðK Þ ¼ 0; too, as can be calculated using [40, Prop.

2.7]. Now, the long exact E-sequence gives the result observing E1E1ðYSÞ ffi

E1DYS ffi torLYS ffi torLXS: &

Remark 4:12. The condition ‘dimðGnÞ5 2 for all n 2 Sf’, is known to hold in

‘most’ extensions arising from geometry, e.g. for the set Sf ¼ Sbad [ Sp; if k1 ¼

kðAð pÞÞ arises by adjoining the p-division points of an abelian variety A over k with

good reduction at all places dividing p and such that Gðk1=kÞ is a pro-p-group

without p-torsion, see (the proof of) Corollary 4.38 below. The latter condition is

satisfied if, for instance, k contains, kðpAÞ for p 6¼ 2 or kðp2AÞ for p ¼ 2; see at the

beginning of Section 2.1.

Other important cases are the following ones:

(a) Let k1 be the maximal multiple Zp-extension ~k of k; i.e. the composite of all

Zp-extensions of k; and assume that m2p  k or

(b) let k1 be a multiple Zp-extension with G ffi Z
r
p; r5 2; and assume that there is

only one prime of k lying over p:

Then, as has been observed independently by T. Nguyen-Quang-Do [32, Thm.

3.2] and McCallum [25, Proof of Thm. 7], the condition holds for S ¼ Sp [ S1:

Indeed, since Qðm2pÞ has only one prime dividing p; it suffices to consider the

second case. But then all inertia groups Tn; n 2 Sp; are conjugate, thus they are

all equal and hence an open subgroup of G due to the finiteness of the ideal

class group.

With respect to the composite ~k of all Zp-extensions of k there is the following

outstanding conjecture:

CONJECTURE (R. Greenberg). For any number field k; the LðGð ~k=kÞÞ-module Xnr
is pseudo-null.

Recently, W. McCallum [25] proved this conjecture for the base field k ¼ QðmpÞ
under some mild assumptions. For a list of other cases in which this conjecture is

known to hold, see [32, Rem. 4.6]. Assume that mp  k and that the condition

‘dimðGnÞ5 2; for all n 2 Sf’, holds. Then, by the above theorem and Theorem 4.5,

Greenberg’s conjecture is equivalent to the statement that XS is L-torsion-free, com-

pare with [32, 4.4] and [25, Cor. 13].

The observation of the previous proof leads also to:

PROPOSITION 4.13. If dimðGnÞ5 2 for all n 2 Sf; then E 
 ES:
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We are also interested in the (Pontryagin duals of the) direct limits

ClSðk1Þð pÞ ¼ lim
�!
k 0

ClSðk
0Þð pÞ;

ESðk1Þ :¼ ðESðk1Þ �Z Qp=ZpÞ
_;

of the p-part of the ideal class group, resp. of the global (S-)units of finite extensions

k 0 of k inside k1:

PROPOSITION 4.14. Let T be a set of places of k such that S1  T  S: Assume

that dimðTnÞ5 1 for all n 2 SnT; where Tn  Gn denotes the inertia group of n:

ðiÞ There is an exact sequence of L-modules

0�!ClSðk1Þð pÞ
_
�!
c

ClTðk1Þð pÞ
_
�! ESðk1Þ �!

j
ETðk1Þ�! 0:

ðiiÞ Assume that SnT ¼ fng: Then, if dimðGnÞ5 1 ðresp. dimðGnÞ5 2Þ, then

cokerðcÞ ffi kerðjÞ is L-torsion ðresp. pseudo-null Þ.
ðiiiÞ If dimðGnÞ5 2 for every n 2 SnT; then there are canonical pseudo-isomorphisms

ClSðk1Þð pÞ
_

 ClTðk1Þð pÞ

_; ESðk1Þ 
 ETðk1Þ:

Proof. Consider the canonical exact diagram for a finite extension k 0 of k in k1

ETðk
0Þ �Z Zp ,!

ik 0
ESðk

0Þ �Z Zp�!
M
ðS nT Þðk 0Þ

Zp�!ClTðk
0Þð pÞ ‡

pk 0
ClSðk

0Þð pÞ:

Setting

Cðk 0Þ :¼ cokerðik 0 Þ ðresp: Dðk 0Þ :¼ kerðpk 0 ÞÞ;

C1 ¼ lim
�!
Cðk 0Þ ðresp: D1 ¼ lim

�!
Dðk 0ÞÞ

and tensoring with Qp=Zp, we get the following exact sequences

0! ETðk
0Þ �Z Qp=Zp! ESðk

0Þ �Z Qp=Zp! Cðk 0Þ �Z Qp=Zp! 0;

0�!Dðk 0Þ �!Cðk 0Þ �Z Qp=Zp�!
M
ðSnT Þðk 0Þ

Qp=Zp�! 0;

0�!Dðk 0Þ �!ClTðk
0Þð pÞ �!ClSðk

0Þð pÞ �! 0:

Taking the direct limit over all finite subextensions k 0; we get an isomorphism

D1 ffi C1 �Qp=Zp because the transition maps for the sum of the Qp=Zp’s is just

the multiplication with the ramification index. The first result follows after taking

the Pontryagin dual. Now assume that SnT consists of a single prime and set
�G :¼ Gðk 0=kÞ: Since then �Gn ¼ GnGðk1=k

0Þ=Gðk1=k
0Þ acts trivial onL

ðSnT Þðk 0ÞZp ffi Ind
�Gn
�G

Zp and therefore also on Cðk 0Þ �Qp=Zp; it follows that Gn acts

trivial on ðC1 �Qp=ZpÞ
_: But then any surjection Ln‡ ðC1 �Qp=ZpÞ

_ factors

through ðIndGn
G ZpÞ

n which is torsion (resp. pseudo-null) if dimðGnÞ5 1 (resp.

dimðGnÞ5 2Þ: The last statement is a consequence of the second one. &

The L-modules ClSðk1Þð pÞ
_ and ESðk1Þ are related to each other and to XS via

Kummer theory:
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PROPOSITION 4.15. Assume that mp1  k1, then the following holds:

ðiÞ There are exact sequences of L-modules

0�!ClSðk1Þð pÞ
_
�!XSð�1Þ�! ESðk1Þ�! 0

and, if k1 is contained in kS; where S ¼ Sp [ S1;

0�!Clðk1Þð pÞ
_
�!XSð�1Þ �! Eðk1Þ�! 0:

In particular, ClSðk1Þð pÞ
_ and Clðk1Þð pÞ

_ do not contain any pseudo-null submo-

dule in these cases.

ðiiÞ ClSðk1Þð pÞ
_ is L-torsion. If dimðGnÞ5 1 for every n 2 Sp; then Clðk1Þð pÞ

_ is

L-torsion, too. In particular, there are exact sequences

0 �! ClSðk1Þð pÞ
_
�! torL XSð�1Þ �! torLESðk1Þ �! 0;

0 �! Clðk1Þð pÞ
_
�! torL XSð�1Þ �! torLEðk1Þ �! 0:

Proof. The long exact HiðGðkS=k1Þ;�Þ-sequence of

0! mpn ! ESðkSÞ!
pn

ESðkSÞ ! 0

induces the short exact sequence

0�!ESðk1Þ=p
n ! H1ðGðkS=k1Þ; mp1Þ !pn H1ðGðkS=k1Þ;ESðksÞÞ ! 0;

i.e. after taking the direct limit with respect to n

0! ESðk1Þ �Z Qp=Zp! H1ðGðkS=k1Þ;Qp=ZpÞð1Þ ! ClSðk1Þð pÞ ! 0:

Taking the dual, we obtain the first statement. A canonical map Clðk1ð pÞ
_
Þ !

