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ARITHMETIC AND ANALYTIC PROPERTIES OF
PAPER FOLDING SEQUENCES

I. MENDERS FRANCE AND A.J. VAN DER POORTEN

To Kurt Mahler

The mechanical procedure of paper folding generates an

uncountable family of infinite sequences of fold patterns. We

obtain the associated Fourier series and show that the sequences

are almost periodic and hence deterministic. Further, we show

that paper folding numbers defined by the sequences are all

transcendental.

1. Introduction

In his first paper, more than fifty years ago, Mahler [7] computed the

Wiener spectrum of a certain sequence (see [72]). A little later, Mahler

[&] introduced a method for proving the transcendence of values of a class

of related functions (see the survey [6], Chapter 15).

We study a family of sequences generated by a mechanical procedure -

paper folding. We obtain the Fourier series for each paper folding

sequence

/ = {fn) € {-1, + 1 }
N

and find that the sequences are almost-periodic (in the sense of

Besicovitch). For each algebraic a , 0 < |a| < 1 we show that the

number
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is transcendental. Since, moreover, we see that there is a natural one-to-

one correspondence between numbers in the interval [0, l] and paper

folding sequences this yields a map by each a , as above, of [0, l] into

the transcendental numbers.

2. Paper folding sequences ([2], [3], [9], [JO])

The folding operator F acting on a sheet of paper P can fold

either positively or negatively:

We denote the nth fold by ^ . \where e(n) = +1 if the fold is

positive, and e(n) = -1 if it is negative. When we have performed the

operations F , ,, ..., F ,,.. on P , the

N

n=i

N
when unfolded shows a sequence of 2 - 1 ridges r and valeys V . If,

as usual, we deem two sequences on the alphabet {r, v} to be "close

together" if they commence with the same word (see, for example [10]),

then we readily see that for any infinite sequence e = (e^) € {-1, +l)

the set

n=l
e(n)

= 1, 2, 3, ...

has cluster points. Any such cluster point

/ = / , / , / , . . . € {r, v}'

is called a paper folding sequence. In the sequel we write U = +1 ,

r = -1 .
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A paper folding sequence is characterised by the property that it may

be "unfolded" arbitrarily many times, yet remain a paper folding sequence.

Formally, we introduce the operator T defined on (-1, +l} by

Then / = [f ) is a paper folding sequence if and only if

(ii) Tf is a paper folding sequence.

It follows that a paper folding sequence is determined by its subsequence

f1f2f\i ••• f fc ••• • Thus, given a binary "decimal" O.a a a ... ,

a. € {0, l} we have a correspondence with a paper folding sequence (/ )

by way of f = 2a, - 1 (fc > 0) and f , = (-l)V , (k > 0) .
2K K 2*(2Z+1) 2k

The following result is an easy consequence of the above

characterisation.

LEMMA. A paper folding sequence is not eventually periodic.

Proof. Suppose to the contrary that 2a(2i>+l) be a period. Then

(writing fin) in place of f ),

f(n+2a(2b+l)) = f(n) for all n > n .

In particular, choosing n = 2 m we have

f(2a(2m+2fc+l)) = f[2a+1m) , m > mQ .

But the sequence J^f defined by n •* f(2an) = J^fin) is again a paper

folding sequence, so

m > mQ

Hence the paper folding sequence 1^ / is an alternating sequence (which

forces T f to be constant) and this is a contradiction.
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3. Fourier series of paper folding sequences

We recall that the Fourier-Bohr coefficient f(x) of f at the point

x , for x € TT = R/Z , is given by the limit (if it exists):

lim i- Y. fMexv(-2imix) .

We compute

= E /(n)exp(-2iirna;)fl£

E /(2n+l)exp (-2i +0(1)

7
(2z) 0(1)

E
nSV/2

exp

The sum is N/2 + 0(l) or 0(l) according as h - 2x € TL or not. We

write

'l if 2x € h + TL ,

0 otherwise,

and obtain

flj(x) = ^//2(2x) + f(l)e-2i7rx | X(x) + 0(1) .N/2

Iterating this relation yields

*£(*> = N + /T /,.(x2&) + 0(fc) .
ff/2

Taking k = [log #] and dividing by N , we have

1=0 2L

But
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Hence

-U-lf >_ 0

0 otherwise.

