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Abstract. In this paper, the new techniques and results concerning the structure theory of
modules over noncommutative Iwasawa algebras are applied to arithmetic: we study Iwasawa
modules over p-adic Lie extensions k., of number fields k& ‘up to pseudo-isomorphism’. In
particular, a close relationship is revealed between the Selmer group of Abelian varieties,
the Galois group of the maximal Abelian unramified p-extension of k,, as well as the Galois
group of the maximal Abelian p-extension unramified outside S where S'is a certain finite set of
places of k. Moreover, we determine the Galois module structure of local units and other
modules arising from Galois cohomology.
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1. Introduction

The starting point of the Iwasawa theory of (noncommutative) p-adic Lie groups was
M. Harris’ thesis [15] in 1979. For an elliptic curve E over a number field k£ without
complex multiplication, he studied the Selmer group Sel(E, ko) over the extension
koo = k(E(p)) which arises by adjoining the p-division points of E to k. Then, the
Galois group G = G(ku/k) is an open subgroup of Gl»(Z,) — due to a celebrated
theorem of Serre [38] — and so a (compact) p-adic Lie group. Following Iwasawa’s
general idea, he studied the Pontryagin dual Sel(E, k)" of the Selmer group as
module over the Iwasawa algebra A(G) = Z,[G], i.e. the completed group algebra of
G with coefficients in Z,,.

In the late 90s J. Coates and S. Howson [4, 6, 7, 17] as well as Y. Ochi [33] revived
this Iwasawa-theoretic approach. Among other things, they proved a remarkable
Euler characteristic formula for the Selmer group, studied ranks, torsion-properties
and projective dimensions of standard local and global Iwasawa modules.

The contributions of this work to the Iwasawa theory of p-adic Lie groups are
obtained by applying some new techniques we have developed in [40]. There we
introduced the concept of pseudo-null modules over A = A(G), which is based on
a general dimension theory for Auslander regular rings (for the definition, see
Subsection 2.2 and note that A is a noncommutative ring in general). Therefore it
is fundamental for our applications that A(G) is an Auslander regular ring if G is
a compact p-adic Lie group without p-torsion (cf. [40, Thm. 3.26]). As a first example
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in which this approach proves effective, we consider the following generalization of a
theorem of R. Greenberg [13] and T. Nguyen-Quang-Do [31] (who considered the
case G = Z;f): For a finite set S of places of a number field & let k, | k£ be a Galois
extension unramified outside S such that the Galois group G = G(ky/k) is a
torsion-free p-adic Lie-group and let kg be the maximal outside S unramified
extension of k. Then there is a basic result on the structure of the Galois
group Xs = G(ks/koo)*®(p) of the maximal Abelian p-extension of k., unramified
outside S considered as A(G)-module, which is by definition the maximal Abelian
pro-p quotient of the Galois group Gs(ks) := G(ks/koo).

THEOREM (Theorem 4.5). If H*(Gs(kso), Q,/7Zp) =0, then the A(G)-module Xg
does not contain any nontrivial pseudo-null submodule.

Once having available the concept of pseudo-null modules one is tempted to study
Iwasawa modules ‘up to pseudo-isomorphism’. We will write M ~ N if there exists a
A-homomorphism M — N whose kernel and cokernel is pseudo-null. Since in
general ~ is not a symmetric relation we consider also the quotient category
A-mod/PN with respect to subcategory PN of pseudo-null A-modules, which is a
Serre subcategory, i.e. closed under subobjects, quotients and extensions.

Now it turns out that — as in the classical Z,-extension case — the A(G)-module X
is closely related to the modules X, and X5 which denote the Galois groups of the
maximal Abelian unramified pro-p-extension of k., and the maximal Abelian unra-
mified pro-p-extension of k., in which every prime above S is completely decom-
posed, respectively. In the next theorem, G, denotes the decomposition group of G
at a place v, Sy is the set of finite places in S, E!(M) the Iwasawa adjoint
Ext,l\(M, A) of a A-module M and M(—1) means the twist of M with the Galois
module Z,(—1) := Hom(u, Q,/Z,).

THEOREM (Theorem 4.9). If p,o C koo, and dim(Gy) = 2 for all v € Sy, then
X (—1) ~ X3 (—1) ~ El(torp Xs).

If, in addition, G = 7, r = 2, then even the following holds:
Xu(—=1) ~ X3(=1) ~ (tora Xs)°,

where ° means that G operates via the involution g +— g~ .

In this context we should mention that it is still an open question — even for
G~ Z;), r>=2 — whether in general X, is pseudo-isomorphic to the dual
(Cl(kso)(p)Y)° of the direct limit of the p-primary ideal class groups in a p-adic
tower of number fields with involution —° (which can also be defined for noncom-
mutative p-adic Lie groups under additional assumptions, see Proposition 2.4)
X ~ (Clkoo)(p)")?
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In the Z,-case this is a well-known theorem due to Iwasawa, see 4.17 for further
discussion.

Drawing our attention to cohomology groups associated with an Abelian
varieties A defined over k, we set ko = k(A(p)) and mention that H(Gs(ks),
A(p))” has no nonzero pseudo-null submodule (Theorem 4.39). With respect to
the (p)-Selmer group Sel(A, k) of A over ko = k(A(p)) we generalize a result
of P. Billot in the case of good, supersingular reduction, i.e. A (p) =0, at any
place dividing p. Over a 7Z,-extension an analogous statement was proved by
K. Wingberg [41, Cor. 2.5]. We shall write A? for the dual Abelian variety of A.
Assume that G(k./k) is a pro-p-group without any p-torsion. Then the following
holds (Corollary 4.38):

X5 ®7, (A(p)Y ~ E'(tora(Sel(4, ko))

We also refer the reader to our joint work with Y. Ochi [35] where we prove under
certain conditions that the Pontryagin dual of the Selmer group of an elliptic curve
without CM and good ordinary reduction at any place dividing p does not contain
any nonzero pseudo-null A-submodule.

Furthermore, we proved a structure theory for the 7Z,-torsion part of a A-module
M in [40]. Up to pseudo-isomorphism any Z,-torsion A-module is of the form
D A/p".

In particular, we obtained a natural definition of the y-invariant u(M) := >, n; of
M. Defining u(M) := p(tory, M) for an arbitrary A-module M, this invariant is
additive on short exact sequences of A-torsion modules. Hence, we can formulate
and prove a generalization of Theorem 11.3.7 of [29]:

THEOREM (Theorem 4.18). Let ko | k be a p-adic pro-p Lie extension such that G is
without p-torsion and IF,[G] is an integral ring (e.g. if G is uniform). Then
G = G(ks(p)/kso) is a free pro-p-group if and only if (Xs) = 0 and the weak Leopoldt
conjecture holds, i.e. H*(Gs(ks), Q,/7Zp) =0.

In Theorem 4.19 we describe how the weak Leopoldt conjecture and the vanishing
of u(Xs) — if considered simultanecously — behave under change of the base field.
Furthermore, we get a formula for the u-invariants for different S.

We briefly outline further results. In Section 3 we generalize Wintenberger’s result
on the Galois module structure of local units. Let k be a finite extension of QQ, and
assume that k | k is a Galois extension with Galois group G = I"x, A, where I' is a
pro-p Lie group of dimension 2 (e.g. I'=7,%7,) and A is a profinite group of
possibly infinite order prime to p, which acts on I' via p: A — Aut(I'). Then we
characterize the A(G)-module structure of the Galois group Gﬁ,‘;( p) = Glkoo(p)/kso),
where ko ( p) is the maximal Abelian p-extension of k, see Theorem 3.10.

Then we apply these results to the local study of elliptic curves E with CM, i.e. we
determine the structure of local cohomology groups with certain division points of E
as coefficients.
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Section 4 is devoted to the study of ‘global’ Iwasawa modules. Besides the themes
already mentioned above, we study the norm-coherent S-units of k, Eg:=
lim (O} ¢ ® 7Z,) by means of Jannsen’s spectral sequence for Iwasawa adjoints.
Usiﬁé Kummer theory, we compare Eg to

Eslkoo) i= (Es(koo) ®7 Qp/7,)",

where Eg(ko) =1lim_, , Es(k’) denotes the (discrete module of) S-units of k. In
particular, we show that E’(IXs) 2 E’E°(E5(ky)), where E°(M ) denotes Homy (M, A)
for any A-module M, and thus rkyEgs = rka&Es = r(k) under some assumptions,
see Corollary 4.27. If E°(Eg) is projective, its structure can be described more
precisely. A criterion which tells us when this is the case is given in Proposition 4.28.

GENERAL NOTATION AND CONVENTIONS

We follow the notation in the paper [40], which is similar to that used in [29]. In
particular, this means:

(i) For a discrete (resp. compact) Z,-module N with continuous action by some
profinite group G, N¥ = Homy,, cont(N, Q,/7,) is the compact (resp. discrete)
Pontryagin dual of NV with its natural G-action. If N is p-divisible,

T,(N)=Hom(Q,/Z,,N) = 1(i£1,,,-N
denotes the Tate module of N, where ,:N denotes the kernel of the multiplication
by p'. For G = Gy the absolute Galois group of number or local field &, we define
the rth Tate twist of N by N(r):=N®;y, T,()®" for reN and N(r):=
N ®z, Hom(T,(w)®", 7Z,) for —r € N, where u denotes the Gy-module of all roots
of unity and by convention T, p(,u)‘g’0 = 7, with trivial G-action. Finally, we set

N* = lim Hom(, N, g )(= Tp(N)" (1),

(i) For a finitely generated Abelian p-primary group 4 we denote by Ag;, the
quotient of 4 by its maximal p-divisible subgroup.

(iii) Let G be a profinite group and H a closed subgroup of G. For a A(H)-module
M, we define Ind,G,M =M @)A(H) A(G) (compact or completed induction), where
® denotes completed tensor product, and CoindgM := Homam)(A(G), M)
(co-induction).

(iv) If G is any profinite group, by G(p) and G*® we denote the maximal pro-p
squotient and the maximal Abelian quotient G/[G, G] of G, respectively. For
an Abelian group 4 we also denote by A(p) its p-primary component.

(v) Let k be a field. For a Gy-module 4, we write A(k) := H°(Gy, A).

(vi) By a Noetherian ring, we mean a left and right Noetherian ring (with a multi-
plicative unit). By pd (M) we denote the projective dimension of M while
pd(A) denotes the global dimension of A.
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(vii) The dual of an Abelian variety A is denoted by A%
(viii) We refer the reader to Subsection 2.4 for the definitions of R*®(p), N**(p), X,
Y, Jand Z.

2. Algebraic Properties of A-Modules
2.1. NOTATION AND PRELIMINARIES

We recall some basic facts on p-adic Lie groups and their Iwasawa algebras which
are thoroughly discussed in [40]; the reader who is not familiar with them is recom-
mended to read first or parallel Sections 1-3 of [40]. For any compact p-adic Lie
group G the completed group algebra A = A(G) is Noetherian (see [24]V 2.2.4). If,
in addition, G is pro-p and has no element of finite order, e.g. if G is uniform, then
A(G) is an integral domain, i.e. the only zero-divisor in A(G) is 0 (see [30]); for uni-
form G the corresponding statement holds also for the completed group algebra
IF,[G] with coefficients in the finite field I¥f, with p elements. For instance, for
p = n+ 2, the group Gl,(7Z,) has no elements of order p, in particular, GL,(Z,) con-
tains no elements of finite p-power order if p > 5 (see [17] 4.7). In any case, the nor-
mal subgroup I'; := ker(Gl,(7,) — Gl,(7/p")) of Gl,(Z,) is a uniform pro-p group
fori=1ifp#2ori>=2if p=2by[l0, Thm. 5.2]. We should also mention that G
has finite cohomological dimension ¢d,G = m if and only if G has no element of
finite p-power order and its dimension as p-adic analytic manifold equals m.

If A is Noetherian and without zero-divisors we can form a skew field Q(G) of
fractions of A (see [11]). This allows us to define the rank of a A-module:

DEFINITION 2.1. The rank rka M is defined to be the dimension of M ®, O(G) as
a left vector space over Q(G). Obviously, the rank is finite for any M in the category
A-mod of finitely generated A-modules. For the rest of this section, we assume that
all A-modules considered are finitely generated.

By Ho(A) we denote the category of ‘A-modules up to homotopy’ and we write
M ~ N, if M and N are homotopy equivalent, i.e. isomorphic in Ho(A), which holds
if and only if M @ P = N & Q with projective A-modules P and Q. In particular,
M ~ 0 if and only if M is projective.

For M € A-mod we define the Iwasawa adjoints of M to be
E'(M):= Ext\(M,A), i>0,

which are a-priori right A-modules by functoriality and the right A-structure of the
bi-module A but will be considered as left modules via the involution of A. By con-
vention we set E/(M) = 0 for i < 0. The A-dual E’(M) will also be denoted by M.

It can be shown that for i > 1 the functor E’ factors through Ho(A) defining a
functor E: Ho(A) — A-mod. By D we denote the transpose D: Ho(A) — Ho(A),
which is a contravariant duality functor, i.e. it satisfies D> = Id. Furthermore, if
pd\M < 1, then DM ~ E!'(M). The next property will be of particular importance:
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PROPOSITION 2.2 (cf. [29, Prop. 5.4.9]). For M € A-mod there is a canonical exact
sequence

0— E'DM — M 2% MYt — E’DM — 0,

where ¢, is the canonical map from M to its bi-dual. In the following we will refer to
the sequence as ‘the’ canonical sequence (of homotopy theory).

A A-module M is called reflexive if ¢, is an isomorphism from M to its bi-dual
M= M+,

As Auslander and Bridger [1] suggest, the module E'DM should be considered as
torsion submodule of M. Indeed, if A is a Noetherian integral domain this submo-
dule is a torsion module while M* is torsion-free and thus E'DM coincides exactly
with the set* of torsion elements tory M. Hence, a A-module M is called A-torsion
module if ¢, =0, i.e. if tory M := E'DM = M. We say that M is A-torsion-free if
E'DM = 0. It turns out that a finitely generated A-module M is a A-torsion module
if and only if M is a A(G’)-torsion module (in the strict sense) for some open
pro-p subgroup G’ C G such that A(G’) is integral. Since M embeds into a free
A-module the torsion-free A-modules are exactly the submodules of free modules
(see [40, before Prop. 2.7] for details).

Sometimes it is also convenient to have the notation of the first syzygy or loop
space functor Q: A-mod — Ho(A) which is defined as follows (see [20, 1.5]): Choose
a surjection P — M with P projective. Then QM is defined by the exact sequence

0— QM —P—M—0.