XSð�1Þ which is compatible with the inclusion ClSðk1Þð pÞ
_
! XSð�1Þ from the first

sequence can be defined exactly as in the Zp-case, see [29, 11.4.2 and errata]. Then

the exactness of the second sequence at the first term is obtained from the first

one and Proposition 4.15:

Clðk1Þð pÞ
_=ClSðk1Þð pÞ

_
 ES ffi XSð�1Þ=ClSðk1Þð pÞ

_;

i.e. Clðk1Þð pÞ
_ can be considered as submodule of XSð1Þ and then its quotient is E:

Comparing the ranks ofXS and ES (see 4.27) (with respect to an arbitrary open sub-

group H  G such that LðHÞ is integral), we conclude that ClSðk1Þð pÞ
_ is L-

torsion while the analogous result for Clðk1Þð pÞ
_ follows from Proposition 4.15.

Now, the last sequences can be derived from the prior ones by rank considerations or

by applying the snake lemma to the canonical sequence of homotopy theory (2.2). &

QUESTION 4.16. Is it true for any p-adic Lie extension k1 ðof dimension at

least oneÞ that Clðk1Þð pÞ
_ and ClSðk1Þð pÞ

_ don’t have no nonzero pseudo-null

L-submodules?
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In the Zp-case there exists a remarkable duality between the inverse and direct

limit of the (S-) ideal class groups in the Zp-tower, viz the pseudo-isomorphisms

Xnr 
 E1ðClðk1Þð pÞ
_
Þ 
 ðClðk1Þð pÞ

_
Þ
�;

XScs 
 E1ðClSðk1Þð pÞ
_
Þ 
 ðClSðk1Þð pÞ

_
Þ
�:

Therefore it seems natural (though maybe very optimistic) to pose the following

QUESTION 4.17. Is it true that for any p-adic Lie extension ðat least under the

assumption ‘dimðGnÞ5 2; for all n 2 Sf;’Þ there exist pseudo-isomorphisms

Xnr 
 E1ðClðk1Þð pÞ
_
Þ � ðClðk1Þð pÞ

_
Þ
� mod PN ;

XScs 
 E1ðClSðk1Þð pÞ
_
Þ � ðClSðk1Þð pÞ

_
Þ
� mod PN ?

Observe, that Xnr 
 X
S
cs and ClSðk1Þð pÞ

_

 Clðk1Þð pÞ

_ by Propositions 4.7 and

4.14. Hence, it would suffice to prove the existence of one of the pseudo-isomorph-

isms. By Proposition 4.15(ii) and Theorem 4.9 the question would be true if one

could show that the L-torsion of ESðk1Þ is pseudo-null. But it seems difficult to

prove the latter statement directly. In fact, in the case of a multiple Zp-extension

k1 j k where mp1  k1 and k has only one prime above p, W. McCallum [25,

Thm. 7] answers the above question positively and then derives torLESðk1Þ ¼ 0 just

from the desired pseudo-isomorphism. This is the only case to the knowledge of the

author where a positive answer to this question is known. Also J. Nekovar [28,

0.14.2] proved partial results in the direction of the question. In a forthcoming paper

[39], we will present the first non-Abelian example (for G ffi Zp eZp the semidirect

product of two copies of Zp), in which such a duality holds.

The next result generalizes theorem 11.3.7 of [29].

THEOREM 4.18. Let k1 j k be a p-adic pro-p Lie extension such that G is without

p-torsion and Fj½½G�� is an integral domain. Then G ¼ GðkSð pÞ=k1Þ is a free pro-
p-group if and only if mðXSÞ ¼ 0 and the weak Leopoldt conjecture holds:

H2ðGSðk1Þ;Qp=ZpÞ ¼ 0:

Proof. Since G is pro-p it is free if and only if H2ðG;Z=pÞ ¼ 0; i.e. if and only if

pðXSÞ and H2ðGSðk1Þ;Qp=ZpÞ vanish. But, by Remark 3.33 of [40] and since XS does

not contain any pseudo-null submodule, these two conditions are equivalent to the

vanishing of mðXSÞ and the validity of the weak Leopoldt conjecture. &

The next theorem, which generalizes theorem 11.3.8 in [29], shows that the validity

of the weak Leopoldt conjecture and the vanishing of the m-invariant are properties

which should be considered simultaneously if one studies the behavior of XS under

change of the base field.

THEOREM 4.19. Let K j k be a finite Galois p-extension inside kS; k1 j k a p-adic

pro-p Lie extension such that

G ¼ Gðk1=kÞ is without p-torsion and Fj½½G�� is an integral: ð�Þ
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Set K1 ¼ Kk1 and G 0 ¼ GðK1=K Þ: Then G
0 satisfies the condition ð�Þ; too, and the

following holds

mðXSðk1=kÞÞ ¼ 0 and
H2ðGSðk1Þ;Qp=ZpÞ ¼ 0

� 	
,

mðXSðK1=K ÞÞ ¼ 0 and
H2ðGSðK1Þ;Qp=ZpÞ ¼ 0

� 	
:

In particular, if k1 contains the cyclotomic Zp-extension, then

mðXSðk1=kÞÞ ¼ 0, mðXSðK1=K ÞÞ ¼ 0:

Proof. Let H0 :¼ H \ GðkSð pÞ=K Þ: Then, by Theorem 4.18, the statements to be

compared are equivalent to the freeness of H; resp. H0; thus equivalent to

cdpðHÞ ¼ 1; resp. cdpðH0Þ ¼ 1: But, since H0 is open in H and cdpðHÞ <1; we have

cdpðH0Þ ¼ cdpðHÞ by [29] 3.3.5(ii). &

The same arguments prove the following theorem:

THEOREM 4.20. Let K1 j k1 j k be p-adic pro-p Lie extensions ðinside kSÞ such

that for both GðK1=K Þ and Gðk1=kÞ the condition ð�Þ of the previous theorem holds.

Then

mðXSðk1=kÞÞ ¼ 0 and
H2ðGSðk1Þ;Qp=ZpÞ ¼ 0

� 	
,

mðXSðK1=K ÞÞ ¼ 0 and
H2ðGSðK1Þ;Qp=ZpÞ ¼ 0

� 	
:

The next theorem, which generalizes Theorem 11.3.5 in [29], describes the ‘difference’

if we vary the finite set of places S defining the module XS: By TðK=kÞ  GðK=kÞ we

shall denote the inertia subgroup for a Galois extension K j k of local fields and, for

an arbitrary set of places S of k and a p-adic analytic extension k1 j k; we write ScdðkÞ

for the subset of finite places which decompose completely in k1 j k.

