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LINEAR COMBINATIONS OF UNIVALENT FUNCTIONS 
WITH COMPLEX COEFFICIENTS 

ROBERT K. STUMP 

Let U be the class of all normalized analytic functions 

f(z) = z + a#* + . . . + anz
n + . . . , 

where z £ E = {z - \z\ < 1} a n d / is univalent in E. Let K denote the sub-class 
of U consisting of those members that map E onto a convex domain. Mac-
Gregor [2] showed that if / i £ K and / 2 G K and if 

(1) F(z) = AM*) + (1 - \)Mz)9 

then F g K when X is real and 0 < X < 1, and the radius of univalency and 
starlikeness for F is 1/V2. 

In this paper, we examine the expression (1) when/ i £ K, f2 € K and X is 
a complex constant and find the radius of starlikeness for such a linear com­
bination of complex functions with complex coefficients. Interest in such a 
problem is sparked by examples of such functions as 

AW = r ^ : 
and 

/.M-^-iogj-Erf. 
where |T?| = |£| = 1 and rj ̂  £. If 

(2) F(z) = ^-±-| ./!(*) + ^ ./,(*), 

then by direct calculation i? is close-to-convex (and thus univalent) in E 
relative t o / i . 

The method used by MacGregor for the case when the coefficients are real 
did not lend itself to the more general problem when the coefficients are 
complex. An approach used by Labelle and Rahman [1] to find the radius of 
convexity for the arithmetic mean of two convex functions is used here to 
prove: 

THEOREM 1. Let jx Ç K andf2 € K and 

(3) F(z) = X/xCs) + (1 - X)/2(s), 
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UNIVALENT FUNCTIONS 713 

where z 6 E and 0 g a = arg[X/(l - X)] < IT. Then Re{zF'(z)/F(z)\ > 0 if 
\z\ < (cos a /4 — sin a / 4 ) / \ / 2 , ûwd /&£ bound is best possible. 

In addition, we use the same techniques to prove 

THEOREM 2. If fi, fi a^d F are as m Theorem 1, £/zew 

Re{l + sF , ,(s) /^ ,(s)} > 0 

if |s| < i?c, w^ere i£c is the least positive value of r that satisfies the equation: 

(4) 1 - 2 sec (a/2 + 2 sin"1?-) + r2 = 0. 

We note that if X is real (a = 0), then the result of Theorem 1 agrees with 
the bound found by MacGregor, and Theorem 2, for X = 1/2, coincides with 
the findings of Labelle and Rahman. The bound in Theorem 2 is not best 
possible as noted by Labelle and Rahman when X = 1/2. 

The proofs of these theorems rest upon several lemmas which we state and 
prove at the outset. 

LEMMA 1. If \w — a\ < d where a and d are real and a > d ^ 0, and w0 is a 
given complex number, then 

(5) Rewwo ^ \w0\ [a cos(arg^o) — d]. 

This lemma was used by Labelle and Rahman and its verification is done 
as a direct calculation. 

LEMMA 2. If \u — a\ ^ d and \v — a\ ^ d where a and d are real and 
a > d ^ 0, and 

W = Ul+Aeia+Vl+A-1e-t'" 

where A is real and A > 0 and a 6 [0, TT), then 

(7) Re w ^ a — d sec a/2. 

Proof. Since 

1 
|1 +Aeia\ 

1  
l - i a \ \l+A~Lë 

and 

cos 

then, by Lemma 1, 

:osLarg(r+^v 

Larg (1 + i -v f i ) 

(1 + 2A COSa + A2)1/2' 

A 

(1 + 2Acosa + A2)1/2' 

1 + ^ 4 COS a 

COS a + A 

(1 + 2,4 cos a + A') 2 \ l /2 ; 

https://doi.org/10.4153/CJM-1971-080-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-080-6


714 ROBERT K. STUMP 

Re w > 
1 

= (1 + 2Acosa + A') 

+ 

2 \ l /2 [•• 
1 + A cos ( 

(1 + 2A cos a + A2) 2 \ l /2 d 

or 

(1 + 24 cos a + -4') 

Rew ^ a — d 

^ a - d. 

2 \ l / 2 
cos a + A  

' (l + 2 ^ c o s a + ^42)17" 

l+A 

'}• 

(l + 2Acosa + A2)1/2 

2 
(2 + 2cosa ) 1 / 2 ' 

i.e., R e w ^ f l - d sec a/2. 

LEMMA 3. If ReP(z) > 0 for \z\ < p < 1 and P(0) = 1, <Ae» 

2r/P 
i i 2 / 2 

j P ( z ) 1 - r2/p2 
i - >-7P 

/or |z| g r < p. 

This lemma is proved by writing P(z) = (1 + w(z))/(l — w(z)) where 
\w{z)\ < 1 and w(0) = 0 and then noting that \w(z)\ ^ \z\/p as a natural 
extension of Schwarz's Lemma for \z\ < p < 1. 