2.2. DIMENSION THEORY FOR THE AUSLANDER REGULAR RING A(G)

Let G be any compact p-adic group without p-torsion. In [40] we proved that
A = A(G) is an Auslander regular ring, i.e. A has finite projective dimension
d:=pdA =cd, G+ 1 (by a result of Brumer) and satisfies the Auslander condition:
For any A-module M, any integer m and any submodule N of E”'(M ), the grade of N
satisfies j(N) = m. Recall that the grade j(N) is the smallest number i/ such that
E'(N) # 0 holds.

Therefore, there is a nice dimension theory for A-modules which we will recall
briefly (for proofs and further references see [40]). A priori, any M € A-mod comes
equipped with a finite filtration

ToM)STi(M)C--- STy (M) STy(M) =M.

If we call the number 6 := min{i | T{(M ) = M} the dimension 6(M) then T,(M) is
just the maximal submodule of M with d-dimension less or equal to i. We should

* A-priori, it is not clear whether this sets forms a submodule if A is not commutative.
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mention that for Abelian G the dimension d(M ) coincides with the Krull dimension
of suppa(M).

The filtration is related to the Iwasawa adjoints via a spectral sequence, in
particular we have

TI(M)/T,_I(M) C EdfiEd,i(M)

and either of these two terms is zero if and only the other is. Furthermore, the equal-
ity (M) + j(M ) = d holds for any M # 0.

Note that M is a A-torsion module if and only if its codimension
codim(M) := d — 6(M) is greater or equal to 1.

A A-module M is called pseudo-null if its codimension codim(M) is greater or
equal to 2. As in the commutative case we say that a homomorphism ¢: M — N
of A-modules is a pseudo-isomorphism if its kernel and cokernel are pseudo-null. A
module M is by definition pseudo-isomorphic to a module N, denoted M ~ N, if
and only if there exists a pseudo-isomorphism from M to N. In general, ~ is not sym-
metric even in the Z,-case. While in the commutative case ~ is symmetric at least for
torsion modules, we do not know whether this property still holds in the general
case.

If we want to reverse pseudo-isomorphisms, we have to consider the quotient cate-
gory A-mod/PN with respect to subcategory PN of pseudo-null A-modules, which
is a Serre subcategory, i.e. closed under subobjects, quotients and extensions. By
definition, this quotient category is the localization (PZ)"'A-mod of A-mod with
respect to the multiplicative system PZ consisting of all pseudo-isomorphisms. Since
A-mod is well-powered, i.e. the family of submodules of any module M € A-mod
forms a set, these localization exists, is an Abelian category and the universal functor
¢: A-mod — A-mod/PAN is exact. Furthermore, g(M ) = 0 in A-mod/PN if and only
if M € PN . Recall that a morphism h: g(M ) — ¢(N) in the quotient category can be
represented, for instance, by two A-homomorphisms f: M’ — M and g:M' — N
where f'is a pseudo-isomorphism and such that 4 o g(f) = ¢(g); it is an isomorphism
if and only if g is a pseudo-isomorphism. If there exists an isomorphism between
g(M) and ¢(N) in the quotient category we also write M = N mod PN

Note that for any pseudo-isomorphism f: M — N the induced homomorphism
E!(f) is a pseudo-isomorphism, too. If M, N are A-torsion modules, also the converse
statement holds. By the universal property of the localization, we obtain a functor

E!: A-mod/PN — A-mod/PN,

which is exact if it is restricted to the full subcategory A-mod”! /PN of A-mod/PN
consisting of all A-modules of codimension greater or equal to 1, i.e. A-torsion mod-
ules. More precisely, there is a natural isomorphism of functors:

E'0E' > 1d: A-mod®' /PN — A-mod™' /PN

It is known that any torsion-free module M embeds into a reflexive module with
pseudo-null cokernel while any torsion module M is pseudo-isomorphic to
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E'E!(M) (cf. [40, Prop. 3.13]). Moreover, there is a canonical pseudo-isomorphism
E'(M) ~ El(tora M) for any A-module M.

By A-mod(p) we shall write the plain subcategory of A-mod consisting of Z,-
torsion modules while by PA(p) ¢ = PN N A-mod(p)’ we denote the Serre subcate-
gory of A-mod( p) the objects of which are pseudo-null A-modules. In other words M
belongs to PN (p) if and only if it is a A/p”-module for an appropriate n such that
E% (M) =0. Recall that there is a canonical exact functor ¢:A-mod(p)—
A-mod(p)/PN (p). Then, there is the following structure theorem on the 7Z,-torsion
part of a finitely generated A-module:

THEOREM 2.3 (cf. [40, Thm. 3.40]). Assume that G is a p-adic analytic pro-p group
without p-torsion and such that A/p is integral (e.g. if G is uniform). Let M be in
A-mod(p). Then there exist uniquely determined natural numbers ny, ...,n, and an
isomorphism M = @, A/p" mod PN (p) in A-mod(p)/PN(p).

We define the p-invariant of a A-module M as (M) = 3, ni(torz, M), where the
n; = ni(torz, M) are determined uniquely by the structure theorem applied to
tory, M. This invariant is additive on short exact sequences of A-torsion modules
and stable under pseudo-isomorphisms. Alternatively, it can be described as

wM) = rk‘[“',,[[G]] @I’MM/WM = I‘kj[:*p[Gl @pi '[OI'Z[,]W/pi-H tOI"’/,pM.

i=0 i=0

Very recently, J. Coates, R. Sujatha and P. Schneider [8] found a general structure
theorem for A-torsion modules. They proved that any finitely generated A(G)-
torsion module decomposes into the direct sum of cyclic modules up to pseudo-
isomorphism, i.e. in the quotient category A-mod>'/PN.

THEOREM (Coates—Schneider—Sujatha). Let G be a p-valued compact p-adic ana-
Iytic group. Then, for any finitely generated A(G)-torsion module M there exist finitely
many reflexive left ideals Ji,...,J, and an injective A(G)-homomorphism
b, <i<r N Ji = MM s with pseudo-null cokernel, where Mys = Tgim()-2(M ) denotes
the maximal  pseudo-null  submodule of M. In particular, it holds
M=@, ., A/Ji mod PN.

For the precise definition of a p-valued compact Lie group see [8] or directly
in Lazard’s article [24]; we just want to mention that any uniform pro-p-group
belongs to this class of pro-p Lie groups, which is stable under taking closed
subgroups.

It is still not known whether the ideals J; can be chosen as principal ideals as in the
commutative case. Anyway, if we restrict to this kind of modules, we can define a
second involution

°: A-mod! /PN — A-mod”! /PN
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on the full subcategory A-mod]fr1 /PN of A-mod > ' /PN consisting of those objects
which are isomorphic (in the quotient category) to a direct sum of cyclic modules of
the form A/Af, f € A. For any such f'we set (A/Af)° := A/Af°, where °: A — A also
denotes the involution of the group algebra (induced by g — g~'). The following
proposition implies among other things that this definition is invariant under

pseudo-isomorphism and therefore it extends to the whole category A-modpf VPN

PROPOSITION 2.4. Let G be a profinite group such that A = A(G) is a Noetherian
integral ring. Then the following holds:

(i) For any f € A there is an isomorphism E'(A/Af) = AJAf°.
(1) Assuming that G is a p-adic analytic group without p-torsion the above two invo-
lutions coincide:
—° = E!'(=):A-mod;; ' /PN — A-mod; ' /PN
The proof is standard, see for example the proof of Proposition 2.12, where we
denote the involution on A by 1.

We conclude this section with a technical result which will be needed in the arith-
metic applications.

PROPOSITION 2.5. Let A be an Auslander regular ring. For any A-module M such
that pd\E(M) <1 (e.g. if pd A =3 or if pd A =4 and E*E' (M) = 0) its double
dual E°E (M) is a 2-syzygy of E'E* (M), i.e. there is an exact sequence

0— E’E°(M) — Py— P, — E'E'(M)— 0

with projective modules Py and Py. Furthermore, in the case of pd A = 3 or 4, it holds
that E'E(M) = E*EN(M). If, in addition, M itself is reflexive and pd A = 3, then
E*E'M ~ E'(M)".

Proof. First observe that E°(M) is a 2-syzygy of D(M ) due to the definition of the
latter module, i.e. pd\E®(M) < pd A —2 =1, if pd A = 3. In the case of pd A = 4 it
holds E*E°(M) = E*E°(M) = 0 and E*E’(M) =~ E*E!(M) due to Bjork’s spectral
sequence (see [40, 3.1]). Hence, if E*E’(M) vanishes, it follows that pd ,E°(M) < 1.
Now, choosing a projective resolution of E°(A1)

0— E%(P) — E'(Py) — E" (M) — 0,
we derive the exact sequence
0— E’E°(M) — Py — P, — E'E'(M) — 0.
But E'E(M) =~ E’E' (M) due to Bjork’s spectral sequence for pd A < 4. If M itself

is reflexive and pd A = 3, then E'"E' (M) = E*E'(M) = 0, i.e. E'(M) is finite, respec-
tively E°E/(M) = EY(M)". N
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2.3. SOME REPRESENTATION THEORY

In the following lemma we shall write I/(I') for the kernel of the canonical
map Zp[G] — Z,[G/I'], where I' is any closed normal subgroup of the profinite
group G. By Radg we denote the radical of 7Z,[G], i.e. the intersection of all
open maximal left (right) ideals of Z,[G]. Finally, we write Mg = M/IM for the
module of coinvariants of M and H.(G, M) for the G-homology of a compact
A-module M, which can be defined as left derived functor of —g or alternatively
as Torf(Zp, M), where Tor denotes the left derived functor of the complete tensor
product —® — .

LEMMA 2.6. Let G =T xA be the semi-direct product of a uniform pro-p-group T’
of dimension t and a finite group A of order k prime to p. If we write
U, =T"" <G, then for any compact A = A(G)-module M, the following statements
are equivalent:

(i) M==AY
(i) Mr = 7,[A) as 7,[Al-module and for all n

rky, My, = tky, 7,[G/U,)¢ = dkp™,
(iii) Mr/p = F,[A) as T ,[A]l-module and for all n
log, #(My,/p") = log, #(7/p"(G/ Uy") = ndkp".

Proof. Obviously, (i) implies (ii) and (iii). For the converse let us first assume
that (i) holds and let my,...,my € M be lifts of a Z,[A]-basis of Mr. Then the
map ¢: @7:1 Ae; — M, which sends e; to my;, is surjective, because I(I') € Radg
(compare to the proof of [29]. 5.2.14 (i), d = b) and therefore we can apply
Nakayama’s lemma [29], 5.2.16 (ii), (with Rad¢ instead of ). Hence, the induced
maps ¢y : @?:1 A(G/Uy)e; - My,, are surjective, too. But since both modules
have the same 7Z,-rank by assumption, these maps are isomorphisms and (i) fol-
lows. The implication (iii) = (i) is proved analogously noting that
pA + I(T') € Radg. O

For a finite group G we denote by Ko((Q,[G]) = Ky(Q,[G]) the Grothendieck
group of finitely generated Q,[G]-modules (which are projective by Maschke’s
theorem). If G is a profinite group and U < G an open normal subgroup we define
the Euler characteristic hy(M) of a finitely generated A = A(G)-module M to be
the class

hy(M) =Y (=)TH(U, M) ®7, ] € Ko(Q,[G/U).

Before stating the next result we recall some facts about the representation theory
of finite groups. So let A be a finite group of order n prime to p. Then, there is a
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decomposition

7,181 =[] Zp8ei. =" 7,66™)g
geA

of Z,[A] in ‘simple’ components (in the sense that they are simple algebras after
tensoring with Q,). If G =T x A, this induces a decomposition of A =[[A“,
A% = 7,[T'][Ale; into a product of rings. Here {y,} is the set of irreducible Q, char-
acters (2 I,-characters because n is prime to p) of A and »; are certain natural num-
bers associated with y; (see below). The simple algebras Q,[A]e; decompose into the
direct sum of their simple left ideals which all belong to the same isomorphism class,
say N;, i.e. there is a isomorphism of Q,[A]-modules Q,[A]e; = N/". In particular, n;
is the length of (),[A]e; and can be expressed as

ni = y(e)(dimg, Ny) ™,

where x is the character of the left regular representation of Q,[A].

Now let G be again a p-adic Lie group and set A := A(G). Recall that a finitely
generated A-module M is a A-torsion module if and only if M is a A(G’)-torsion
module for some open pro-p subgroup G’ € G such that A(G’) is integral.

PROPOSITION 2.7. Let G =T x A be the product of a pro-p Lie group T of finite
cohomological dimension cd,(I') = m and a finite group A of order n prime to p and let
U LT be an open normal subgroup. Then, for any finitely generated A-torsion module
M, it holds hy(M) = 0.

Remark 2.8. For semi-direct products this statement is false in general. For
example, it is easy to see that for G = Z,x, A with nontrivial @ the Euler char-
acteristic of 7, is not zero: hy(Z,) = [Q,] — [Q,(w)] # 0.

Proof (of Proposition 2.7). We claim that under the assumptions of the theorem
M possesses a finite free resolution. Indeed, since the Noetherian ring A has finite
global dimension pd A = m + 1, there is always a resolution of the form

0—P— A" — ... — A —0,

with a projective module P. Since M* is a A(I')-torsion module (it is even A(T"')-
torsion!) and since P¢ is a free A(I')-module, it must hold that P% = (A(I))<“1 as
A(I')-modules, where k; = y(e;) denotes the Z,-rank of Z,[Ale; and d, =
S o(=1)d,_;. Consequently, Pf = Z’;fd”’“ as 7Z,-modules, respectively P{'®
Q, > Qﬁ‘;”d"’*‘ as (Q,-modules holds. But P{* ® O, must be isomorphic to the direct
sum of m copies of N; for some m due to the semi-simplicity of (Q,[A]. Counting Q-
dimensions, we obtain 7 = n,d,;; and hence P ® Q, = Q,[Ale”*'. Since P¢ is a
projective 7Z,[A]-module, this implies P’ = Z,,[A]ef’”*‘, respectively P¢ = A(G)ef”’*‘
(compare to the proof of Lemma 2.6) and P = A(G)™*'. This proves the claim.
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Furthermore, we observe that Z(—l)idi =0 and denote the resolution by
F* — M. Using the fact that the Euler characteristic of a bounded complex equals
the Euler characteristic of its homology, we calculate

D (=DHAU, M) ®7, O] =Y (= DH{F* @5 Q,[G/U])]
=Y (=)[F* ® Q,[G/U]
=Y (=DQ,[G/U1]
= (Y -va)le/v1=o. 0

LEMMA 2.9. Let G be a profinite group, H C G a closed subgroup and U <G an
open normal subgroup. Then for any compact Z,[H]-module M the following is
true:
(i) (Indf(M)), = Indg, | (Myny) and
(i) H(U. (Indf(M))) = Ind,/"H(U N H, M) for all i > 0.