THEOREM 4.21. Let S $ T $ Sp [ S1 be finite sets of places of k and let k1 j k be a

p-adic pro-p Lie extension inside kT with Galois group G: Assume that G does not

contain any p-torsion element and that the weak Leopoldt conjecture holds for k1 j k:

Then there exists a canonical exact sequence of L-modules

0�! �ðSnT ÞðkÞ IndGn
G Tðknð pÞ=knÞGk1;n

�!XS�!XT�! 0

and the direct sum on the left is isomorphic toM
ðSnT ÞðkÞ

p1 j fn ; mpkn

IndGn
G Zpð1Þ �

M
ðSnT ÞcdðkÞ

L=ptn ;

where ptn ¼ #mðknÞð pÞ and, as before, fn ¼ fð k1;n=knÞ denotes the degree of the exten-

sion of the corresponding residue class fields. In particular, there is an exact sequence of

L-torsion modules

0�! �ðSnT ÞðkÞ IndGn
G Tðknð pÞ=knÞGk1;n

�! torL XS�! torL XT�! 0:
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Proof. Since H2ðGTðk1Þð pÞ;Qp=ZpÞ ¼ 0; we have an exact sequence

0�!GðkSð pÞ=kTð pÞÞ
ab
GTðk1Þ

�!XS�!XT�! 0:

Setting G ¼ GTðkÞð pÞ and using [29, 10.5.4, 10.6.1] as well as Lemma 2.9, we obtain

GðkSð pÞ=kTð pÞÞ
ab
GTðk1Þ

ffi
M
ðSnT ÞðkÞ

IndGn
G TðkTð pÞnð pÞ=kTð pÞnÞ

 !
GTðk1Þ

ffi
M
ðSnT ÞðkÞ

IndGn
G Tðknð pÞ=knÞGk1;n

:

Observe that, for n 2 SnT;

Tðknð pÞ=knÞ ffi
Zpð1Þ; if mp  kn;
0; otherwise.

�
Since G is without p-torsion and n 2 SnT is unramified in k1 j k; there are only two

possibilities for Gn:

Gn ¼
0; if n is completely decomposed in k1 j k;
Zp; if p1 j fn;

�
respectively,

Gk1;nð pÞ ffi
Zpð1ÞeZp; if n is completely decomposed in k1 j k;
Zpð1Þ; if p1 j fn:

�
It follows that

GðkSð pÞ=kTð pÞÞ
ab
GTðk1Þ

ffi
M
ðSnT ÞðkÞ

p1 j fn ; mpkn

IndGn
G Zpð1Þ �

M
ðSnT ÞcdðkÞ

L=ptn :

In particular, this module is L-torsion and therefore the second statement follows

from the first. &

Recalling that m is additive on short exact sequences of L-torsion modules we

obtain the following

COROLLARY 4.22. Under the assumptions of the theorem,

mðXSÞ ¼ mðXTÞ þ
X

ðSnT ÞcdðkÞ

tn;

where ptn ¼ #mðknÞð pÞ:

4.1.2. Global Units

We still consider p-adic Lie extensions k1 j k with Galois group G ¼ Gðk1=kÞ.

Recall that we denote the norm compatible S-units of k1 by ES :¼ lim �
k 0

ðO�k 0;S �ZpÞ: Noting that ES ffi lim �
k 0

H1ðGSðk
0Þ;Zpð1ÞÞ by Kummer theory and
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the finiteness of the S-ideal class group, we are going to derive some relations

between ES and H1ðGSðk1Þ; mp1Þ
_ by interpreting Jannsen’s spectral sequence

([22], see also [40, Thm. 4.5]) or for Iwasawa adjoints with respect to

A ¼ Qp=Zpð1Þ ¼ mp1ðkSÞ. We assume that G does not have any p-torsion, i.e. G is

a Poincaré group at p; and we denote the character which gives the operation of

G on the dualizing module by w�1:

PROPOSITION 4.23. ðiÞ If mp1  k1; then

ðaÞ if cdpðGÞ ¼ 1:

ES ffi Zpð1ÞðwÞ � E0ðXSð�1ÞÞ

lim
 �
k 0

H 2ðGSðk
0Þ;Zpð1ÞÞ ffi E1ðXSð�1ÞÞ;

EiðXSð�1ÞÞ ¼ 0 for i5 2:

ðbÞ if cdpðGÞ ¼ 2: there is an exact sequence

0�!ES�!E0ðXSð�1ÞÞ �!Zpð1ÞðwÞ

�! lim
 �
k 0

H 2ðGSðk
0Þ;Zpð1ÞÞ�!E1ðXSð�1ÞÞ �! 0;

and

EiðXSð�1ÞÞ ¼ 0 for i5 2:

ðcÞ if cdpðGÞ ¼ 3: there is an exact sequence

0�! lim
 �
k 0

H 2ðGSðk
0Þ;Zpð1ÞÞ�!E1ðXSð�1ÞÞ �!Zpð1ÞðwÞ �! 0;

and

ES ffi E0ðXSð�1ÞÞ;

EiðXSð�1ÞÞ ¼ 0 for i5 2:

ðdÞ if cdpðGÞ5 4:

ES ffi E0ðXSð�1ÞÞ;

lim
 �
k 0

H 2ðGSðk
0Þ;Zpð1ÞÞ ffi E1ðXSð�1ÞÞ;

EiðXSð�1ÞÞ ¼
Zpð1ÞðwÞ if i ¼ cdpðGÞ � 2;
0 otherwise,

�
for i5 2:

Similar results hold for arbitrary A with kðAÞ  k1 if ES is replaced by

lim �
k 0

H1ðGSðk
0Þ;TpAÞ, XSð�1Þ by XS½A�, . . .

ðiiÞ If mðk1Þð pÞ is finite, then

ðaÞ if cdpðG Þ ¼ 1: then there is an exact sequence
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0�!ES�!E0ðH1ðGSðk1Þ;mp1Þ
_
Þ�!mðk1Þð pÞ

_
ðwÞ�! lim

 �
k 0

H 2ðGSðk
0Þ;Zpð1ÞÞ:

ða1Þ If in addition H2ðGSðk1Þ; mp1Þ ¼ 0; then the cokernel of the sequence is

E1ðH1ðGSðk1Þ; mp1Þ
_
Þ and

EiðH1ðGSðk1Þ; mp1Þ
_
Þ ¼ 0 for i5 2:

ða2Þ If in addition H2ðGSðk1Þ;Qp=ZpÞ ¼ 0; then there is a short exact

sequence

0�!ES�!E0ðH1ðGSðk1Þ; mp1Þ
_
Þ�!mðk1Þð pÞ

_
ðwÞ �! 0:

ðbÞ if cdpðGÞ ¼ 2; then ES ffi E0ðH1ðGSðk1Þ; mp1Þ
_
Þ:

If in addition H2ðGSðk1Þ; mp1Þ ¼ 0; then there is an exact sequence

0�! lim
 �
k 0

H 2ðGSðk
0Þ;Zpð1ÞÞ �!E1ðH1ðGSðk1Þ; mp1Þ

_
Þ

�! mðk1Þð pÞ
_
ðwÞ �! 0

and

EiðH1ðGSðk1Þ; mp1Þ
_
Þ ¼ 0 for i5 2:

ðcÞ if cdpðGÞ5 3; then ES ffi E0ðH1ðGSðk1Þ; mp1Þ
_
Þ:

If in addition H2ðGSðk1Þ; mp1Þ ¼ 0; then

ES ffi E0ðH1ðGSðk1Þ; mp1Þ
_
Þ;

lim
 �
k 0

H 2ðGSðk
0Þ;Zpð1ÞÞ ffi E1ðH1ðGSðk1Þ; mp1Þ

_
Þ;

EiðH1ðGSðk1Þ; mp1Þ
_
Þ ¼

mðk1Þð pÞðwÞ; if i ¼ cdpðGÞ � 1;
0 otherwise,

�
for i5 2:

ðiiiÞ If mðk1Þð pÞ ¼ 0, then there is in addition to the results for finite mðk1Þð pÞ the
following exact sequence:

0�!E1ðH1ðGSðk1Þ; mp1Þ
_
Þ�! lim

 �
k 0

H 2ðGSðk
0Þ;Zpð1ÞÞ �!