Proof of Theorem 1. From equation (3), 

ftF»(s) _ Xz/i'(z) + (1 - \)zf*'(z) 
F(z) X/X(z) + (1 - X)/2(z) 

+ 

zfïjz) 
hiz) • 1 + 

1 + 

( X / i ( « ) V r 

V l - X • / , («) / 

X / i ( s ) ~ 

i -x - / 2 ( 2 )J 
Now, because / i and fi are convex, then from [3 ; 4] 

1 
(8) 

zfi'iz) 
1 1 „2 ) 

and |arg(/j(z)/z) | ^ sin_1r for i = 1, 2 and |z| g r. Thus, from Lemmas 1 
and 2, 

Re 
zF'{z) 
F(z) 

1 
1 - r 2 i sec B/2, 

where 

0 = arg X / i (*) l 
• 1 - X 7«(* ) J 

a + arg AM ]-*[¥\ 
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Now, by (8), |0| g a + 2 sin"V. If r < cos a/2 then 0 ^ /S < TT, and 

sec #/2 ^ sec (a/2 + sin" r) 

= 1 
~ (1 - r2)1/2 cos a /2 - r sin a /2 ' 

Consequently, Re(zF'(z)/F(z)) > 0 if 

1 r 1 
> 0 

and 

or 

1 - r 1 - rl (1 - rO 7 cos a /2 - r sin a /2 

r < cos a/2 

^ . l Y l - s i n g M 1 " . J 
r < mm I r—— J , cos a /2 

= A - s i n a M 1 7 * 

_ cos a/4 — sin a/4 

V2 
and the proof of the theorem is complete. 

We note that the bound in Theorem 1 is best possible; i.e., 

[(1 - sin a/2)/2]1'* 

is the radius of starlikeness for the set of all functions represented as in 
equation (3). If we let 

/i(s) = r ^ ' 
M 2 ) ( = i Jze-<y • 

and 

then 

1 - X ' 

7T + a 
7 = 4 ' 

Now since 
^ ( 2 ) _ ( 1 - Z ^ ) 2 + ( 1 - Z ^ ) 2 -

1 + i tan g/2 
s , 0 < a < IT, 
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sin a /2 
) " 

we find that Ff (z0) = 0 when 

zo = (— 

_ cos a /4 — sin a /4 

Thus, F as represented as a linear combination of normalized convex functions 
with the given restriction on the coefficients is not univalent for \z\ < r if 
r > \zo\. 

Proof of Theorem 2. By direct calculation, 

zF"{z) 
F'{z) ['«]-K+r^)T 

+ 1 + 
z/2 

/»(*) J ' L * ' 1 

Since fi and / , € if, Re(l + zfi"(z)/f/(z)) > 0, * = 1, 2, and 

| a rg / / ( z ) | ^ 2 s i n - 1 H 

[3; 4], then from Lemma 2 

X"f,'(«). 

Re 1+W > 1 + r 
1-r2 

2r 
j sec o-/2, 

where 

arg 
/ i ' ( * ) 

Then \a\ < a + 4 sin~V, or a Ç [0, IT) if r < sin(7r — a) /4 . Thus, for the 
values of r, sec o-/2 ^ sec(a/2 + 2sin~V), and Re(l + zF" (z) / F'{z)) > 0 
if r < mina[sin(x — a) /4 , i£c], where i^c is the least possible value of r satisfy­
ing the equation: 

1 + r* 2r 
2 sec (a/2 + 2 sin"-1 r) = 0, 

or 1 

1 + r 1-r 

2r sec (a/2 + 2 sin~~V) + r2 = 0, which was to be shown. 

We observe that if X = 1/2 (a = 0), the bound (not best possible) is that 
found by Labelle and Rahman. 

Using Lemma 3, we have finally 

THEOREM 3. If F(z) = X/i(s) + (1 — X)/2(^), where fi andf2 are normalized 
(/ i(0) = 0; / / ( 0 ) = 1, i = 1, 2) analytic univalent functions and 0 ^ a = 
arg(X/(l - X)) < 7T, /Ae» Re ^ '(s) > 0 when 

\z\ < (sec a/2 — tan a/2) sin 7r/8. 
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This result agrees with the result in [2] when a = 0. 

Proof of Theorem 3. I t is well-known that | a rg / i / ( s ) | ^4 sin"1^! for 
|s| < 1/V2. Thus, R e / / ( s ) > 0 for \z\ < min(sin7r/8, 1/V2) = sin TT/8. 
Consequently, by Lemma 3, 

/zoo - i + s i s 
1 - r2/c2 

2r/<7 
= = 1 2 / 2 

1 — r I a 
where a = sin T/8. Then 

F'(z) = 1 + (ïhT •/i'(«) + i + i - XJ 
./.'(*), 

and 

ReF'(z) 
1 + r2A2 

1 - r2/<r2 
2r/<r . 

—-jrj-j s e c OL/2 1 - r4/<rÀ 

by Lemma 2, or Re F'(z) > 0 if \z\ < sin ir/8(seca/2 — t ana /2 ) , or F is 
univalent for \z\ < sin 7r/8(seca/2 — t ana /2 ) . 
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