Proof. The dual statement of (i) is proved in [23] while (ii) follows from (i) by
homological algebra. O

LEMMA 2.10. Let G =T x A be the product of a pro-p-group I and a finite group A
of order prime to p. Then, for any A = Zp[I'l[Al-module M and for any irreducible
character y of A with values in Q,, the following is true:

(1) Homp (M, A) =2 Homp(M, A",
(i) B\(M®) = E\(M)" for any i > 0.
Proof. While (i1) is a consequence of (i) by homological algebra the first

statement can be verified at once using the decompositions M = P M and
A= @A

Homp (M, A)" = Homp(M, A%)
= Homp (M®, A%)
=~ Homp (M, A). n

2.4. MODULES ASSOCIATED WITH GROUP PRESENTATIONS

Let C be a class of finite groups closed under taking subgroups, homomorphic images
and group extensions. Given an exact sequence of pro-C-groups 1 — H —
G — G — 1, where G is assumed to be finitely generated, we choose a presentation
F—»G of G by a free pro-C-group F, of rank d and we associate the following
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commutative diagram to it:

1 1
1 H G G 1
|
1 R Fa G 1 (2.1)
N=—=N
T
1

Here, R and N are defined by the exactness of the corresponding sequences. In gen-
eral, the p-relation module N*®(p) of G with respect to the chosen free presentation
(and similarly R*®(p) with respect to G instead of G) fits into the following exact
sequence, which is called Fox—Lyndon resolution associated with the above free
representation of G:

0— N*(p) — AG)' — AG) — 7, — 0. @2

Hence, if cd,(9) < 2, then N ab( p) is a projective A(G)-module.
Furthermore, the augmentation ideal I, i.e. the kernel of A(F;) — Z,, is a free
A(Fy)-modules of rank d: Ir, = A(F )" (for a proof of these facts, see [29], Chap. V.6).
Let 4 be a p-divisible p-torsion Abelian group of finite Z,-corank r with a contin-
uous action of G.

DEFINITION 2.11. For a finitely generated A = A(G)-module M we define the
finitely generated A-module M[A] := M ®y, AY = Homcont.,z, (M, A)" with diagonal
G-action. We shall also write M(p) for this r-dimensional twist where p: G — Gl,.(7Z,)
denotes the operation of G on 4.

Note that the functor — [A] is exact and that A[A4] is a free A-module of rank r (cf.
[35, Lem. 4.2]).

PROPOSITION 2.12. For every i = 0, E(M(p)) = E/(M )(p?), where p? is the con-
tragredient representation, i.e. p?(g) = p(g~")" is the transpose matrix of p(g~").
Proof. By homological algebra (and using a free presentation of M) it suffices
to prove the case i = 0 for free modules. Finally, we only have to check the com-
mutativity of the following diagram which is associated to an arbitrary
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homomorphism ¢: A — A

Homa(A(p). A M) Homa(A(p), A

| |

AF A

l l

Homa (A, A) (p) M) Homa (A, A) (p)-

OTMAR VENJAKOB

First note that via the identification A" Lo A(p) the matrix representing ¢(p) is
A=Y a.gp(g™"), where we assume for simplicity that ¢(1) =: a = > a,g € 7,[G].
We denote by 1 both the involution A — A, g — g~! (also extended to matrices with
coefficients in A) and the isomorphism of left A-modules A — Homu(A, A), g —

(1 — g7"). Then its easy to see that the following two diagrams commute

Homa(A (), & 225 Hom(A (o), A

l(w,,)* l (v, )*

Homa(A, A) Homa(A”, A)
G B AT
PR

Alp) 1(a)(p?) Alp)
l i(p™) l i(p?)
#*p

Homa(A. A) (9) 2% Homa (A, A) (o),

where B =" a,g 'p%(g), because i(a) =Y a,g~'. We are done if we can verify

B =1(A4"). But

(A) =Y ag'p(g™) =) ag'p'e) = B.

With the notation
X = Xy 4 :=H'(H, 4)",
Y= Yy 4= (Ig[A])y,
J:=Jy 4 = ker(AQ[Aly — (4)y),

we get the following proposition:
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PROPOSITION 2.13 ([35, Lem. 4.5]). We have a commutative and exact diagram
0 0

0 —> H*(H,4)) — V() —> AG" — ¥ —> 0

0—> H*(H,4)" —— H'\N,4)")Y —— H'(R, 4" —> X —> 0

0 0
Furthermore, if ¢d,(G) <2, then N Wd(p)A] is a projective A(G)-module and
(N2>( DAy a projective A(G)-module.

Remark 2.14. Assume A is trivial as H-module. Then the above diagram can be
easily obtained by twisting Jannsen’s original diagram (i.e. with coefficients Q,/7Z,):
diagram(A4) = diagram(Q,/7Z,)[4]. Also the higher Iwasawa adjoints of the occur-
ring modules can be calculated via Proposition 2.12:

E'(Xp.4) 2 EN(Xp,0,/2,)(p%),
E'(Y3.4) 2 E'(Y2.0,2,)(0%,

The following theorem is a consequence of the diagram. The restriction to p-adic
Lie groups without p-torsion is necessary in order to apply the dimension theory
developed in [40].

THEOREM 2.15. Let cdy(G) <2 and G a p-adic Lie group of dimension h without
p-torsion. If the ‘weak Leopoldt conjecture holds for A and H’, i.e. if H*(H, A) =0,
then neither Y nor X have nonzero pseudo-null submodules: Tj_1(X)=T;_1(Y)=0.

Proof. Apply Proposition 3.10 of [40] to Y, which has pd(Y) < 1 according to the
above diagram, and note that T;_;(X) € T,_;(Y) by Proposition 3.2 of [40]. O

Let
Z=Zu.a = DPG A", (2.6)
where
DG, A) = lim (H(U, p» A))"
USoGn
and the direct limit is taken with respect to the p-power map and the dual of the
corestriction. Then there is a description of the A(G)-module Y as follows:
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PROPOSITION 2.16. Assume that cd,(G) =2 and that N2(p) is a finitely gener-
ated A(G)-module. Then Y ~ DZ and E°(Z) = H*(H, A)”, thus Y is determined by
Z up to projective summands. Suppose, in addition, that H*(H, A) =0. Then
ENY)~Z.

For a proof of the Proposition, see [29], 5.6.8 and [33], Thm. 3.13.

3. Local Iwasawa Modules
3.1. THE GENERAL CASE

In this section we study the structure of Iwasawa modules arising from ‘p-adic repre-
sentations’ G — Aut(A4), where G = Gy, is the absolute Galois group of a finite exten-
sion k of Q; and 4 is a p-divisible p-torsion Abelian group of finite Z,-corank r.
Having fixed a p-adic Lie extension ko of k with Galois group G, we write
H = G(k/ks) € G where k denotes the algebraic closure of k. We are going to apply
the general results of Section 2.4 to the module

X4:=Xy4=H(H, A" =H (keo, 4)",
i.e. we will determine the A(G)-modules occurring in the canonical exact sequence
0— E'D(X,) — X4, — EE°(X,) — E’D(X,) — 0.

The statements in this section often say that the module X4 (or another one) fits into
an exact sequence of A(G)-modules. In general, this will not determine its Galois-
module structure uniquely. But if it happens that such a sequence describes X4 as
Ist or 2nd syzygy of some A(G)-module with well-known structure, then the
Galois-module structure of X4 is uniquely determined up to homotopy, i.e. up to pro-
jective summands (see Subsection 2.1).

For the sake of completeness and for the convenience of the reader we restate
some general results from [34], but see also [33]. Since we have fixed H, we shall omit
it in the notation and write Y4, Z,4, etc. Recall that G has finite cohomological
dimension cd, G = m if and only if G has no element of finite p-power order and
its dimension as p-adic analytic manifold equals m.

LEMMA 3.1 (cf. [33]).

(1) If k is a finite extension of Qp and ko is a Galois extension of k, then
Z = A*(ko)”, where A* = (T,A)"(1) by definition,
(i) E'D(X,) = E'(4*(kx)"),
(iii) E*D(X,) € E?D(Y,) = E*(4*(ks)"),
(iv) If ¢d,(G) <2 or cdy(G)=3 and A(ks)" is 7,-torsion-free, then DX, ~
El(X,).
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Proof. (1) is just local Tate duality while (ii) is a consequence of (i):
E'D(X,) = E'D(Y,) =2 E"(Z4) = E'(4*(ks)")

(Note that the first isomorphism holds because J4 is torsion-free as A(U)-module for
a suitable open pro-p-subgroup U C G, such that A(U) is integral.) By the same rea-
son and using the snake lemma, one sees that E>D(X,) € E*D(Y ). To prove (iv)
just note that in these cases pd X4 < 1 by the Diagram 2.13, the defining sequence
(2.5) of J 4, corollary [40, Cor. 6.3] and [40, Cor. 4.8]. O

Recall that for a finitely generated Abelian p-primary group 4 we denote by A, the
quotient of 4 by its maximal p-divisible subgroup. The next result generalizes a result
of Greenberg [14]:

PROPOSITION 3.2 (cf. [34, Section 2]). Let n = [k: Qg], £ = p, be the finite degree
of k over Q, and ko, a Galois extension of k with Galois group G =1 %, A, where
I' > 7, and A is a finite group of order t prime to p, which acts on T" via the character
w: A — ’7; If y = o™ denotes the inverse of the character which determines the action
on the p-dualizing module of G, the canonical sequence becomes

0— T,A"(keo)() — X4y —P— M —0,
where P is a projective A(G)-module of tkawyP = rnt and M fits into the exact sequence
0— M — A*(koo)giy(x) — tory, (A(kso)”).

Furthermore,

() if A*(kso) is finite, then TyA*(koo)(x) = 0. If, in addition, A(ks)" is 7,-free, then
M =2 A* (ko).

(i) if A*(koo)" is Zp-free, then X4 = P @ T,A*(koo)(x). In particular, X 4 is projective,
if A*(koo) = 0.

Proof. First note that according to Lemma 3.1 and [40, Cor. 4.§]

E'D(X.) = E'(4"(kx)")
= EI(A*(koo)v/tOI'/lp)
= (A*(koo)v [ QP/ZP(Xfl))\/
= TPA*(koo)(X)

To determine E2D(X,) = E’E'(X,) we use the short exact sequences ((2.5) and
Proposition 2.13)

0—>XA—>YA—>JA—>0,

0— J4—> AG) — A(ks)” —> 0,
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ie. Bl(J4) 2 E*(A(kso)”) = A(koo)giy(2) by [40, Cor. 4.8] and
A(koo)aiy(x) — E'(Y4) — E'(X4) — 0

is exact. Forming the long exact Ext-sequence and applying Lemma 3.1 and
[40, Cor. 4.8] again, gives the desired result. O

Let us now consider the case ¢ # p:

PROPOSITION 3.3 (cf. [34, Section 2]). In the situation of the last theorem but with
L # p there is an isomorphism X 4 = T, A* (koo )(1)-

Proof. In [33], Prop. 3.12, it was calculated that the A(I')-rank of X4 equals the
A()-corank of H?(ks, A), but the latter module vanishes because the order of G is
divisible by p* (cf. [29], 7.1.8). O

PROPOSITION 3.4 (cf. [34, Section 2]). Let n = [k:Q,] be the finite degree of k over
Q, and ko a p-adic Lie extension of k such that its Galois group G has cohomological
dimension c¢d,(G) =2. Let I' € G be an arbitrary open uniform pro-p-subgroup, i.e.
A() is integral, and let t be the index (G : T'). If y denotes the inverse of the character
which determines the action of G on the p-dualizing module, then the canonical sequence
becomes

0— X, — R—> E*D(X,) — 0,

where R is a reflexive A(G)-module with tkaqyR = rnt. If, in addition, A(k)" is
Zy-free, then E>D(X ) fits into the exact sequence

0 — E?D(X4) —> T, A*(koo)(z) —> Hom(T, A(kwo), 7).

Proof. Using again Lemma 3.1 and [40, Cor. 4.8], the proof is completely
analogous to that in the one-dimensional case of Proposition 3.2. O

Note that in the case p # /and cd,(G) = 2 we have H = 0, i.e. X4 = 0, because the
Galois group Gi(p) of the maximal p-extension of any local field & over Q, is
isomorphic to 7Z,(1)x 7, (resp. 7,) if p, C k (otherwise). Thus it does not have
any nontrivial quotient G which satisfies these conditions.

PROPOSITION 3.5 (cf. [34, Section 2]). Let n = [k:Q,] be the finite degree of k over
Q, and ko a p-adic Lie extension of k such that its Galois group G has cohomological
dimension ¢d,(G) = 3. Let I' € G be an arbitrary open uniform pro-p-subgroup, i.e.
A(T) is integral, and let t be the index (G:U). Then X4 = E"E°X, is a reflexive
A(G)-module with tkaqm X4 = rnt.

Proof. This follows from Lemma 3.1 and [40, Cor. 4.8] as above. O
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At the end of this part we want to restate the results concerning the ranks of the
considered modules. The result was obtained independently by S. Howson [17, 6.1]
and Y. Ochi [33, Thm. 3.3], see also [34, Thm. 2].

PROPOSITION 3.6 (Howson, Ochi). Let k be a finite extension of Qp and ks, be
a pro-p Lie extension of k with Galois group G = G(ks/k). As before r denotes the
Zy-rank of rank(A4"). Assume that A = A(G) is integral, then

1 Vs r[k‘Qp] %f‘gzp’
rkaH (koo, 4)° = [0 otherwise.

Proof (cf. Ochi). Noting the vanishing of H?(ks, A) and that N*°(p) = A(G) for

d = [k : Qp] + 2 (conferring [20], Thm. 5.1c)), the result follows from the diagram in
Proposition 2.13 and the above remarks with respect to the case ¢ # p. O

3.2. THE CASE 4 =Q,/7,
3.2.1. Local Units

If we specialize to the important case 4 = Q,/7, with trivial Galois action, we are
able to determine the module structure more exactly using local class field theory:
X:=Xq,z, = H®(p)* is the Galois group of the maximal Abelian p-extension of
ko, which is canonically isomorphic to the inverse limit X =2 A(ky) := lim._ A(k’)
of the p-completions A(k’) of the multiplicative groups of finite subextension$ k' of k
in koo : A(k') = lim_(k')*/(k’)*"", where the limit is taken via the norm maps. Since
the Galois module structure of A(k’) is well known if tensored with Q,, we get

THEOREM 3.7. Let n = [k : Qq), € = p, be the finite degree of k over Q, and k a
Galois extension of k with Galois group G =~ T'»x, A, where I' 2 7, and A is a finitely
generated profinite group of order prime to p, which acts on T via the character
A — A; We write kg for the fixed field of T and denote by y = ™" the inverse of
the character which determines the action on the p-dualizing module of G.

() If wye € koo, L. koo is the cyclotomic Z.y-extension of ko and G =T x A, then it
holds A(kso) =2 A" @ Zpy(1).
(i1) Let u(koo)(p) be finite. Then there is an exact sequence of A-modules

0 — Alkoo) ® Ic — A" —> plkoc)(p)(7) —> 0.