�!E0ðH2ðGSðk1Þ; mp1Þ
_
Þ�!E2ðH1ðGSðk1Þ; mp1Þ

_
Þ�! 0;

and

EiðH1ðGSðk1Þ; mp1Þ
_
Þ ffi Ei�2ðH2ðGSðk1Þ; mp1Þ

_
ÞÞ:

For the proof apply Jannsen’s theorem (see [40, Thm. 4.5, Cor. 4.6]) and note the

following facts: H1ðGSðk1Þ;AÞ
_
ffi XS½A� if kðAÞ  k1; H2ðGSðk1Þ;AÞ ¼ 0 if

mp1  k1 because the weak Leopoldt conjecture is true for the cyclotomic extension

of any number field. Furthermore, we applied several times [20, 2.6]. Also observe,

that the reflexive module E0ðXSð�1ÞÞ is projective in the case cdpðGÞ ¼ 1 regarding

the defining sequence of the transpose functor D and using that pdðLÞ ¼ cdpðGÞþ

1 ¼ 2: The last statement of (ii)(a) is proved in [29], 11.3.9.
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These results bear a lot of information about the structure of H1ðGSðk1Þ; mp1Þ
_

and ES; e.g. one can derive the projective dimension of the latter module (using

Corollary [40, Cor. 6.3]) and some information about the dimensions of the modules

occurring above, in particular whether a module is torsion(free). Furthermore, we see

that ES is reflexive for almost all cases with cdpðGÞ5 2 by Proposition 3.11 of [40].

In order to relate ES to the finitely generated L-module

ESðk1Þ ¼ ðESðk1Þ �Z Qp=ZpÞ
_

we need some technical lemmas.

LEMMA 4.24. ðiÞ Let G ¼ Gðk1=kÞ ffi Zd
p; d5 1; and Gn :¼ p

nG:

ðaÞ If mp1  k1; then with G ¼ Gðkðmp1Þ and Gn ¼ pnG the following holds

HiðGn; mp1Þ ¼ mðknÞð pÞ
d�1
ið Þ;

where kn ¼ kðmp1Þ
Gn :

ðbÞ If mðk1Þð pÞ is finite, then for any n such that mðk1Þð pÞ
Gn ¼ mðk1Þð pÞ it holds

HiðGn; mp1Þ ¼ mðk1Þð pÞ
d
ið Þ:

ðiiÞ Let G be a finitely generated pro-p Lie group without p-torsion which fits into a

exact sequence

1�!U�!G �!
p

G�! 1;

with G ffi Zp and let Gn be an open subgroup. Assume that Gn :¼ pðGnÞ acts via a split-
ting trivially on Un ¼ Gn \U: Then H2ðGn; mðk1Þð pÞÞ is finite and the following holds

ðaÞ If mp1  k1 and G ¼ Gðkðmp1Þ; then

H1ðGn; mðk1Þð pÞÞ ffi mðknÞð pÞ
s
�
M
i

mpni ðknÞ;

where Uab
n ffi Z

s
p �

L
i Zp=p

ni with Un ¼ U \ Gn:

ðbÞ If mðk1Þð pÞ is finite, then for any n such that mðk1Þð pÞ
Gn ¼ mðk1Þð pÞ there is

an exact sequence

0�! mðk1Þð pÞ �!H1ðGn; mðk1Þð pÞÞ�! mðk1Þð pÞ
s
�
M
i

mpni ðk1Þ�! 0:

ðcÞ If cdpðGÞ ¼ 2; then

H2ðGn; mðk1Þð pÞÞ ffi
0; if mp1  k1;
mðk1Þð pÞ; otherwise.

�

Proof. Consider the exact sequence

1�!U�!G �!
p

G�! 1;
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and let Un ¼ Gn \U and Gn ¼ pðGnÞ. The Hochschild–Serre spectral sequence

gives

H1ðGn;HiðUn; mðk1Þð pÞÞÞ ,!Hiþ1ðGn; mðk1Þð pÞÞ ‡Hiþ1ðUn; mðk1Þð pÞÞ
Gn

for i5 0:

Let us first assume that mp1  k1: Since Un acts trivially on mp1 ; we get

HiðUn;Qp=Zpð1ÞÞ ¼ HiðUn;Qp=ZpÞð1Þ ¼ ðQp=ZpÞ
d�1
ið Þ:

in the Abelian case by the Künneth formula. As Qp=Zpð1ÞGn ¼ 0 it follows that

HiðGn; mp1Þ ¼ HiðUn; mp1Þ
Gn ¼ mðknÞ

d�1
ið Þ: In the non-Abelian case we calculate

H1ðGn; mp1Þ ¼ H1ðUn;Qp=ZpÞð1Þ
Gn

¼ ðUab
n Þ
_
ð1ÞGn

¼ mðknÞð pÞ
s
�
M

mpni ðknÞ:

Hence H1ðGn;H1ðUn; mðk1Þð pÞÞÞ is finite and the finiteness of H2ðGn; mp1Þ follows

because H2ðUn; mp1Þ
Gn ffi H2ðUn;Qp=ZpÞð1Þ

Gn is also finite (H 2ðUn;Qp=ZpÞ is a

cofinitely generated Abelian group).

Now we consider the case of finite mðk1Þð pÞ: Here H1ðGn; mðk1Þð pÞÞ ¼ mðk1Þð pÞ
and the Abelian case follows again using the Künneth formula. In the non-abelian

case the finiteness of H2ðGn; mp1Þ is trivial while H1ðUn; mðk1Þð pÞÞ
Gn can be calculated

similarly as above. For the last assertion just note that Un ffi Zp: &

LEMMA 4.25. ðiÞ In the situation Lemma 4:24 ðiiÞ it holds

ðaÞ lim �
m;n

pmH1ðGn;ESðk1Þ=mðk1ÞÞ ffi lim �
m;n

pmH1ðGn;ESðk1ÞÞ ¼ 0;

ðbÞ lim �
n

H1ðGn;ESðk1ÞÞ  X
S
cs;

ðcÞ E0ðESðk1ÞÞ ffi lim
 �
m;;n

pm ðESðk1Þ �Qp=ZpÞ
Gn

ffi lim
 �
m;n

ðESðk1Þ=mðk1ÞÞ
Gn=pm;