Thus the Fourier spectrum of / ,

5 = sp(/) = {x : f(x) t 0} ,

consist of the dyadic points in TT with denominator greater than or equal

to It .

We observe that

the norm

I \A*)\2= I I
xiX v=0 a=0

oo

= I - J L- = 1
^ v+1

v=0 2
being defined as usual by

» 2v+i

^ ' V+li
V=0 (2

H/ll = lim sup f| I \f(n)\2Y .

It follows that f is Besicovitch almost periodic:

Hn) - I hx)e
2imx

v=0 a=0

the implied convergence being

2 v 2

convergence. However, in

Q

the inner sum /5(v, n) is
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which is 1 if 2V+ divides 2V + n and 0 otherwise. Hence

A{v, n) = 1 -» - ^ - € % + Z

*=» v = v2(n) ,

v2(n)
where v_(n) is the 2-valuation of n (meaning that 2 "exactly

divides" n ) . Thus the rearranged Fourier series sums to

2 2

a quantity easily seen to equal f(n) in view of the characterisation of

paper folding sequences given above. This is to say that after our

rearrangement we actually obtain pointwise convergence of the Fourier

series.

We have shown:

THEOREM 1. Let f = ( f ( l ) , f(2), . . . ) be a paper folding sequence.

Then f is almost periodic (in the sense of Besicovitch)

fM = Z f(a0exp(2iTTnx)

where S is the set of dyadic rationale in "IT with denominator greater

than or equal to k . Explicitly,

fix) =
if * =

a
0 in all other cases.

This result provides an indirect proof of the lemma of Section 2.

COROLLARY 1. f is not ultimately periodic.

We may also read off the nature of the (Wiener) spectral measure A

belonging to a paper folding sequence:

COROLLARY 2. The spectral measure A "lives" on S and
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Moreover, Besicovitch almost periodic sequences are deterministic (in

the sense of Kamae, Rauzy and Weiss (see [4] and [H])):

COROLLARY 3. Paper folding sequences arse deterministic.

4. Transcendence of paper folding numbers

Given a paper folding sequence f = f we obtain a sequence

(l) (2) J2f = Tf, f = T~f, ... of paper folding sequences. To each sequence

f
(k)

we associate its generating function

and we note that our characterisation of paper folding sequences is

equivalent to the recursive system of functional equations:

2)Fk{x
2) = F^i (k > 1) .

Such systems are studied in [5], which yields:

THEOREM 2. If [f ) is a paper folding sequence and a is

algebraic with 0 < |a| < 1 then

n=l

is transcendental.

Writing G(X) = %(f(X) +

}

w e obtain a paper
n=l

folding sequence g = [g ) € {0, 1} , and the transcendence of all paper

folding numbers

regardless of the base implied by the "decimal" point.

To prove the theorem given [5], we have only to show that the sequence
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[FJ] i s strongly transcendental ( [ 5 ] , p . 23). This i s a technical

condi t ion requir ing tha t the F, should not be a r b i t r a r i l y well

approximable by algebraic functions. Prec ise ly , l e t P .(X; F) (0 5 j 5 p)
3

be polynomials in X and in a given finite set of the coefficients of the

series F , and write

I PAX; rk){Fk(x))
d = I P (k)x

v .
3=0 3 k K u=0 P

Then there should be a constant m [depending only on the P. ) so that
3

there is a u with u - m and p (k) # 0 , whenever not all the

P.[X; Fj] are identically zero.

Firstly, since each coefficient of the F, takes one of only two

possible values it suffices for us to restrict our attention to a

subsequence [k(n)j on which the P. are independent of k and are not
d

all zero. Next, on similar grounds, it is plain that the sequence \Fyi \J

has subsequences that converge to a paper folding function. (As usual, two

formal power series are "close together" if they commence with the same

terms.) Thus if the sequence [FA is not strongly transcendental there

is a paper folding function F algebraic over the field of rational

functions .

But a power series with integer coefficients and radius of convergence

1 is either a rational function or has the unit circle as its natural

boundary (Carlson [/]). Thus F must be rational, and so its coefficients

(from a certain point on) satisfy a linear homogeneous recursion with

constant coefficients. In the present case, where the coefficients of F

are +1 or -1 , the sequence has to be (eventually) periodic. This

contradiction completes the proof of Theorem 2.
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