For any presentation
l—-K—F4y—>G—1

by a free profinite group F o ond’ < n + 1 generators, there exists an exact sequence
0 —> A(koo) — A" @ K*°(p) — plkoo)(p)(x) — 0.

*This notation refers to diagram (2.1) of Section 2.4 where we represent the absolute local Galois
group G of k by a free profinite group of rank d = [k: Q,] + 2 according to [29], Theorem 7.4.1.
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Remark 3.8. (i) The existence of a presentations in (ii) is always guaranteed by
[19] Theorem 4.3. Indeed, one can choose d' = 2.

(i1) Using the Krull-Schmidt and Maschke’s theorem, it is easily proved (see the
proof below) that

E’(I) (@) & 16 = 7,[GT,
m—1
Io(0") & I = 7,[G]",

i=1

where m denotes the order of w. Hence, from the isomorphism K*°(p) @ I = Zp[[G]Id
according to the Lyndon sequence (2.2), we get isomorphisms (for m < d)

K*(p) = 7,[G]** ® E°(I6)()
m—1

= 7,[G1"" & P Io(o).
i=1

In particular, if @ is an involution and d =2, then K?*(p) = E’(I5)(w) = I5(w)
holds.

Proof. Let us first consider the case that A is a finite group, which grants that
A(G) is Noectherian. Then the statements are consequences of Theorem 3.2 once
having determined the structure of P = E’E°X. We will apply the Krull-Schmidt
t?eorem and we first observe that for any open normal subgroup U<TI and
G := G/U it holds: Xy ® Q, = Py ® Q, and, if k’ denotes the fixed field of U, there
are exact sequences of G-modules

0— U™(p)—> (I6)y —> 7,p[Gl — 7, — 0,

0— Xy — G(p) — U™(p)—> 0.
Hence, by Maschke’s theorem and using G‘,i'?( p)®Q, ‘@p[(_?]” @ Q, (cf. [29], 7.4.3),
we get

Pu®Q,® )y ®Q, = Q,[GI",

ie. PO I = A",
Now, taking U-coinvariants of the augmentation sequence

0— I — ZplG]l — Z, — 0
and tensoring with Q,(w') gives
@p[G_] 52 Qp(le) = (IG(wi))U by Qp @ Qp(wl)

For (i) just note that I; is projective and w trivial because A acts trivially on T,
hence: I = 7,[G]. The first sequence in (ii) is immediate while the second one results
from the isomorphism K*°(p) @ I = .71,,,,|[G]]d according to the Lyndon sequence (2.2).
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Now let us assume that A is infinite. If A" € A is an open subgroup then the func-
tor obtained by taking A’-coinvariants is exact because H{(A', M) =0 for any
A-module M. Since the automorphism group is virtually pro-p, there is an open nor-
mal subgroup Ay of A which acts trivially on I', in particular any open normal sub-
group A’ of A which is contained in A is normal in G. Now a free presentation of G

l—K—F;,—G—1
induces a free presentation of G’ := G/A’
l— Ky — Fgo— G/AN — 1.

Using the Lyndon sequence, it is easy to verify that (Ig)y = I5/a and K®(p)y =
Kzt,’( p)- Now the strategy is as follows. Take a A(G)-module M and show that for
any A’ as above its A'-coinvariants are isomorphic to certain finitely generated
A(G')-modules of the same type, e.g. A(k") @ Is, where k' is the fixed field of ko
by A’. Then it follows easily (using a compactness argument to grant the existence
of a compatible system of isomorphisms) that M =2 A(ky) @ Is. As an example
we prove the first statement in (ii): choose a surjection A(G)™™" — u(kso)(p)(x) and
define M to be the kernel of it. Taking A’-coinvariants and comparing it with the
result for k', i.e. for (finite) A/A’, we obtain an isomorphism M, =~ A(k") @ I/
by Schanuel’s lemma (see [20, 1.3] for a generalized version). The other statements
follow by similar arguments.

The second isomorphism of the remark can be deduced by summing up
(Ig(w'))y ® Q, for 0 < i < m. For the first one, use that due to the projectivity of I

E'(I6)y ® Q, = Homy, (616, Z,[GDy ® Q,
= Hom,, 1((I6)y» 7,[G]) ® ©Q,
= Homy, ((I)y, Qp) ® Q)
holds. =

THEOREM 3.9. In the situation of the last theorem but with £ # p there is an
isomorphism

X (70D i1y ko
0 otherwise.

The next theorem generalizes results of Wintenberger [42] who restricts himself to the
case in which G is Abelian. It applies for example to I' = 7, x Z,. Recall that R,
respectively R*®(p), were defined via diagram (2.1).

THEOREM 3.10. Let n = [k:Q,] be the finite degree of k over Q, and ks, a Galois
extension of k with Galois group G = T" x, A, where I is a pro-p Lie group of dimension
2 and A is a profinite group of order prime to p, which acts on T via p: A — Aut(I'). Let
ko be the fixed field of T and let y = det p~' denote the inverse of the character which
determines the action on the p-dualizing module of G.
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() If ulko)(p) = 1, then X ® A = R*®(p). If p is trivial, then X = A".
(i) If wyo € koo and G is without p-torsion and such that its dualizing module is not
isomorphic 10 W, then there is an exact sequence of A-modules

0— X®A— R®(p)— 7,(1)(3) — 0.
If p is trivial, then
0—X—A"—7,1)—0

is exact.
(iii) If u(koo)(p) and A are finite, then X = E°E*(X) is reflexive, i.e. there is an exact
sequence

0— X — R®(p) — A —> u(kso)(p).

If, in addition, u(k)(p) = 1, but u(ks)(p) # 1 and =" # Aeyel» then the right map is
also surjective (in particular X is not free in this case).

Remark 3.11. For extensions ky |k of the type G =2 T’ x Awith' = Z°, s > 3 and
finite A, we can consider the relative situation

0 — X(koo)r) — X(Koo) — Z,, — 0,

where I'’ is direct factor of I" isomorphic to 7Z,, i.e. I 2T x Z;fl, and K, is the
fixed field of ko, with respect to I'’. By induction and applying Diekert’s theorem
([29]) one reobtains at once Wintenberger’s results (but now more generally with
not necessarily Abelian A): For any irreducible character y # 1, ¢ the component
X(koo)® is a free A(G)**-module of rank n X(ks ) = (A(G)%)". But since we already
know that pdy, X = s — 2 for s > 3, X can not be projective in this case, i.e. X(koo)”
or X(koo)7 is definitely not of this type.

We will prove the theorem only for finite A because the general case follows
similarly as in Theorem 3.7. Just note that also in this case the automorphism group
of I' is virtually pro-p (see [10, 5.6]). But before giving the proof we need some
preparation:

LEMMA 3.12. Let G =T x A be the product of a pro-p Lie group " with cd,(I') =2
and a finite group A of order prime to p. Then R*(p) = A"

Proof. Let U, := p"I' < G. By the Lyndon sequence (2.2) and using Proposition
2.7, we calculate the Euler characteristic /g, (R*(p)) = hy,(Zp) + hy, (A") =
hy, (A™). The result follows. O

LEMMA 3.13. If in the situation of the theorem (ks )(p) is infinite, then both E°(X)
and E°E°(X) are projective.

Proof. Since E°(—) preserves projectives and E’E’E%(X) = E°(X) by [40, Prop.
3.11], it is sufficient to prove the statement for E’E°(X). But according to Propo-
sition 2.5, the latter module is the 2-syzygy of E*E!'(X). We claim that ¥ ~ X & A,
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ie. that E’E'(X)~E’E'(Y) >~ E’(uks)(p)”) =0, which implies the lemma.
Indeed, due to Poincaré-duality

H2(G, ulkso)(p)” 22 Home(pu(koo)(p), DY) = 0,
if D(Z"’> # W Hence, Y >~ X' @ A by the second description of 4.5(b) in [20]*. [

Proof of the Theorem. Let U,, = p™T" <G and denote the fixed field of U, by k,,.
From the exact sequence

1—>ka—>Gk —>Um—>1

m

we obtain the associated homological Hochschild—Serre sequence

0 = Ho(k, 7,p) — Ha(Up, 7p) — Xu, — G(p) — Hi(U, 7,) — 0.
After tensoring with Q,, it follows that

Xv, ® O, ® H{(Up, 7)) ® Q) = Q,[G]" & Q) & Hy(Up, 7)) ® O,

where we used Maschke’s theorem and G_};E(p) ®Q, = @1,[G_]" ® Q, (cf. [29], 7.4.3).
On the other hand, the Euler characteristic of the projective module R*®(p) can be
calculated by means of the Lyndon sequence:

[R™(p)y, ® Qp] =hy, (R*(p))
=hu,(Zp) + hy, (A"™")
=[Qy] = [Hi(Un: Zp) ® Qp] + [Ha(Up. Zp) ® Q] +
+[Q[G1"]

and, hence, Xy, ® Q, ® Q,[G] = R®(p)y, ® Q.

Assume that u(ko)(p) = 1, i.e. tory, A(ko) = 1 and Xy, is /,-free. Therefore, since
t is prime to p, it follows that Xy, is Z,[A]-projective. If p is trivial, we conclude, by
the calculation above under consideration of 4y, (Z,) = 0 (by Lemma 2.7) and using
the Krull-Schmidt theorem, that Xy, = Z,[A]". Applying Lemma 2.6, gives the
desired result in this case. Anyway, these arguments show that X is projective also
in the case with non-trivial p, i.e. we obtain X @ A = R*®(p) in the general case.

In order to prove (ii), we apply Theorem 3.4: Since X @ A >~ Y in this case (see the
proof of Lemma 3.13), we obtain

E’D(X) = E’D(Y)
= E2(7’p(_1))
= Zp(D(2),

*For T = /12, this statement was proved by Jannsen ([20], 5.2(c)): Though there the claimed
isomorphism R2*(p) = A"! is only correct if p is trivial, the arguments (which we restated above) still
prove X A~ Y.

https://doi.org/10.1023/A:1025413030203 Published online by Cambridge University Press


https://doi.org/10.1023/A:1025413030203

24 OTMAR VENJAKOB

where we applied Lemma 3.1 and [20, 2.6]. Note that
-1 detp "
1 (x) =det(Adx) = detp(x): G —> A — Z,

(cf. [24] V 2.5.8.1). We still have to determine the module P = E’E’(X), which is
projective according to Lemma 3.3: it is easily seen that Py, @ Q, = Xy, ® Q,,
ie. P®A =~ R®(p), by the above calculations. If p is trivial, Lemma 3.2 gives
the desired result.

The first statement of (iii) is just Theorem 3.4 and Lemma 3.1. By Proposition 2.5,
we obtain an exact sequence

0—X—P— A — ulkso)(p)

for some s. Splitting up the sequence, taking the long exact H;(U,,, —)-sequences and
using the above calculations, one immediately sees that Py, ® Q, = R™®( Py, ®
Q, @QP[G]S*I, ie. P>~ R®(p)@® A*"!. After possibly changing the basis of A?
and using the Krull-Schmidt theorem, one easily sees that we can get rid off the
summand A*"!.

In order to prove the last statement, we assume that y~! # Xeyel @and consider the
exact sequence

0 — E'(%xX)Y — ElY)Y — E'(1)”

| |

1(koo)(p) Qp/Zp(rh).

The decomposition of the sequence with respect to the irreducible Q,-characters of A
gives (E'(X)")Yed = p(koo)(pY = u(koo)(p)- O

3.2.2. Principal Units

When / = p, we are also interested in the A-structure of the inverse limit of the prin-
cipal units Ul(ky) 1= lim__, U'(k"), where k’ runs through all finite subextensions
of koo | k and the limit is taken with respect to the norm maps.

PROPOSITION 3.14. Let k be a finite extension of Q, and ko a Galois extension

of k.

(1) If koo contains the maximal unramified p-extension of k, i.e. if p* divides the
degree of the residue field extension associated with ko | k, then U (ku) 2 A(kso).

(i1) In the other case there is the following exact sequence

0 — Ul (keo) —> Alkoo) —> 7 —> 0.
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Proof. For finite extensions K’ | K| k of k with associated residue field extensions
/| 2] x consider the following commutative diagram with exact rows
0~ U&)Yy — AK) —— Zyp" —— 0
lNK’/K J/NK’/K [ 4]
0 — UK/ — AK) —— Z,/p" —— 0.

While in case (i) the inverse limit lim. /,/p™ vanishes, because for any m and
any K there is an extension K’ such that p |[A: 4], in the second case it is isomorphic
to Z,. O

THEOREM 3.15. Assume in the situation of Theorem 3.10 that koo contains p but
not the maximal unramified p-extension of k. Then there exists an exact sequence
0— Ul(koo) ® A — R*®(p) — M —> 0,
where M fits into the exact sequence
0—Z,— M— 7Z,(1)(x) — 0.
In particular, if p is trivial, there exists an exact sequence
0— Ulkoo) — A" — M —> 0.

Proof. Evaluating the long exact E'-sequence associated with the exact sequence
from the proposition above and noting that pd, Ul (k) < 1 due to pd,A(ks) < 1
and pd,7Z, = 2, one obtains that

(i) E%(U' (ko)) = E(X),
(i) E'D(U'(ks)) = 0 and an exact sequence,
(iii) 0 — 7, — E’D(U (ko)) — Zp(1)(z) — 0.

Here we used that E°E*(7Z,) = 7,, because 7, is a Cohen-Macaulay module of

dimension 2. The result follows from the canonical sequence. O

Remark 3.16. In the situation of Theorem 3.7 with trivial action of A the structure
of the principal units is described in [29] as follows:
() If gy € koo, then
Ul(koo) =2 A" @ 7,(1).
(i) If u(kso)(p) is finite, then there is an exact sequence
0—> Ul(koo) —> A" —> pu(koo)(p).
(iii) If koo | k is unramified, then U'(ku) 22 A(koo).

But the proof of [29] works also if w is not trivial.
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3.3. THE LOCAL CM-CASE

As a consequence of Theorem 3.10 we can also determine up to homotopy the
structure of X, = H'(koo, A)” in the trivializing case, i.e. k(4) C kuo:

THEOREM 3.17. Let n = [k:Q,] be the finite degree of k over Q, and ko, a Galois
extension of k with Galois group G =2 1'% ,A, where I is a pro-p Lie group of dimension
2 and A is a finite group of order t prime to p, which acts on T via p: A — Aut(I'). Let
ko be the fixed field of T and let y = det p~' denote the inverse of the character which
determines the action on the p-dualizing module of G. For any A with rk;, AY = r such
that k(A) C ko the following is true.