ðdÞ T0ðlim �
n

H1ðGn;ESðk1Þ=mðk1ÞÞÞ ¼ T0ðE
1ððESðk1Þ

N
Z Qp=ZpÞ

_
ÞÞ;

ðeÞ that the following sequence is exact:

0�! lim
 �
n

H1ðGn;ESðk1Þ=mðk1ÞÞ�!E1ðESðk1ÞÞ�!

lim
 �
m;n

pmH2ðGn;ESðk1Þ=mðk1ÞÞ�! 0:

ðiiÞ If, in addition, cdpðGÞ4 2; then with k ¼ 1 if mðk1Þð pÞ is finite, 0 otherwise,

there are the following exact sequences
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ðaÞ if cdpðGÞ ¼ 2:

0�! lim
 �
n

H1ðGn;ESðk1ÞÞ�! lim
 �
m;n

H1ðGn;ESðk1Þ=mðk1ÞÞ=pm�!mðk1Þð pÞ
k

�!D�! 0;

0�! lim
 �
m;n

pmH2ðGn;ESðk1ÞÞ�! lim
 �
m;n

pmH2ðGn;ESðk1Þ=mðk1ÞÞ�!D�!

lim
 �
m;n

H2ðGn;ESðk1ÞÞ=p
m�! lim

 �
m;n

H2ðGn;ESðk1Þ=mðk1ÞÞ=pm�! 0;

where D is some finite module.

ðbÞ if cdpðGÞ ¼ 1:

0�!E2E1ðESÞ �! mðk1Þð pÞ
k
�! lim

 �
n

H1ðGn;ESðk1ÞÞ�!

lim
 �
m;n

H1ðGn;ESðk1Þ=mðk1ÞÞ=pm�! 0

and

lim
 �
m;n

pmH2ðGn;ESðk1ÞÞ ffi lim
 �
m;n

pmH2ðGn;ESðk1Þ=mðk1ÞÞ:

Proof. If we split the long exact cohomology sequence induced by

0�!mðk1Þ�!ESðk1Þ�!ESðk1Þ=mðk1Þ�! 0;

we get the following short exact sequences

0�!Fn�!H1ðGn; mðk1ÞÞ�!An�! 0;

0�!An�!H1ðGn;ESðk1ÞÞ�!Bn�! 0;

0�!Bn�!H1ðGn;ESðk1Þ=mðk1ÞÞ�!Cn�! 0

and, furthermore, a map Cn ,!H2ðGn; mðk1Þð pÞÞ: Evaluating the associated long

exact sequences of pm-torsion (snake lemma) and noting the finiteness of An and

Cn according to the previous lemma, we get

lim
 �
m

pmBn ffi lim
 �
m

pmH1ðGn;ESðk1Þ=mðk1ÞÞ;

0�! lim
 �
m

pmH1ðGn;ESðk1ÞÞ�! lim
 �
m

pmBn�!An;

and therefore

0�! lim
 �
m;n

pmH1ðGn;ESðk1ÞÞ�! lim
 �
m;n

pmH1ðGn;ESðk1Þ=mðk1ÞÞ�! lim
 �
n

An

is exact. But lim �n An is a quotient of

lim
 �
n

H1ðGn; mðk1Þð pÞÞ ¼
mðk1Þð pÞ if d ¼ 1 and mðk1Þð pÞ is finite,
0 otherwise.

n

42 OTMAR VENJAKOB

https://doi.org/10.1023/A:1025413030203 Published online by Cambridge University Press

https://doi.org/10.1023/A:1025413030203


(See the previous lemma and note that the transition maps are partially norm maps

besides the nontrivial case where they are the natural projections, i.e. identities for n

sufficiently big.) Since the middle term is Zp-torsion free, we get the desired iso-

morphism, because, by the Hochschild–Serre spectral sequence, it can be seen in

any case that the first group is contained in lim
 �
m;n

pmClSðknÞ ¼ 0: This proves (i)(a) while

(b) is again the cited spectral sequence.

The first equality of (i)(c) is just Theorem 4.7(iii) of [40] because ESðk1Þ has no

Zp-torsion while the second one follows by the exact sequence

ðESðk1Þ=mðk1ÞÞ
Gn=pm ,! pm ðESðk1Þ�Z Qp=ZpÞ

Gn
‡ pmH1ðGn;ESðk1Þ=mðk1ÞÞ

and (a). Similar arguments apply for (i)(e), i.e.

E1ðESðk1ÞÞ ffi lim
 �
m;n

H1ðGn; pmðESðk1Þ�Z Qp=ZpÞÞ:

The assertion (d) is a direct consequence of (e), because lim
 �
m;n

pmH2ðGn;ESðk1Þ=mðk1ÞÞ
is Zp-torsion-free.

Now let us assume that cdpðGÞ4 2: With the notation as above and recalling that

An;Bn and Cn are finite, we get exact sequences

0�!An�!H1ðGn;ESðk1ÞÞ�!Bn�! 0;

0�!Bn�! lim
 �
m

H1ðGn;ESðk1Þ=mðk1ÞÞ=pm�!Cn�! 0

and

0�!Cn�!H2ðGn; mðk1ÞÞ�!Dn�! 0:

Passing to the limit gives the first exact sequence in (ii)(a) (Note that the transition

maps of the system fCng are the canonical projections, i.e. identities for n sufficiently

large). The second one is proved similarly using

Dn ,!H2ðGn;ESðk1ÞÞ�!H2ðGn;ESðk1Þ=mðk1ÞÞ�!H3ðGn; mðk1Þð pÞÞ ¼ 0

and H2ðGn; mðk1Þð pÞÞ‡Dn: The proof of (ii)(b) is completely analogous, just note

that lim
 �
n

Fn ffi E2E1ðESÞ because the latter module is the cokernel of

ES ! E0E0ðESÞ ffi E0ðESðk1ÞÞ: &

PROPOSITION 4.26. There is an exact sequence

0�!Zpð1Þ
d
�!ES�!E0ðESðk1ÞÞ�!C

with

C ¼

mðk1Þð pÞ; if d ¼ 1 and mðk1Þð pÞ finite;
Zpð1Þ; if d ¼ 2 and mp1  k1;
f:g: Zp-module; d5 3 and G non-Abelian;
0; otherwise

8>><>>:
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and

d ¼
1; if d ¼ 1; mp1  k1;
0; otherwise:

�
If in addition the weak Leopoldt conjecture holds, the right map is onto in the case

d ¼ 1 and mðk1Þð pÞ finite.
Proof. Taking Gn-invariants of the exact sequence

0�!mðk1Þð pÞ �!ESðk1Þ�Z Zp�!ðESðk1Þ=mðk1ÞÞ�Z Zp�! 0

and passing to the inverse limit, we get

0�! lim
 �
n

mðknÞðpÞ�!ES�! lim
 �
m;n

ðESðk1Þ=mðk1ÞÞ
Gn=pm�! lim

 �
n

H1ðGn;mðk1ÞðpÞÞ

The result follows except the fact that E0 maps onto the finite group of roots of unity

in the case when d ¼ 1. But this is proved in [29], 11.3.9, under the assumption that

the weak Leopoldt conjecture holds. &

COROLLARY 4.27. Let k1 j k be a p-adic Lie extension such that G does not have

any p-torsion. Then

E0ðESÞ ffi E0E0ðESðk1ÞÞ ffi E0ðH1ðGSðk1Þ; mp1Þ
_
Þ:

In particular, if G is in addition pro-p andH2ðGSðk1Þ; mp1Þ ¼ 0 ðe.g. if mp1  k1Þ, then
rkLES ¼ rkLES ¼ r2ðkÞ:

Now the question arises whether the module E0ðESÞ is not only reflexive but also

projective. While in the case cdpðGÞ ¼ 1 this is always true, in higher dimensions

one needs additional conditions. We will only get a satisfying answer in the two-

dimensional case:

PROPOSITION 4.28. Let k1 j k be a p-adic Lie extension such that cdpðGÞ ¼ 2 and

assume that the weak Leopoldt conjecture holds for k1: Then the following is

equivalent:

ðiÞ E0ðESÞ is projective,

ðiiÞ T0E1ðESðk1ÞÞ ¼ 0:

Remark 4:29. These equivalent statements hold for example, if either mp1  k1 or

mðk1Þð pÞ ¼ 0, and T0ðX
S
csÞ ¼ 0; i.e. if XScs does not have any nonzero finite sub-

module, because then T0E1ðESðk1ÞÞ ¼ 0 by Lemma 4.25.

Proof. Since we already know that pdðE0ðESÞÞ4 1, because E0ðESÞ is the second

syzygy of DES, the projectivity is equivalent to the vanishing of E1E0ðESÞ. Now the

equivalence stated above follows from the next lemma. &
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LEMMA 4.30. In the situation of the proposition it holds

T0E1ðESðk1ÞÞ ffi E1E0ðESÞ ffi E3E1ðESÞ

Proof. Set M :¼ ESðk1Þ and consider the exact sequence

0�!M=T1ðM Þ �!E0ðESÞ �!E2DðM Þ �! 0:

The long exact sequence for Ei gives

0 ¼ E1E2DðM Þ �!E1E0ðM Þ �!E1ðM=T1ðM ÞÞ �!E2E2DðM Þ:

On the other hand there is the exact sequence

0 ¼ E0ðT1ðM ÞÞ�!E1ðM=T1ðM ÞÞ�!E1ðM Þ �!E1E1DðM Þ:

Since EiEiDðM Þ is pure of codimension i, the isomorphism follows. But

E1E0ðESÞ ffi E3E1ðESÞ by the spectral sequence due to Björk, see Proposition

2.5. &

The proposition above should be compared with the following result which has

already been observed by Kay Wingberg (unpublished):

PROPOSITION 4.31. If cdpðGÞ ¼ 1, then for sufficiently large n there is a canonical

exact sequence

0�! ESðk1ÞGn �! ESðk1Þ�!E0ðESÞ �!C�! 0

where C ¼ E2DðESðk1ÞÞ is connected with E2DðESÞ by the exact sequence

0�!E2DðESÞ �!mðk1Þð pÞ
k
�!T0X

S
cs�!C_ �! 0:

Proof. The first sequence is just the canonical sequence 2.2 for the module ESðk1Þ
while the second one already occurred in Lemma 4.25(ii)(b) as we show now: The

fact that T0ðX
S
csÞ ffi lim

 �
n

H1ðGn;ESðk1ÞÞ is well known (see for example [29, XI.

Section 3.]). Recall that E2E1ðESðk1ÞÞ ffi T0ðE
1ðESðk1ÞÞÞ_ and apply Lemma

4.25(i)(d) to recover C. Using 4.25(i)(e) and (ii)(b), we see that

E1E1ðESðk1ÞÞ ffi E1ðlim �
m;n

pmH2ðGn;ESðk1ÞÞÞ; which we will determine by means of

[40, Thm. 4.7(iii)]:

M :¼ lim
 �
m;n

pmH2ðGn;ESðk1ÞÞ
_
ffi lim
�!
m;n

ESðk1ÞGn=pm ¼ lim
�!
m

ESðk1ÞGn=pm

for n sufficiently large, because ESðk1Þ is a finitely generated L-module. Hence

E1ðM Þ ffi lim
 �
m;n

ðpmMÞGn ¼ ESðk1ÞGn :

for n large enough. &

PROPOSITION 4.32. Let k1=k be a p-adic Lie extension such that G ffi G� D,
where G is a pro-p-Lie group of cdpðGÞ ¼ 2, D is a finite group of order prime to p.

Assume that the weak Leopoldt conjecture holds for k1: Then the following is true:
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ðiÞ There is an exact sequence

0�!E0E0ðESÞ �!Lr2þr1�r
0
1
�s
�

M
Scd[S 01

IndGn
G ðZpÞ �!

Ls�!T0E1ðESðk1ÞÞ�! 0:

ðiiÞ If E0E0ðESÞ is projective, then

E0E0ðESÞ ffi Lr2þr1�r
0
1 �

M
Scd[S 01

IndGn
G ðZpÞ:

Proof. We calculate the Euler characteristic with respect to an arbitrary open

normal subgroup UEG using Lemma 2.7, Proposition 2.13, [20] 5.4b),

hUðE
0E0ðESÞÞ ¼ hUðESÞ

¼ hUðASÞ � hUðXSÞ þ hUðX
S
csÞ

¼ hUðASÞ � hUðYSÞ þ hUðIGÞ

¼ hUðASÞ � hUðL
d
Þ þ hUðN

ab
H ð pÞÞ þ hUðLÞ � hUðZpÞ

¼ hUðASÞ � hUðL
r2þr

0
1 Þ þ hU

M
S 01

IndGn
G ðZpÞ

0@ 1A
¼
X
S

IndGn
G hU\Gn ðAnÞ � hUðL

r2þr
0
1 Þ þ hU

M
S 01

IndGn
G ðZpÞ

0@ 1A
¼
X
Scd

IndGn
G hUðZpÞ þ hUðL

r2þr1�r
0
1Þ þ hU

M
S 01

IndGn
G ðZpÞ

0@ 1A:
Therefore, if E0E0ðESÞ is projective, it follows that

E0E0ðESÞ ffi Lr2þr1�r
0
1 �

M
Scd[S 01

IndGn
G ðZpÞ:

This proves (ii) while (i) follows easily by applying Proposition 2.5. &

4.2. SELMER GROUPS OF ABELIAN VARIETIES

In this section let k be a number field, A a g-dimensional Abelian variety defined over

k and p a fixed rational odd prime number. For a nonempty, finite set S of places of k

containing the places Sbad of bad reduction of A, the places Sp lying over p and the

places S1 at infinity we write HiðGSðkÞ;AÞ, respectively Hiðkn;AÞ, for the cohomol-

ogy groups HiðGSðkÞ;AðkSÞÞ, respectively HiðGn;Að �knÞÞ, where GSðkÞ denotes the

Galois group of the maximal outside S unramified extension of k, �kn the algebraic

closure of the completion of k at n and Gn the corresponding decomposition group.