() If utko)(p) =1, then X 4 & A" =2 R™(p)[A], in particular, if p is trivial: X 4 = A" .
(1) If wye < koo and G is p-torsion-free and its dualizing module is not isomorphic to
Wyes then there is an exact sequence of A-modules

0— X4 ®A — R®(p)A] — AY(1)(z) — 0.
In particular, if p is trivial, then

0— X4 —AN"—4"1)—0
is exact.

(i) If u(kso)(p) is finite, then X, = E°E%(X,) is reflexive, i.e. there is an exact
sequence

0— X4 — R®(p)A] — A" —> plkoc)(p)[A]-

If, in addition, u(k)(p) = 1, but wkso)(p) # 1 and 3~ # eyel» then the right map

is also surjective (in particular, X 4 is not free in this case).
Proof. In this case the subgroups H, R and N act trivially on 4 = A(ky), i.e.
X4 =2 X[A]. O

This result applies to the following situation: Let K be a imaginary quadratic num-
ber field, F a finite, Abelian extension of K and E an elliptic curve defined over F with
complex multiplication (CM) by the ring of integers Ok of K such that F(E,) is an
Abelian extension of K. Assume that the rational prime p splits in K, i.e. pOg = pp,
p#Dp, and that E has good reduction at all places lying over p. Set
G = G(F(E(p))/F)g the decomposition group at some % |p. According to [9, 1.9],
the prime %S ramifies totally in F(E(p)) | F and decomposes only finitely (and is unra-
mified) in F(E(p))| F. Therefore the decomposition group G is an open subgroup of
G(F(E(p))/F), i.e. of type Zﬁ x A where A is a finite Abelian group. Thus we obtain
an exact sequence

0 — H'(F(E(p)y. E(p))’ — AG)"" — T,E— 0,

where n = [F}: Q,]. By the same argument, but now using Theorem 3.7(ii), there
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exists an exact sequence
0 — H'(F(E(D)g, E(0))" — A(G")" —> p(F(E®)p)[E(P)] — 0,
where G’ = G(F(E(p))/F)g, and a similar one for p.

4. Global Iwasawa Modules

Let ko be a p-adic Lie extension of the number field £ contained in kg with Galois
group G and let 4 be a p-divisible p-torsion Abelian group with Z,-corank r and on
which Ggs(k) = G(ks/k) acts continuously where S is a finite set of places of k con-
taining all places S, over p and all infinite places S, (and by definition all places
at which A is ramified). Here kg denotes the maximal S-ramified extension of k,
i.e. the maximal extension of k& which is unramified outside S. In order to derive
information about the A = A(G)-modules H(G(ks/ks), A) we would like to apply
the diagram (2.1) to the group G = Gs := G(ks/k). On the other hand we have to
guarantee that G is finitely generated as a profinite group which, unfortunately, is
not known for the group Gs. But using a theorem of Neumann, i.e. the inflation
maps are isomorphisms

H'(G(Q/kx), A) = H'(Gs(ke), 4), 120,

for any (p, S)-closed extension Q of k (i.e. Q is a S-ramified extension of k which does
not possess any nontrivial S-ramified p-extension) and for any p-torsion G(Q/ks)-
module A4, we are free to replace Gg(k) for example by the Galois group
G := G(Q/k) where Q is the maximal S-ramified p-extension of k’(4) and k' is a
Galois subextension of k. /k such that G(ks/k’) is an open (normal) pro-p-group.
Regarding this technical detail, we assume in what follows that k is contained in
such a (p, S)-closed field Q. Then, since G has an open pro-p Sylow group, it is
finitely generated and has cd,(G) < 2 for odd p. Note that Y 4 := Yg/k. )4 (2.4)
and Xs 4 := Xg@/k.),4 (2.3) do not depend on the choice of Q. The next lemma
shows among other things that the corresponding module Z (2.6) only depends on
ks, A and S. Recall that 7,4 = Hom(Q,/Z,, A) denotes the ‘Tate module’ of A.
We shall write H}, (Gs(k), TpA4) = lim. H*(Gs(k), ,»A) for the continuous cochain

cts

cohomology groups (see [29, II. Section 3.]).

LEMMA 4.1. Let k, koo and A be as above. Then

(Gs(K), TpA).

. T 2
Zs 4 = ZGQ/ko)a 1}31 H,

k<k! Ckoo

A basic structure result is the following theorem:
THEOREM 4.2. Let G a p-adic Lie group without p-torsion. If the ‘weak Leopoldt

conjecture holds for A and ks, ie. HX(Gs(ks), A) =0, then neither Ys.4 nor
Xs 4 = H(Gs(koo), A)Y have nonzero pseudo-null submodules.
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Proof. The conditions of Theorem 2.15 are fulfilled. O
Furthermore, the A-rank of X5 4 can be determined, using diagram (2.4):

THEOREM 4.3 (Ochi [34]). Let koo |k be a p-adic pro-p extension. Assume that
k(A) |k is a pro-p-extension and that A is an integral domain. Then

tkaAH'(Gs(kao), A)Y — tkaAHA(Gs(koo), A) = ra(k)r
Here ry(k) denotes as usual the number of complex places of k.

Thus, if the weak Leopoldt conjecture holds for 4 and k.., one obtains a simple
formula for the A-rank of H'(Gs(ko), A)”. So, we conclude with a brief discussion
and motivation concerning this conjecture:

In [21] Jannsen extended the strong Leopoldt conjecture, which is equivalent to the
vanishing of H*(Gs(k), Q,/7Zp), to the following setting: Let X be a smooth projec-
tive variety of pure dimension over k and assume that S contains S,, S, and all
places Spaq where X has bad reduction. Then the étale cohomology Ti(n):=
Hét(X_x i k, Z,p(n)) is a compact Gg(k)-module which is finitely generated over Z,;
here k denotes as usual an algebraic closure of k. Hence 4'(n) := T'(n) ®7, Q,/7,
is a p-divisible discrete Gg(k)-module, for X = Spec(k) and i =0 isomorphic to
(Qp/7Z,)(n). Assuming p # 2 or that k is totally imaginary his conjecture (cf. [21,
Conjecture 1, Lem. 1]) predicts

HAG(R). A _o if (i) i+l<n, or
(Gs(k). Am) = 1{(11) i+1> 2

Thus, if this conjecture true for fixed X, i as well as n for all number fields contained
in ko, it implies obviously the weak Leopoldt conjecture for A’(n) over ko.. While in
the ‘unstable’ range n < i + 1 < 2n the cohomology group H*(Gs(k), A(n)) is nontri-
vial in general, it is supposed to vanish after going up a ‘nice’ p-adic Lie-extension
(cf. Corollary 4.8 for an example of this phenomena).

It is a result of Iwasawa that over the cyclotomic Z,-extension of any number field
the original weak Leopoldt (i.e. for 4 =0Q,/7,) holds and consequently for
(Qp/Z,)(n) for all n € Z (see [29, 10.3.25] for a cohomological proof). This leads to

Remark 4.4. The weak Leopoldt conjecture for 4 and k,, holds for example if
k(A) and the cyclotomic Z,-extension of k are contained in k. The claim follows by
expressing H*(Gs(ks), A) (considered as Abelian group) as direct limit lim__,
HZ(GS(kc’yc), Q,/7p)", where k' runs through the finite extensions of k in k.

For a discussion about the weak Leopoldt conjecture over the cyclotomic Z,-
extension of a number field for other p-adic representations than above we refer

the reader to Section 1.3 and Appendix B of [36].
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4.1. THE MULTIPLICATIVE GROUP G,,
4.1.1. The Maximal Abelian p-Extension of ko, Unramified Outside S

We still consider p-adic Lie extensions ko, | kK with Galois group G = G(ks/k) such
that ko is contained in the maximal S-ramified extension kg of k. Here, as before,
S denotes a finite set of places of k containing all places S, over p and all infinite
places S,.. For K|k finite let Sy(K) be the set of finite primes in K lying above S.
In this paragraph we specialize to the case 4 = Q,/7Z, and we shall write X for
the A = A(G)-module Xs0,/7, (2.3)

Xs = Xs,0,7, = H'(Gs(kao), Qp/ Zp)" 2 Glks/koo)™ ().

and respectively for Ys (2.4) and Zg (2.6).

In this case, Theorem 4.2 is a generalization of the theorems of Greenberg [13] and
Nguyen-Quang-Do [31], who considered the case G%ZZ. Indeed, it confirms
Greenberg’s suggestion that an analogous statement also should hold for p-adic
Lie extensions.

THEOREM 4.5. Let G be a p-adic Lie group without p-torsion. If the ‘weak Leopoldt
conjecture holds for ko', i.e. H(Gs(koo), Q,/7p) =0, then X5 = Gs(koo)™(p) has no
nonzero pseudo-null A-submodule.

Remark 4.6. Recall that the weak Leopoldt conjecture for ky holds if the
cyclotomic 7Z,-extension of k is contained in k.
We will also consider the A-modules

X = G(Llks), X5 = G(L Jks),

where L is the maximal Abelian unramified pro-p-extension of k., and L’ is the

maximal subextension in which every prime above S is completely decomposed.
For an arbitrary number field K, we denote the ring of integers (resp. S-integers) by

Ok (resp. Ok s) and its units by E(K) := Ok (resp. Es(K) := O ¢). Then we define

L :=1m(OF ® Zp), Es:=1m(O ¢ ® Zp),
k/ !
where the limit is taken with respect to the norm maps. This should not be confused
with the discrete module of units (resp. S-units) FE(ks) =lim_, E(k") (resp.
Es(keo) = lim _ Es(k’). ‘
Finally, we write for the local-global modules

k

As=EPIdga,,  Us=PIndg U,
Sy(k) SHK)

where A, = A(ks,y) (resp. U, =U 1(koo,\,)) are the local modules introduced in
Section 3.2. The above modules are connected via global class field theory and the
Poitou-Tate sequence as follows
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PROPOSITION 4.7 (Jannsen). There are the following exact and commutative
diagrams of A-modules:

(1)
0 — HGskw),Qp/7p)" — E — Us — Xs — X, — 0
0 — H(Gslkoo),Qp/7p)" — Es — As — Xg — X5 — 0

(ii)
0— I —Es— @S,m(/c) Indg“ZP — X, — st — 0,
where Sy, = {v € S(k) | p>* 11} and f, = f(keov/ky) denotes the degree of the
extension of the corresponding residue class fields.

(iii)

0— va —> ZS*QP/Z/I(I) —> @S,(k) Indg‘Zp —> Zp —> 0,
and, if ppe C koo,

0— Xe(—=1)— Zs — @, Ind@ Zy(=1) — Z,(—1) — 0.

Sp(k)
In particular, X3 = X, 1= Xi” is independent of S in this case.

(iv) N2(p) (see (2.1)~(2.2)) is a finitely generated, projective A(G(koos( p)/k))-module
and, if the free presentation of G = G(keos(p)/k) (cf. Section 2.4) is chosen such
that d = r{ +ry+ 1, then

N®(Plenrn = P IndG 2, & NG,
5

where S is the set of real places of k which ramify (i.e. become complex) in ks,
r| is the cardinality of S, and ry is the number of complex places of k.

Proof. The assertions (i) and (iii) are obtained by taking inverse limits of the
Tate—Poitou sequence (see [20, Thm. 5.4]) and recalling Lemma 4.1 while (ii) follows
from (i) by the snake lemma and Proposition 3.14. O

From these diagrams and the fact that A is Noetherian it follows that the modules
X, X5 are finitely generated. Furthermore, S. Howson [17, 7.14-7.16] and Y. Ochi
[33, 4.10] independently proved that X,, and X5 are A-torsion. Actually, this result
was first proved by M. Harris [15, Thm. 3.3] but, as S. Howson remarked, his proof
is incomplete because it relies on the false ‘strong Nakayama’ lemma ([15, Lemma
1.9]), see the discussion in [2]. However, in a recent correction Harris [16] has given
a new proof of the result. In the case G = ZZ this result is originally proved by
Greenberg [12].
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COROLLARY 4.8. (i) If Hz(GS(koo)v@p/Zp(l)) =0 (e.g. if dim(G,) =1 for all
vesS), then st is a A-torsion module.
(ii) If dim(G,) = 1 for all v € Sy, then X, is a A-torsion module.

For example, the conditions of the corollary are satisfied if ko, contains the cyclo-
tomic 7Z,-extension.

Proof (cf. [34]). The first statement follows from 2.16 while the second one
is a consequence of the first one and the above proposition (To calculate the
(co)dimension of Indg“ 7, use [40, 4.8, 4.9]. Note that the condition ‘dim(G,) > 1
for all v € Sy implies, using Tate-Poitou duality,

H?(Gs(koo), Qp/ Zp(1)) = TP (Gis(kino), pye)
= lim ' (Gs(k'), 7./p™)”

k'.n

=1lim Cls(k") ® Q,/ 7,

k

=0
because Clg(k’) is finite. O

THEOREM 4.9. If p0 € koo, and dim(G,) = 2 for all v € Sy, then
X, (—=1) ~ X5 (—1) ~ E!(Ys) ~ El(tory Ys) = E!(tory Xs).

If, in addition, G = Z;, r =2, then even the following holds:
Xor(—=1) ~ X5(=1) ~ (torp Xs)’,

where ° means that G operates via the involution g +— g~ ".

Remark 4.10. In case torp Xg is isomorphic in A-mod/PN to a direct sum of
cyclic modules of the form A modulo a (left) principal ideal the Proposition 2.4
implies that

El(torp Xs) = (tory Xs)° mod PN

holds under the conditions of the theorem.

Proof. Note that H*(Gs(koo), Q,/7,) =0, since Remark 4.4 applies. The first two
pseudo-isomorphisms follow again from Proposition 4.7 using [40, 4.8,4.9] and 2.16.
The third one is just [40, Prop. 3.13]. Note that there is even an isomorphism
torp Ys = torp Xs because the augmentation ideal I is torsion-free. O

The following consequence generalizes a result of McCallum [25, Thm. 8] who con-
sidered the 7 -case:
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COROLLARY 4.11. With the assumptions of the theorem the following holds.

(1) There is a pseudo-isomorphism tory Xs ~ El(XfX(—l)).
(i) If dim(G) = 3, then there is an isomorphism torp Xs = E'(X5(=1)).

Proof. The cokernel K := coker(X>(—1)— Zgs = E!(Ys)) is pseudo-null, i.e.
E!(K) = 0. If dim(G) > 3, then E*(K) = 0, too, as can be calculated using [40, Prop.
2.7]. Now, the long exact E-sequence gives the result observing E'E'(Yy)
EIDYS = torp Yg =2 tory Xs. O

Remark 4.12. The condition ‘dim(G,) = 2 for all v € Sf, is known to hold in
‘most’ extensions arising from geometry, e.g. for the set Sy = Spaqa US,, if ko =
k(A(p)) arises by adjoining the p-division points of an abelian variety A over k with
good reduction at all places dividing p and such that G(ky/k) is a pro-p-group
without p-torsion, see (the proof of) Corollary 4.38 below. The latter condition is
satisfied if, for instance, k contains, k(,.A) for p # 2 or k(2. A) for p = 2, see at the
beginning of Section 2.1.

Other important cases are the following ones:

(a) Let ko be the maximal multiple Z,-extension k of k, i.e. the composite of all
Zp-extensions of k, and assume that oy € k or

(b) let ko be a multiple Z,,-extension with G = 7;, r = 2, and assume that there is
only one prime of k lying over p.

Then, as has been observed independently by T. Nguyen-Quang-Do [32, Thm.
3.2] and McCallum [25, Proof of Thm. 7], the condition holds for $ =5, U Sw.
Indeed, since ((u,,) has only one prime dividing p, it suffices to consider the
second case. But then all inertia groups T,, v € S,, are conjugate, thus they are
all equal and hence an open subgroup of G due to the finiteness of the ideal
class group.

With respect to the composite k of all Zp-extensions of k there is the following
outstanding conjecture:

CONIJECTURE (R. Greenberg). For any number field k, the A(G(lg/k))—module Xor
is pseudo-null.

Recently, W. McCallum [25] proved this conjecture for the base field k = Q(u,)
under some mild assumptions. For a list of other cases in which this conjecture is
known to hold, see [32, Rem. 4.6]. Assume that w, € k and that the condition
‘dim(G,) = 2, for all v € S/, holds. Then, by the above theorem and Theorem 4.5,
Greenberg’s conjecture is equivalent to the statement that X is A-torsion-free, com-
pare with [32, 4.4] and [25, Cor. 13].

The observation of the previous proof leads also to:

PROPOSITION 4.13. If dim(G,) = 2 for all v € Sy, then I ~ [is.
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We are also interested in the (Pontryagin duals of the) direct limits
Cls(koo)(p) = lim Cls(k")(p),
k/

ES(koo) = (ES(koo) Q7 Q«p/zp)vﬁ
of the p-part of the ideal class group, resp. of the global (S-)units of finite extensions
k’ of k inside k.

PROPOSITION 4.14. Let T be a set of places of k such that Soc € T C S. Assume
that dim(T,) = 1 for all v € S\T, where T, C G, denotes the inertia group of v.

(1) There is an exact sequence of A-modules
0— Cls(kae)(p)’ > Clylkoc)(p) —> Eslhoe) > En(kec) — 0.

(1) Assume that S\T = {v}. Then, if dim(G,)>=1 (resp. dim(G,) = 2), then
coker(y) = ker(¢) is A-torsion (resp. pseudo-null).
(ii1) If dim(G,) = 2 for every v € S\ T, then there are canonical pseudo-isomorphisms

Cls(koo)(p)” ~ Clrkoc)(p)”,  Eslkoo) ~ Exlko).
Proof. Consider the canonical exact diagram for a finite extension k' of k in ko

7 — Cly(k')(p) = Cls(k")(p).

ET(/C/) Q7 Zp (L; ES(k/) X7, Zp - @(S\T)(k’) ’

Setting

C(k') .= coker(iy/) (resp. D(k') := ker(my)),
Coo =lim (k") (resp. Doy = lim D(K"))

and tensoring with Q,/7,, we get the following exact sequences

0= Ex(k) ®7, Q)7 — Es(k’) @7, Qp)7p — Clk'Y ®7, Qp) 7y — 0,
0— D(k') — C(k") @, Q) 7,y —> @(S\T)M Q,/7,—0,
0 — D(k") — Cl(k")( p) — Clg(k")(p) — 0.

Taking the direct limit over all finite subextensions k', we get an isomorphism
Dy, = Coo ® /7, because the transition maps for the sum of the Q,/7,’s is just
the multiplication with the ramification index. The first result follows after taking
the Pontryagin dual. Now assume that S\ 7 consists of a single prime and set
G :=G(k'/k). Since then G, =G,G(koo/k’)/G(koo/k') acts trivial on
Ds\rywy Lo = Indg" 7, and therefore also on C(k') ® Q,/7,, it follows that G, acts
trivial on (Cs ® Q,/7,)". But then any surjection A" — (Cx ® Q,/7,)" factors
through (Indg"%p)” which is torsion (resp. pseudo-null) if dim(G,) > 1 (resp.
dim(G,) = 2). The last statement is a consequence of the second one. OJ

The A-modules Clg(ks)(p)” and Es(ks) are related to each other and to X via
Kummer theory:
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PROPOSITION 4.15. Assume that p,~ C koo, then the following holds:
(1) There are exact sequences of A-modules
0—> Cls(koo)(p) —> Xs(=1) — Es(koc) — 0
and, if ke is contained in ks, where ¥ = S, U So,
0 —> Cl(koo)(p)” —> Xs(—1) —> E(koo) —> 0.

In particular, Clg(ks)(p)” and Cl(kso)(p)” do not contain any pseudo-null submo-
dule in these cases.

(i) Cls(koo)(p)” is A-torsion. If dim(G,) =1 for every v € S,, then Cl(ks)(p)’ is
A-torsion, too. In particular, there are exact sequences

0 — Cls(koo)(p)” —> torpy Xs(—1) — torpEs(ks) —> 0,
0 —> Cl(koo)(p)” —> torp Xs(—1) —> torp&(ke) —> 0.
Proof. The long exact H(G(ks/ks), —)-sequence of
0~ = Es(ks) > Es(ks) — 0
induces the short exact sequence
0—> Es(koo)/p" = H'(Glks/koo), <) —pr H'(G(ks ko), Es(ks)) — 0,
i.e. after taking the direct limit with respect to n
0 = Eskoo) ®2 Qp/ 7y — H'(Glks/koo), 2/ 7,p)(1) = Cls(koo)(p) = 0.

Taking the dual, we obtain the first statement. A canonical map Cl(koo(p)") —
Xs(—1) which is compatible with the inclusion Clg(kso)(p)¥ — Xs(—1) from the first
sequence can be defined exactly as in the 7,-case, see [29, 11.4.2 and errata]. Then
the exactness of the second sequence at the first term is obtained from the first
one and Proposition 4.15:

Cl(koo)(p)"/Cle(ko)(p)” € Ex = Xx(=1)/Clz(ks)(p)”,

i.e. Cl(kso)(p)¥ can be considered as submodule of Xs(1) and then its quotient is £.

Comparing the ranks of X and Eg (see 4.27) (with respect to an arbitrary open sub-
group H C G such that A(H) is integral), we conclude that Cls(koo)(p)” is A-
torsion while the analogous result for Cl(ky)(p)" follows from Proposition 4.15.
Now, the last sequences can be derived from the prior ones by rank considerations or
by applying the snake lemma to the canonical sequence of homotopy theory (2.2). []

QUESTION 4.16. Is it true for any p-adic Lie extension ky (of dimension at

least one) that Cl(ko)(p)” and Clg(ks)(p)” don’t have no nonzero pseudo-null
A-submodules?
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In the Z,-case there exists a remarkable duality between the inverse and direct
limit of the (S-) ideal class groups in the 7Z,-tower, viz the pseudo-isomorphisms

X, ~ EY(Cl(kao)(p)") ~ (Clkoo)(p)")’,
X5, ~ E'(Clskao)(p)") ~ (Cls(koo)(p) ).
Therefore it seems natural (though maybe very optimistic) to pose the following

QUESTION 4.17. Is it true that for any p-adic Lie extension (at least under the
assumption ‘dim(G,) = 2, for all v € S,) there exist pseudo-isomorphisms

Xor ~ ENCl(koo)(p)") = (Cl(koo)(p))° mod PN,
X5 ~ E'(Cls(koo)(p)") = (Cls(koo)(p)”)° mod PA?

Observe, that X, ~ X5 and Cls(kso)(p)” ~ Cl(koo)(p)” by Propositions 4.7 and
4.14. Hence, it would suffice to prove the existence of one of the pseudo-isomorph-
isms. By Proposition 4.15(ii) and Theorem 4.9 the question would be true if one
could show that the A-torsion of Eg(ky) is pseudo-null. But it seems difficult to
prove the latter statement directly. In fact, in the case of a multiple Z,-extension
ke |k where i, C ko and k has only one prime above p, W. McCallum [25,
Thm. 7] answers the above question positively and then derives torpEs(ks) = 0 just
from the desired pseudo-isomorphism. This is the only case to the knowledge of the
author where a positive answer to this question is known. Also J. Nekovar [28,
0.14.2] proved partial results in the direction of the question. In a forthcoming paper
[39], we will present the first non-Abelian example (for G = 7, x 7, the semidirect
product of two copies of Z,), in which such a duality holds.

The next result generalizes theorem 11.3.7 of [29].

THEOREM 4.18. Let ke | k be a p-adic pro-p Lie extension such that G is without
p-torsion and T ,[G] is an integral domain. Then G = G(ks(p)/k«) is a free pro-
p-group if and only if w(Xs)=0 and the weak Leopoldt conjecture holds:
H*(Gs(koo), Qp/7,) = 0.

Proof. Since G is pro-p it is free if and only if H*(G, Z/p) =0, i.e. if and only if
»(Xs) and H?(Gs(koo), Q,/Zp) vanish. But, by Remark 3.33 of [40] and since Xg does
not contain any pseudo-null submodule, these two conditions are equivalent to the
vanishing of u(Xs) and the validity of the weak Leopoldt conjecture. O

The next theorem, which generalizes theorem 11.3.8 in [29], shows that the validity
of the weak Leopoldt conjecture and the vanishing of the u-invariant are properties
which should be considered simultaneously if one studies the behavior of Xg under
change of the base field.

THEOREM 4.19. Let K | k be a finite Galois p-extension inside ks, k~ | k a p-adic
pro-p Lie extension such that
G = G(koo/k) is without p-torsion and T ,[[G] is an integral. (%)
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Set Koo = Kk and G’ = G(Ky/K). Then G’ satisfies the condition (%), too, and the
following holds

{ U(Xs5(koo/K)) = 0 and } - {u(Xsmoo/K)) =0 and }
H(Gs(koc) Qp/7,) = 0 H(Gs(Kw), Qp/Zp) =0 |

In particular, if ko contains the cyclotomic 7,-extension, then
H(Xs(koo/K)) = 0 < (Xs(Kos/K)) = 0.

Proof. Let H' := H N G(ks(p)/K). Then, by Theorem 4.18, the statements to be
compared are equivalent to the freeness of H, resp. H', thus equivalent to
cd,(H) =1, resp. cd,(H') = 1. But, since H' is open in H and cd,(H) < oo, we have
cd,(H') = cd,(H) by [29] 3.3.5(ii). O

The same arguments prove the following theorem:

THEOREM 4.20. Let Ky | koo |k be p-adic pro-p Lie extensions (inside kg) such
that for both G(K/K) and G(ks/k) the condition (%) of the previous theorem holds.
Then

{ W(Xs(koo/K) = 0 and } - {u(Xs<Koo/K>) =0 and }
HZ(GS(koo)» Qp/zp) =0 HZ(GS(Koo)v Qp/zp) =0f

The next theorem, which generalizes Theorem 11.3.5 in [29], describes the ‘difference’
if we vary the finite set of places S defining the module Xs. By T(K/k) € G(K/k) we
shall denote the inertia subgroup for a Galois extension K | k of local fields and, for
an arbitrary set of places S of k and a p-adic analytic extension ko, | k, we write S<(k)
for the subset of finite places which decompose completely in ko | £.

THEOREM 4.21. Let S T 2 S, U S be finite sets of places of k and let ko | k be a
p-adic pro-p Lie extension inside kp with Galois group G. Assume that G does not
contain any p-torsion element and that the weak Leopoldt conjecture holds for ko | k.
Then there exists a canonical exact sequence of A-modules

0 —_—> @(S\T)(k) Il’ldg" T(k"(p)/k")GAm_v —> XS —_—> XT —_— 0
and the direct sum on the left is isomorphic to

mdg7Z,he @ Ap".

(S\I)) wd
P2 |fvs mpShy (S\T)“(k)

where p" = #u(k,)(p) and, as before, f, = f( koo.v/ky) denotes the degree of the exten-
sion of the corresponding residue class fields. In particular, there is an exact sequence of
A-torsion modules

0— &\ Ind Tlky(p)/ky)g,_ —> tora Xs —> torp X7 —> 0.
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Proof. Since H*(G(koo)(p), Q,/7Z,) =0, we have an exact sequence
0 —> G(ks(p)/kr(p)e k., — Xs — X7 —> 0.

Setting G = G7(k)(p) and using [29, 10.5.4, 10.6.1] as well as Lemma 2.9, we obtain

( @D Indg TUer(p),(p)/k( p)v))
Gr(keo)

(S\T)(k)

P Indg Tk p)/kn)g,_ -
(S

Gks(p)/kr(P) e

R

Observe that, for v € S\ 7,

~ Zp(l), if Ky C ky,
T(ky(p)/ky) = { 0, otherwise.

Since G is without p-torsion and v € S\ 7T is unramified in k., | k, there are only two
possibilities for G,:

0, if v is completely decomposed in ky | &,
G, = 7 if 00
‘L’pa lfp |(f;'a
respectively,
G ) o Zp(1)yxZ,, if vis completely decomposed in k | &,
D ENZ, 00, iR

It follows that

Gks(p)/kr(Pgyay = @ WmdgZ,(he @ Ap".

(S\T)(k) »
P2 1y, 1y Shy (S\T)“(k)

In particular, this module is A-torsion and therefore the second statement follows
from the first. O

Recalling that u is additive on short exact sequences of A-torsion modules we
obtain the following

COROLLARY 4.22. Under the assumptions of the theorem,
p(Xs) = u(X7)+ Y i,

(S\T)“(k)
where p" = #u(k,)(p).

4.1.2. Global Units

We still consider p-adic Lie extensions k | k with Galois group G = G(koo/k).
Recall that we denote the norm compatible S-units of ko by Eg:=lim._
k/
(Of, s ® Zp). Noting that Fg = lim.__ HI(GS(k’),TZp(l)) by Kummer theory and
’ /(/
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the finiteness of the S-ideal class group, we are going to derive some relations
between g and HI(GS(kOO),,upm)v by interpreting Jannsen’s spectral sequence
([22], see also [40, Thm. 4.5]) or for Iwasawa adjoints with respect to
A =0,/ 7p(1) = pye(ks). We assume that G does not have any p-torsion, i.e. G is
a Poincaré group at p, and we denote the character which gives the operation of
G on the dualizing module by 37!

PROPOSITION 4.23. (i) If e € koo, then
(a) if cdy(G) = 1:
s 22 Z,(1)(z) ® E"(Xs(—1))

lim H*(Gs(k"), Zy(1)) = E' (Xs(=1),

k!