The (pmÞ-)Selmer group SelðA; k; pmÞ and the Tate–Shafarevich group IIIðA; k; pmÞ

fit by definition into the following commutative exact diagram
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0 0

  

0 ! AðkÞ=pm ! SelðA;k;pmÞ ! IIIðA;k;pmÞ ! 0����   

0 ! AðkÞ=pm ! H1ðGSðkÞ;pmAÞ ! pmH1ðGSðkÞ;AÞ ! 0

  L
SðkÞ

H1ðkn;AÞðpÞ � � � � L
SðkÞH

1ðkn;AÞðpÞ:

If k1 is an infinite Galois extension of k with Galois group G ¼ Gðk1=kÞ; we get the

following commutative exact diagram by passing to the direct limit with respect to m

and finite subextensions k 0 of k1=k:
0 0

  

0 !Aðk1Þ�Qp=Zp ! SelðA;k1;p
1Þ ! IIIðA;k1;p

1Þ ! 0����   

0 !Aðk1Þ�Qp=Zp ! H1ðGSðk1Þ;AðpÞÞ ! H1ðGSðk1Þ;AÞðpÞ !0

  L
SðkÞ

CoindGn
G H1ðk1;n;AÞðpÞ ¼

L
SðkÞ

CoindGn
G H1ðk1;n;AÞðpÞ:

Note that

lim
�!
k 0

M
Sðk 0Þ

H1ðk 0n;AÞð pÞ ffi
M
SðkÞ

CoindGn
G H1ðk1;n;AÞð pÞ:

Alternatively, we can pass to the inverse limits and we will get the following commu-

tative exact diagram 0 0

  

0 ! Âk1 ! cSelðk1;AÞ ! lim
 �
k 0 ;m

IIIðA;k 0;pmÞ ! 0����   

0 ! Âk1 ! lim
 �
k 0

H1ðGSðk
0Þ;TpAÞ ! lim

 �
k 0

TpH
1ðGSðk

0Þ;AÞ ! 0

  

lim
 �
k 0

L
Sðk 0ÞTpH

1ðk 0n;AÞ � � � � lim
 �
k 0

L
Sðk 0ÞTpH

1ðk 0n;AÞ:

where

Âk1 :¼ lim
 �
k 0 ;m

Aðk 0Þ=pm and cSelðk1;AÞ :¼ lim
 �
k 0 ;m

Selðk 0;A; pmÞ
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(The limits are taken with respect to corestriction maps and multiplication by p).

Henceforth we will drop the p from the notation of the Selmer group:

SelðA; k1Þ :¼ SelðA; k1; p
1Þ:

Furthermore, we shall use the following notation for the local-global modules

US;A :¼
M
Sfð kÞ

IndGn
G H1ðk1;n;AÞð pÞ_;

AS;A :¼
M
Sfð kÞ

IndGn
G H1ðk1;n;Að pÞÞ_;

TS;A :¼
M
Sfð kÞ

IndGn
G ðAðk1;nÞ �Qp=ZpÞ

_:

As a consequence of the long exact sequence of the Poitou–Tate duality theorem we

have the following (compact) analogue of Proposition 4.7, where we shall write Ad for

the dual Abelian variety of A and III1
Sðk1;Að pÞÞ for the kernel of the localization map

H1ðGSðk1Þ;Að pÞÞ !
M
SðkÞ

CoindGn
G H1ðk1;n;Að pÞÞ:

PROPOSITION 4.33. Let k1 j k be a p-adic Lie extension with Galois group G. Then,

there are the following exact commutative diagrams of L ¼ LðGÞ-modules
ðiÞ

0 0
  

SelðA; k1Þ
_

‡ III1
Sðk1;Að pÞÞ_

  

H1ðGSðk1Þ;Að pÞÞ_ � � � � H1ðGSðk1Þ;Að pÞÞ_

  

US;A !%%% AS;A ‡ TS;A

  ����
cSelðk1;Ad

Þ !%%% lim
 �
k0

H1ðGSðk
0Þ;TpðAd

ÞÞ ! TS;A;

  

H2ðGSðk1Þ;Að pÞÞ_ � � � � H2ðGSðk1Þ;Að pÞÞ_

  

0 0
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ðiiÞ

0�!cSelðk1;Ad
Þ �! lim

 �
k0

H1ðGSðk
0Þ;TpAd

Þ �!TS;A�!

SelðA; k1Þ
_
�! III1

Sðk1;Að pÞÞ
_
�! 0;

ðiiiÞ

0�! III1
Sðk1;AðpÞÞ

_
�!ZS;Ad

ðpÞ �!
M
SfðkÞ

IndGn
G ðAðk1;nÞðpÞÞ

_
�!Aðk1ÞðpÞ_ �!0:

For the proof, just note that by virtue of local Tate duality ([27, Cor.3.4]), the Weil

pairing and 4.1,

(i) H1ðk1;n;AÞð pÞ_ ffi d
ðAd
Þ1;n :¼ lim

 �
k0 ;m

Ad
ðk0nÞ=p

m,

(ii) ZS;Ad
ð pÞ ffi lim

 �
k0

H2ðGSðk
0Þ;TpðAd

ÞÞ,

(iii) ðAðk1;nÞ �Qp=ZpÞ
_
ffi lim

 �
k0

TpH
1ðk0n;A

d
Þ and

(iv) H1ðk1;n;Að pÞÞ_ ffi lim
 �
k0

H1ðk0n;TpðA
d
ÞÞ

hold.

By a well-known theorem of Mattuck, we have an isomorphism Aðk0nÞ ffi Z
g½k0n:Ql�

l �

(a finite group), for any finite extension k0n of Ql. Recall that g denotes the dimension

of the Abelian variety A: Clearly Aðk0nÞ
N

Z Qp=Zp ¼ 0 for all l 6¼ p and n j l, i.e.

H1ðk0n;AÞð pÞ ffi H1ðk0n;Að pÞÞ, respectively H1ðk01;n;AÞð pÞ ffi H1ðk01;n;Að pÞÞ, in this

case. On the other hand, Coates and Greenberg proved that for primes n j p with

good reduction

H1ðk1;n;AÞð pÞ ffi H1ðk1;n; ~Að pÞÞ

holds, if k1 is a deeply ramified, where ~A denotes the reduction of A (see [5, Prop.

4.8]). We recall that an algebraic extension k of Qp is called deeply ramified if

H1ðk; �mÞ vanishes, where �m is the maximal ideal of the ring of integers of an alge-

braic closure Qp of Qp; see [5, p. 143] for equivalent conditions and for the following

statement (loc. cit. Thm. 2.13): A field k1 which is a p-adic Lie extension of a finite

extension k of Qp is deeply ramified if the inertial subgroup of Gðk1=kÞ is infinite.

For arbitrary reduction at n j p, the same result as above holds, if one replaces ~Ap1

by the quotient Að pÞ=FAð �mÞð pÞ, where FA denotes the formal group associated with

the Neron model of A over a possibly finite extension of kn, such that the Neron

model has semi-stable reduction. Taking these facts into account, we get the follow-

ing description for US;A; where Tðk1;n=knÞ denotes the inertia subgroup of Gn.