E(Xs(=1)=0 for i>2.
(b) if cd,(G) = 2: there is an exact sequence

0 — g — E°'(Xs(—1)) — Z,(D(x)

— lim HX(Gs(k"), 7,,(1)) — E'(X5(~1)) — 0,
=

and

E'(Xs(—1)) =0 for i > 2.
(c) if cdy(G) = 3: there is an exact sequence

0 — lim H*(Gs(k'), Z,(1)) — E'(Xs(=1)) — Z,(1)(3) — 0,

k
and

Bis 2 E°(Xs(~1),
E/(Xs(—1)) = 0 for i > 2.
(d) if cd,(G) > 4:
Es = E"(Xs(—1)),
lim H*(Gs(k'), Zy(1)) = E'(Xs(—1)),

i _ 12, if i =cdp(G) =2, ,
EXs(=) = { 0 ’ otherwisg, Jor i=2.

Similar results hold for arbitrary A with k(A) Cks if Es is replaced by
lim H'(Gs(k"), T,A4), Xs(—1) by Xs[A], ...
k/

(1) If u(kso)(p) is finite, then

(a) if ¢d,(G) = 1: then there is an exact sequence
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0—> [ —> EX(H'(Gs(koo), 1)) —> pkoo)(p)’ () —> lim HA(Gs(k"), Z,(1).

k'

(ay) If in addition HX(Gs(ks), ) = 0, then the cokernel of the sequence is
E!'(H!(Gs(koo). p=)") and
E(H'(Gs(koo), tt,)") = 0 for i > 2.

(a2) If in addition HX(Gs(kso), Q,/7Zp) =0, then there is a short exact
sequence
0—> Fg— EX(H (Gs(koo), ty)") —> ulkioo)(p)" () —> 0.

(b) if cd)(G) =2, then Es = E'(H'(Gs(koo), ty=)").
If in addition H*(Gs(kso), W) = 0, then there is an exact sequence

0 —> lim H*(Gs(k"). Zp(1)) — E'(H'(Gs(koo). )"

,
—> uwkoo)(p)' (1) — 0
and
E'(H"(Gs(koo), ty)") =0 for i>2.
(©) if cdy(G) = 3, then s = E'(H'(Gs(koo), ty=)").
If in addition H*(Gs(keo), ) = 0, then
s 22 E"(H'(Gs(koo), sy)”),
lim A 2(Gs(k"), Zp(1)) = E'(H' (Gs(koo), =),

B Gstln) ) = { 40P T2l

(iii) If w(koo)(p) = 0, then there is in addition to the results for finite u(koo)(p) the
following exact sequence.

0 — E'(H'(Gslkoo), pye)") —> lim HA(Gs(k"), Zy(1)) —

k/
— E'(H*(Gs(koo), ty)") — EX(H' (Gs(koo), py)") —> 0,
and
E[(Hl(GS(kOO)’ :upo")v) = Ei_z(Hz(GS(koo)i :upo")v))'

For the proof apply Jannsen’s theorem (see [40, Thm. 4.5, Cor. 4.6]) and note the
following facts: H'(Gs(kso), A)Y =2 X[A] if k(A) C ke, H*(Gs(koo), A) =0 if
Iy € koo because the weak Leopoldt conjecture is true for the cyclotomic extension
of any number field. Furthermore, we applied several times [20, 2.6]. Also observe,
that the reflexive module E°(Xs(—1)) is projective in the case cd,(G) = 1 regarding
the defining sequence of the transpose functor D and using that pd(A) = cd,(G)+
1 = 2. The last statement of (ii)(a) is proved in [29], 11.3.9.
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These results bear a lot of information about the structure of H'(Gg(kso), ,upoo)v
and Eg, e.g. one can derive the projective dimension of the latter module (using
Corollary [40, Cor. 6.3]) and some information about the dimensions of the modules
occurring above, in particular whether a module is torsion(free). Furthermore, we see
that [ is reflexive for almost all cases with c¢d,(G) = 2 by Proposition 3.11 of [40].

In order to relate Eg to the finitely generated A-module

Es(koo) = (Eskoo) ®2 Qp/Zy)"

we need some technical lemmas.
LEMMA 4.24. (i) Let G = G(kyo/k) =2 Z,‘f d=1, and G, .= p"G.
(@) If Wy € keo, then with I' = G(k(p,) and T'y = p"U the following holds

H(Go ) = ) ()7,
where k, = k(,upx)r
(b) If (koo )(p) is finite, then for any n such that u(kso)(p)°" = u(ko)(p) it holds

H(Gy. ) = ko) ().

(i1) Let G be a finitely generated pro-p Lie group without p-torsion which fits into a
exact sequence

l -U—G-5T—1,

with I = 7, and let G, be an open subgroup. Assume that I, := n(G,) acts via a split-
ting trivially on U, = G, N\ U. Then HX(G,, u(ks)(p)) is finite and the following holds

(@) If Wy S koo and I = G(k(w,), then
HY(Gy, plkoo)(p)) = u(kn)(p) @ @ tyi (),

where U = 75 & @, 7, /p" with U, = UN G,.

(b) If u(kso)(p) is finite, then for any n such that (ks )(p)°" = u(kso)(p) there is
an exact sequence

0 —> pu(koo)(p) — Hl(Gna (koo)(p)) — plkoo)(p)' @ @ Hyri (Kog) —> 0.
(©) If cd,(G) =2, then ’

0, if Wy C koo,

H*(G,, u(koo)(p)) = { w(kso)(p),  otherwise.

Proof. Consider the exact sequence

l -U—G-5T—1,
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and let U,=G,NU and I, = n(G,). The Hochschild—Serre spectral sequence
gives

H'(T,, H{(U,, ulkoo)(p))) <> HF (G, plkioe)(p) —— HF (U, plleoc)(p)

for i = 0.
Let us first assume that g € koot Since U, acts trivially on g, we get

H (U, Qp/Z,p(1) = HI(Uy, Q) Z)(1) = (Qp/ 7)),

in the Abelian case by the Kﬁnnetfil]formula. As Q,/7,(1)r, =0 it follows that
H'(G,, ) = H'(U,, ,upoc)r” = ,u(kn)((7 ). In the non-Abelian case we calculate

H' (G, ) = H'(Uy, Qp/ Zp) (D)
= (U ()"
= plka)(p)’ ® €D 1y (k).

Hence HY(I",,, H'(U,,, u(ks)(p))) is finite and the finiteness of H*(G,, o) follows
because H*(Uy, )" 22 HX(Uy, Q,/Z,)(D' s also finite (H*(U,, Q,/7,) is a
cofinitely generated Abelian group).

Now we consider the case of finite u(kso)(p): Here H'(T,,, u(koo)(p)) = (koo )(p)
and the Abelian case follows again using the Kiinneth formula. In the non-abelian
case the finiteness of H*(G,, 1) is trivial while H'(U,, (ks )(p))"" can be calculated
similarly as above. For the last assertion just note that U, = 7Z,. OJ

LEMMA 4.25. (i) In the situation Lemma 4.24 (i1) it holds

(a) hm<m—" p”’Hl(Gna ES(koo)/.“(koo)) = hmm p’"Hl(Gm ES(koo)) =0,
(b) lim— H'(G,, Es(kw)) € X5, '

(©) E'(Eskoc)) = lim p(Es(koc) ® Qp/7) "

m,,n

= l(ig"l(ES(koo)/,u(koo))Gﬂ /p",

m,n

(d) To(lim. HY(G), Es(koo)/ (ko)) = To(B'(Es(koo) @2, Qp/ 7)),
(e) that the following sequence is exact:

0 —> lim H'(Gy, Es(koo)/(koo) —> E'(Es(koo)) —>

n

lim ,n H*(G,, Es(koo)/1(koo)) —> 0.

m,n

(i) If, in addition, c¢d,(G) < 2, then with k =1 if (ks )(p) is finite, O otherwise,
there are the following exact sequences
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(@) if ¢d,(G) = 2
0— limH'(G,. Es(ks)) — imH'(G,. Eslhoc)/n(keo))/p" —> (ko))"

n mn

— D —0,

0 — lim ,wH*(G,, Es(koo)) —> lim ,wH*(G,, Es(koo)/t(koo)) —> D —>

m,n m,n

lin B2 (G, Es(koo))/p" — Hm B (G, Es(koo)/ koc))/p" — 0.

m,n m,n

where D is some finite module.

(b) if cdy(G) = I:
0—> E2E!(fi5) — plkoo)(p) — limH!(Gy. Es(koc) —

n

lim H'(Gy, Es(koo)/n(koo))/p" — 0

m.n

and

lim ,n H*(G,, Es(koo)) = 1im ynH (G, Es(kioo)/i(koo))-

mn mn

Proof. If we split the long exact cohomology sequence induced by
0 —> w(koo) — Es(koo) — Es(kso)/ (ko) — 0,

we get the following short exact sequences

0 — F, — H'(G,, (ko)) — A, — 0,
0 —> A, — H'(G,, Es(k)) — B, — 0,
0 —> B, — H'(G,, Es(koo)/1(koo)) —> C, —> 0
and, furthermore, a map C, < H?(G,, u(k«)(p)). Evaluating the associated long

exact sequences of p”-torsion (snake lemma) and noting the finiteness of A4, and
C,, according to the previous lemma, we get

l(ir_n pBn & l(ir_n p’”Hl (G, Es(koo)/1(koo)),

m m

0 —> lim ,wH'(Gy, Es(koo)) —> lim B, —> A,

m m

and therefore

0 —> lim ,nH'(G,, Es(koo)) —> lim pnH'(G,, Es(koo)/w(koo)) —> lim 4,

mn m.n n

is exact. But lim._ A4, is a quotient of

if d=1 and p(k)(p) is finite,

. _ [ ulkeo)(p)
1<III1_T1 H(Gy. ulko)(p)) = { 0 otherwise.
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(See the previous lemma and note that the transition maps are partially norm maps
besides the nontrivial case where they are the natural projections, i.e. identities for n
sufficiently big.) Since the middle term is Z,-torsion free, we get the desired iso-
morphism, because, by the Hochschild—Serre spectral sequence, it can be seen in
any case that the first group is contained in lim ,» Cls(k,,) = 0. This proves (i)(a) while
(b) is again the cited spectral sequence. m

The first equality of (i)(c) is just Theorem 4.7(iii) of [40] because Es(ky) has no
Z,p-torsion while the second one follows by the exact sequence

(ES(koo)/.u(koo))G" /P = " (Es(keo) ®7, @p/zp)cn _»p’"H1 (G, Es(koo)/ 1(koo))

and (a). Similar arguments apply for (i)(e), i.e.

El(gS(koo)) = l(iLn Hl(Gm p”’(ES(koo) 7 Qp/zp))

The assertion (d) is a direct consequence of (e), because lim pmH2(G,,, Es(koo)/ (ko))
is Z,-torsion-free. "

Now let us assume that cd,(G) < 2. With the notation as above and recalling that
Ay, B, and C, are finite, we get exact sequences

0 —> A, — H'(G,, Es(ks)) — B, —> 0,

0— B, — lim Hl(Gnv ES(koo)/ﬂ(koo))/pm — C,—0
and !
0 — C, — H*(G,, ko)) — D, —> 0.

Passing to the limit gives the first exact sequence in (ii)(a) (Note that the transition
maps of the system {C,} are the canonical projections, i.e. identities for n sufficiently
large). The second one is proved similarly using

D, — Hz(Gn’ Eg(koo)) — Hz(Gnv Es(koo)/mkoo)) —> H3(Gna wkoo)(p)) =0

and H(G,, (ks )(p)) — D,. The proof of (ii)(b) is completely analogous, just note
that lim F, = E’E!(Es) because the latter module is the cokernel of

s — E'E(fs) = E°(Es(koo). 0

PROPOSITION 4.26. There is an exact sequence
0— Z,(1)° — B —> E°(Es(kar)) — C

with
Wkoo)(P), if d=1 and p(k)(p) finite,
C— Zp(l), ifd=2 andupoo C koo,
1&g Zp-module, d =3 and G non-Abelian,
0, otherwise
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and

5= I, ifd=1, e C koo,
0, otherwise.

If in addition the weak Leopoldt conjecture holds, the right map is onto in the case

d =1 and u(ks)(p) finite.
Proof. Taking G,-invariants of the exact sequence

0 — u(koo)(p) — Es(koo) @7 Zp — (Es(koo)/ (ko)) @7, Zp —0

and passing to the inverse limit, we get

0 —> lim u(k,)(p) — fos —> lim(Es(keo)/ plko))? /p" —> lim HY(G,, (koo )(p))
The result follows except the fact that E® maps onto the finite group of roots of unity
in the case when d = 1. But this is proved in [29], 11.3.9, under the assumption that
the weak Leopoldt conjecture holds. O

COROLLARY 4.27. Let koo | k be a p-adic Lie extension such that G does not have
any p-torsion. Then

E*(Es) 2 E'E%(Es(ka)) 2 E°(H! (Gislkoo), f,)").

In particular, if G is in addition pro-p and H*(Gs(kos), W) =0 (€8 if po € koo), then
rkalEs = rka&s = ra(k).

Now the question arises whether the module E°(Lg) is not only reflexive but also
projective. While in the case cd,(G) =1 this is always true, in higher dimensions
one needs additional conditions. We will only get a satisfying answer in the two-
dimensional case:

PROPOSITION 4.28. Let ko | k be a p-adic Lie extension such that cd,(G) = 2 and
assume that the weak Leopoldt conjecture holds for k... Then the following is
equivalent:

(i) E°IEg) is projective,
(i) ToE'(Es(ko)) =0.
Remark 4.29. These equivalent statements hold for example, if either p, € koo or

Wkoo)(p) =0, and To(X3) =0, i.e. if X5 does not have any nonzero finite sub-
module, because then ToE!(Eg(ks)) = 0 by Lemma 4.25.

Proof. Since we already know that pd(E°(E.s)) < 1, because E’(Ey) is the second

syzygy of DI, the projectivity is equivalent to the vanishing of E'E’(IEs). Now the
equivalence stated above follows from the next lemma. O
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LEMMA 4.30. In the situation of the proposition it holds
ToE'(Es(ks)) = E'E%(Es) = E’E!(Ey)
Proof. Set M := Es(k) and consider the exact sequence
0— M/T(M)— E’(Eg) — E>’D(M ) — 0.
The long exact sequence for E’ gives
0=E'E’D(M)— E'E'(M) — E'(M/T(M)) — E’E*D(M).
On the other hand there is the exact sequence
0 = EXT;(M))— E'(M/T|(M))— E} (M) — E'E'D(M).

Since E'E'D(M) is pure of codimension i, the isomorphism follows. But
E'E(Ls) = E’E'(Eg) by the spectral sequence due to Bjoérk, see Proposition
2.5. ]

The proposition above should be compared with the following result which has
already been observed by Kay Wingberg (unpublished):

PROPOSITION 4.31. If ¢d,(G) =1, then for sufficiently large n there is a canonical
exact sequence

0 —> Es(koo)" —> Eslkos) —> EX(Eg) — C—> 0
where C = E’D(Es(koo)) is connected with E*D(Iis) by the exact sequence

0 —> E*D(lis) —> wlkoo)(p)* —> ToXS — C¥ — 0.