PROPOSITION 4.34 (cf. [35, Lemma 5.4]). Assume that dimðTðk1;n=knÞÞ5 1 for all

n 2 Sp. Then there is an isomorphism of L-modules

US;A ffi
M
SpðkÞ

IndGn
G H1ðk1;n; ~Að pÞÞ_ �

M
SfnSpðkÞ

IndGn
G H1ðk1;n;Að pÞÞ_:
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In particular, if dimðGnÞ5 2 for all n 2 Sf, then

US;A ffi
M
SpðkÞ

IndGn
G H1ðk1;n; ~Að pÞÞ_

and US;A is L-torsion-free.
Proof. The first assertion has been explained above while the second statement

follows from the local calculations in Propositions 3.4 and 3.5 with respect to the

p-adic representations A ¼ ~Að pÞ, respectively A ¼ Að pÞ, and the comment before

Proposition 3.5. &

Before going on we would like to recall some well-known facts about Abelian

varieties:

Remark 4:35. (i) rkZp
ðAð pÞ_Þ ¼ 2g, where g denotes the dimension of A.

(ii) There exists always an isogeny from A to its dual Ad, by which the Weil-

pairing induces a nondegenerate skew-symmetric pairing on the Tate-module TpA
of A; (combine [26, Cor. 7.2, Lem. 16.2(e), Prop. 16.6]). If A ¼ E is an elliptic curve

this isogeny can be chosen as a canonical isomorphism between E and Ed: Again for

an arbitrary Abelian variety it follows that kðmp1Þ  kðAð pÞÞ ¼ kðAd
ð pÞÞ (see [37,

Section 0 Lem. 7]).

THEOREM 4.36. Assume that H2ðGSðk1Þ; ðAd
Þð pÞÞ ¼ 0: If dimðGnÞ5 2 for all

n 2 Sf; then

III1
Sðk1;Að pÞÞ

_

 E1ðYS;Ad

ð pÞÞ 
 E1ðtorLYS;Ad
ð pÞÞ ffi E1ðtorL XS;Ad

ð pÞÞ:

If, in addition, G ffi Zr
p, r5 2; then the following holds:

III1
Sðk1;Að pÞÞ_ 
 ðtorL XS;Ad

ð pÞÞ
�;

where � means that the G acts via the involution g 7! g�1.

Remark 4:37. In case torL XS;Ad
ð pÞ is isomorphic in L�mod=PN to a direct sum of

cyclic modules of the formLmodulo a (left) principal ideal Proposition 2.4 implies that

III1
Sðk1;Að pÞÞ_ � ðtorL XS;Ad

ð pÞÞ
� modPN

holds under the conditions of the theorem.

Proof. The first condition implies ZS;Ad
ð pÞ ffi E1ðYS;Ad

ð pÞÞ while the other condi-

tion grants that
L

Sf ðkÞ
IndGn

G ðAðk1;nÞð pÞÞ
_ is pseudo-null because Aðk1;nÞð pÞ

_ is a

finitely generated (free) Zp-module. Now everything follows as in 4.9 using here

Proposition 4.33. &
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COROLLARY 4.38. Let A be an Abelian variety over k with good supersingular

reduction, i.e. Akn ð pÞ ¼ 0, at all places n dividing p: Set k1 ¼ kðAð pÞÞ and assume that
Gðk1=kÞ is a pro-p-group without any p-torsion. Then, for Sbad :¼ Sbad [ Sp [ S1 the

following holds:

Xcs½Ad
ð pÞ� ffi III1

Sbad
ðk1;Ad

ð pÞÞ_ 
 E1ðtorLðSelðA; k1Þ
_
ÞÞ:

In particular, if A has CM, then there is even a pseudo-isomorphism

Xcs½Ad
ð pÞ� 
 ðtorLðSelðA; k1Þ

_
ÞÞ
�:

Therewith, in the case of an elliptic curve with CM, we reobtain a theorem of P. Billot

[3, 3.23]. Over a Zp-extension an analogous statement was proved by K. Wingberg

[41, cor. 2.5]. Of course, remark 4.37 applies literally to torLSelðA; k1Þ
_; i.e. under

the conditions mentioned there it holds

Xcs½Ad
ð pÞ� � ðtorLSelðA; k1Þ

_
Þ
� modPN :

Proof. First note that by the Néron–Ogg–Shafarevich criterion the sets of bad

reduction of A and its dual Ad coincide. Therefore, it suffices to prove that

dimðGnÞ5 2 for all n 2 Sbad [ Sp because then the theorem applies to Ad and

Proposition 4.34 shows that US;A ¼ 0; i.e. XS;Að pÞ ffi SelðA; k1Þ
_:

So, let n be either in Sp or in Sbad: Since knðAð pÞÞ contains knðmp1Þ, we only have to

show that GðknðAð pÞÞ=knðmp1ÞÞ is not trivial because then it automatically has to be

infinite as Gn  G has no finite subgroup by assumption.

If n j p, by a theorem of Imai? [18] Aðknðmp1ÞÞð pÞ is finite and thus

knðAð pÞÞ 6¼ knðmp1Þ.
If n 2 Sbad, then the Néron–Ogg–Shafarevich criterion implies that

GðknðAð pÞÞ=knðmp1ÞÞ ¼ TðknðAð pÞÞ=knÞ is nontrivial. &

By Remarks 4.4 and 4.35 the conditions of Theorem 4.2 are fulfilled for the

p-torsion points Að pÞ and its trivializing extension of k, i.e. the extension which

is obtained by adjoining the p-torsion points of A :

THEOREM 4.39. Let k1 ¼ kðAð pÞÞ and assume that G does not have any p-torsion.
Then H1ðGSðk1Þ;Að pÞÞ_ has no nonzero pseudo-null submodule.

Recall that G does not have any p-torsion if p5 2 dimðAÞ þ 2. Otherwise one only

has to replace k by a finite extension inside k1.

We should mention that the rank of the global module H1ðGSðk1Þ;Að pÞÞ_ is

g½k : Q�, which was determined by Y. Ochi who also calculated the ranks and

torsion-submodules of the local, respectively local-global modules (i.e. those

global modules which are induced from local ones) that occur in Proposition 4.33

?I owe to John Coates the idea to use Imai’s theorem here.
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(cf. [33, 5.7, 5.11, 5.12]). See also the results in S. Howson’s PhD thesis [17, 5.30, 6.1,

6.5–6.9, 6.13–6.14, 7.3].

Furthermore, in the case of elliptic curves S. Howson proved the following

result.

PROPOSITION 4.40 (Howson [17, 6.14–15]). Let E be an elliptic curve over k

without complex multiplication and with good ordinary reduction at all places over p.

Assume that G ¼ GðkðEð pÞ=kÞ is pro-p without any p-torsion. Then

TS;E ffi AS; ~E ffi
M
Sf ðkÞ

IndGn
G lim

 �
k0

H1ðk0n;Tpð
~EÞÞ

and these modules are LðGÞ-torsion-free. Furthermore, there is an isomorphism

US;E ffi E0ðTS;EÞ:
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Note added in proof. With the publication of [8], it has come into vogue to use

again Lazard’s original terminology in the context of p-adic Lie groups instead of

that in [10], just because it is slightly more general. For example, the fact that the

completed group algebra Fp½½G�� is an integral ring holds for the whole class of p-

valuable groups, see [24, Thm. III.3.1.7] for the definition. This follows immediately

from [24, III.2.3.3/4]. In particular, this is useful for the application of Theorems 2.3,

4.18, 4.19 and 4.20.
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