Proof. The first sequence is just the canonical sequence 2.2 for the module (ko)
while the second one already occurred in Lemma 4.25(ii)(b) as we show now: The
fact that To(X3) = limH'(G,, Es(k«)) is well known (see for example [29, XI.
Section 3.]). Recall "that E’E!(Es(kw)) = To(E'(Es(ks)))” and apply Lemma
4.25@)(d) to recover C. Using 4.25G)(e) and (ii)(b), we see that
E'E!(Es(ks)) = El(limfn—” I,mHZ(G,,, Es(ks))), which we will determine by means of
[40, Thm. 4.7(iii)]: '

M = lim pH2(G,. Es(koo))” 2 lim Es(koe)" /p" = lim E(koo) " /p"

m,n m,n m

for n sufficiently large, because Es(koo) is a finitely generated A-module. Hence

EN(M) 2 lim(,n M)g, = Eslko) .

mn

for n large enough. O
PROPOSITION 4.32. Let koo/k be a p-adic Lie extension such that G =T x A,

where I is a pro-p-Lie group of cd,(I') =2, A is a finite group of order prime to p.
Assume that the weak Leopoldt conjecture holds for ko. Then the following is true:
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(1) There is an exact sequence
0— E'E([i5) — AT 1 @ @ Ind% (7,) —
SeUS!,
A — ToE' (Es(kso)) — 0.

(ii) If E°E’(Ey) is projective, then

EOEO(ES) gArz-ﬁ-rl—rl/ D @ Indg‘(zp)
SedUsy,
Proof. We calculate the Euler characteristic with respect to an arbitrary open
normal subgroup U <T using Lemma 2.7, Proposition 2.13, [20] 5.4b),

hy(BYE°(I5s)) = hy(Es)
= hy(As) — hu(Xs) + hy(X3)
= hy(As) — hy(Ys) + hy(le)
= hu(As) — hu(A) + hy(NE(p)) + hu(A) — hu(Z,)

= hy(As) = hy(A™") + hy (EB Indg'(Z,)
N

o0

= > Ind§ hung,(Ay) — hu(A**1) + hy | @D Indg (Z,)
S S/,

Sed

= > Ind@ hu(Zy) + ho (A" ) + hy (ED Indgv(zp) |
St
Therefore, if E’E’(E) is projective, it follows that

EOEO(ES) ) Arz—t—rl—rl/ D @ Indg‘(zp)

Sedus;,

This proves (ii) while (i) follows easily by applying Proposition 2.5. O

4.2. SELMER GROUPS OF ABELIAN VARIETIES

In this section let & be a number field, A a g-dimensional Abelian variety defined over
k and p a fixed rational odd prime number. For a nonempty, finite set S of places of k
containing the places Spaa of bad reduction of A, the places S, lying over p and the
places S, at infinity we write H(Gs(k), A), respectively H'(k,, A), for the cohomol-
ogy groups H/(Gs(k), A(ks)), respectively H'(G,, A(k,)), where Gs(k) denotes the
Galois group of the maximal outside S unramified extension of k, k, the algebraic
closure of the completion of k at v and G, the corresponding decomposition group.
The (p™)-)Selmer group Sel(A, k, p™) and the Tate—Shafarevich group III(A, k, p™)
fit by definition into the following commutative exact diagram
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0

0 —— A(k)/p" ——>  Sel(A,k,p") —— 1A, k,p™) —> 0

0 —— Ak)/p" —— H'(Gs(k),mA) ——  »H'(Gs(k), A) —— 0

Lé(.l%Hl(kWA)(p) E— @S(k)Hl(kv,A)(p)_

If ko 1s an infinite Galois extension of k with Galois group G = G(k/k), we get the
following commutative exact diagram by passing to the direct limit with respect to m

and finite subextensions k’ of k. /k: 0

0——Ako)®Qy/Zp ——>  Sel(Akoep®) ——  MI(Akep®) —> 0

0——Ako)®Qy/ 7 —— H'(Gslkc) APp)) —— H'(Gs(ko) A)p) ——0

B Coind% H' (koo v A)(p) = @CoindZ H' (koo A) ).

S(k) S(k)
Note that
lim €P H' (k] A)(p) = €D Coindg H' (koo.r. A)(p)-
KOSk S(k)
Alternatively, we can pass to the inverse limits and we will get the following commu-
tative exact diagram 0 0
0 Ar, Sel(koo, A)  ——  lmII(AK,p")  —— 0
k'm
0 Ay, limH'(Gs(k"), T,A) —— limT,H'(Gs(k'),A) — 0
K K
1}31@5(;4) T,H'(kl,A) —— lim Py T,H'(k., A).
K K
where
A :=lim A(k")/p" and  Sel(koo, A) := lim Sel(k’, A, p")
k'.m k'.m
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(The limits are taken with respect to corestriction maps and multiplication by p).
Henceforth we will drop the p from the notation of the Selmer group:

Sel(A, ko) = Sel(A, koo, p).

Furthermore, we shall use the following notation for the local-global modules

Us.a == €D Indg'H' (koo . A)(p)”,

Sy(k)

AF&S,.A = @ Indgle(koo,vv A(p))v’
Sy(k)

Ts.a = @D Indg (Alkoo) ® Qp/ 7).
Sp(k)

As a consequence of the long exact sequence of the Poitou-Tate duality theorem we
have the following (compact) analogue of Proposition 4.7, where we shall write A? for
the dual Abelian variety of A and I1I§(k~, A( p)) for the kernel of the localization map
H'(Gs(koo). A(p)) = €D CoindH' (koo . A(p)).
S(k)
PROPOSITION 4.33. Let ks | k be a p-adic Lie extension with Galois group G. Then,
there are the following exact commutative diagrams of A = A(G)-modules

(i)

Sel(A, koo)¥ = koo, A(p))"

H!(Gs(ko). A(p)” ——  H'(Gs(kso). A(p))’
Us.a N As.4 — T
Sel(koo, A < LmH'(Gs(K), T(AY) —— Tsu
HX(Gs(k). A(p)” == H(Gs(koo). A(p))’
0 0
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(i)
0 —> Sel(koo, AY) —> limH'(Gs(K), TpAY) — T 4 —>
Sel(A, koo)” —> Ik (koo, A(p))Y —> 0,
(iif)
0 — Ik (koo A(P))’ — Zs_yi,y — ED IAG (Alkoo)(p))’ — Alkse)(p)* — 0.

Sy(k)
For the proof, just note that by virtue of local Tate duality ([27, Cor.3.4]), the Weil
pairing and 4.1,

—

(i) H' (ko A(p)” = (A%, = lim A%, /p",

(i) Zg 4o, = limH(Gs(K), T,(A%),
(i) (A(kno) ® 0/ 7,)" 2 lim T,H'(K,, A% and
(iv) H'(koov, A(p))” = limH' (K}, T,(A%)

k
hold.

By a well-known theorem of Mattuck, we have an isomorphism A(k}) = Z‘]g[k:':(’)”] X
(a finite group), for any finite extension k|, of ;. Recall that g denotes the dimension
of the Abelian variety A. Clearly A(k)) &), Q,/7Z, =0 for all /#p and v |/, i.e.
H'(k,, A)(p) = H' (K|, A(p)), respectively H'(k,, ,, A)(p) = H'(kl . A(p)), in this
case. On the other hand, Coates and Greenberg proved that for primes v | p with
good reduction

H' (koo s A)(p) 22 H (koo v, A(p))

holds, if k4, is a deeply ramified, where A denotes the reduction of A (see [5, Prop.
4.8]). We recall that an algebraic extension k of Q, is called deeply ramified if
H!(k, m) vanishes, where 11t is the maximal ideal of the ring of integers of an alge-
braic closure @p of Q,; see [5, p. 143] for equivalent conditions and for the following
statement (loc. cit. Thm. 2.13): A field k., which is a p-adic Lie extension of a finite
extension k of Q, is deeply ramified if the inertial subgroup of G(ku/k) is infinite.

For arbitrary reduction at v | p, the same result as above holds, if one replaces /Ipoc
by the quotient A( p)/F 4(m)(p), where F 4 denotes the formal group associated with
the Neron model of A over a possibly finite extension of k,, such that the Neron
model has semi-stable reduction. Taking these facts into account, we get the follow-
ing description for Ug 4, where T(koo/ky) denotes the inertia subgroup of G,.

PROPOSITION 4.34 (cf. [35, Lemma 5.4]). Assume that dim(T(ko ,/ky)) = 1 for all
v e S,. Then there is an isomorphism of A-modules

Us.a 2 @ Ind§ H' (koo A(p)’ & @D IndH' (koo A(p))”.
S])(k) S/\Sp(k)
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In particular, if dim(G,) = 2 for all v € Sy, then

Usa 2 @IndG H' (koo.v, A(p))”

Sy (k)

and Ug 4 is A-torsion-free.

Proof. The first assertion has been explained above while the second statement
follows from the local calculations in Propositions 3.4 and 3.5 with respect to the
p-adic representations 4 = /I( p), respectively 4 = A(p), and the comment before
Proposition 3.5. ]

Before going on we would like to recall some well-known facts about Abelian
varieties:

Remark 4.35. (i) rky, (A( p)") = 2g, where g denotes the dimension of A.

(i) There exists always an isogeny from A to its dual A9, by which the Weil-
pairing induces a nondegenerate skew-symmetric pairing on the Tate-module 7,.A
of A, (combine [26, Cor. 7.2, Lem. 16.2(¢), Prop. 16.6]). If A = E is an elliptic curve
this isogeny can be chosen as a canonical isomorphism between E and E?. Again for
an arbitrary Abelian variety it follows that k(u,~) € k(A(p)) = k(AY(p)) (see [37,
Section 0 Lem. 7]).

THEOREM 4.36. Assume that H(Gs(kso), (AY)(p)) = 0. If dim(G,) =2 for all
ve Sy, then

(koo A(p)” ~ E'(Yg i) ~ BN (t0ra Y 4a(,)) = El(tora X a(,)-
If, in addition, G = 7; r =2, then the following holds:
IH}s‘(kom A(p))” ~ (torp Xs,Ad(p))O,

where ° means that the G acts via the involution g +— g~

Remark 4.37. In case torp X 5.4 p) is isomorphic in A—mod /PN to a direct sum of
cyclic modules of the form A modulo a (left) principal ideal Proposition 2.4 implies that

I (koo, A(p))” = (tory X, s.4l(p) mod PN

holds under the conditions of the theorem.

Proof. The first condition implies Z S0 p) = ~ E! (Yg A ,) while the other condi-
tion grants that €9 S0 IndG (Akoo)(P)) 1s pseudo-null because A(koo,)(p)’ is a
finitely generated (free) Z,-module. Now everything follows as in 4.9 using here
Proposition 4.33. ]
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COROLLARY 4.38. Let A be an Abelian variety over k with good supersingular
reduction, i.e. Ay (p) =0, at all places v dividing p. Set koo = k(A(p)) and assume that
G(kso/k) is a pro-p-group without any p-torsion. Then, for Xpad = Staq U Sy U Soo the
following holds:

Xes[AY(p)] = Y, (Koo, A%(p))” ~ E! (tora(Sel(A. kao)")).
In particular, if A has CM, then there is even a pseudo-isomorphism
Xo[AU(p)] ~ (tora(Sel(A, koo)))".

Therewith, in the case of an elliptic curve with CM, we reobtain a theorem of P. Billot
[3, 3.23]. Over a Z,-extension an analogous statement was proved by K. Wingberg
[41, cor. 2.5]. Of course, remark 4.37 applies literally to toraSel(A, k)", i.e. under
the conditions mentioned there it holds

X[ A% p)] = (toraSel(A, kso)¥)° mod PA.

Proof. First note that by the Néron—-Ogg—Shafarevich criterion the sets of bad
reduction of A and its dual A? coincide. Therefore, it suffices to prove that
dim(G,) = 2 for all v € Spaa U S, because then the theorem applies to A? and
Proposition 4.34 shows that Ug 4 = 0, i.e. Xg 4y = Sel(A, kxo)”.

So, let v be either in S, or in Spad- Since k,(A(p)) contains k, (i, ), we only have to
show that G(k,(A(p))/ky(i,~)) is not trivial because then it automatically has to be
infinite as G, € G has no finite subgroup by assumption.

If v|p, by a theorem of Imai* [I§] A(ky(,))(p) is finite and thus
K(A(P)) # ki),

If ve Sy, then the Néron—Ogg—Shafarevich criterion implies that
G(ky(A(p))/ k() = T(k(A(p))/ky) is nontrivial. O

By Remarks 4.4 and 4.35 the conditions of Theorem 4.2 are fulfilled for the
p-torsion points A(p) and its trivializing extension of k, i.e. the extension which
is obtained by adjoining the p-torsion points of A :

THEOREM 4.39. Let koo = k(A(p)) and assume that G does not have any p-torsion.
Then HY(Gs(koo), A(p))Y has no nonzero pseudo-null submodule.

Recall that G does not have any p-torsion if p = 2 dim(A) + 2. Otherwise one only
has to replace k by a finite extension inside k.

We should mention that the rank of the global module H'(Gs(ks), A(p))” is
glk : Q], which was determined by Y. Ochi who also calculated the ranks and
torsion-submodules of the local, respectively local-global modules (i.e. those
global modules which are induced from local ones) that occur in Proposition 4.33

*T owe to John Coates the idea to use Imai’s theorem here.
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(cf. [33, 5.7, 5.11, 5.12]). See also the results in S. Howson’s PhD thesis [17, 5.30, 6.1,
6.5-6.9, 6.13-6.14, 7.3].

Furthermore, in the case of elliptic curves S. Howson proved the following
result.

PROPOSITION 4.40 (Howson [17, 6.14-15]). Let E be an elliptic curve over k
without complex multiplication and with good ordinary reduction at all places over p.
Assume that G = G(k(E(p)/k) is pro-p without any p-torsion. Then

Tse 2 Agp = €D Indg lim H' (k). T,(E))
Sf'(k) 14

and these modules are A(G)-torsion-free. Furthermore, there is an isomorphism

Us.r = E%(Ts.p).
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Note added in proof. With the publication of [8], it has come into vogue to use
again Lazard’s original terminology in the context of p-adic Lie groups instead of
that in [10], just because it is slightly more general. For example, the fact that the
completed group algebra IF,[G] is an integral ring holds for the whole class of p-
valuable groups, see [24, Thm. I11.3.1.7] for the definition. This follows immediately
from [24, 111.2.3.3/4]. In particular, this is useful for the application of Theorems 2.3,
4.18, 4.19 and 4.20.
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