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Abstract

Erdős and Odlyzko proved that odd integers k such that k2n
+ 1 is prime for some positive integer n

have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural
numbers that can be expressed in the form (p − 1)2−n (where p is a prime number) have a positive
proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from
a covering system if and only if those integers in such a progression which can be expressed in the form
(p − 1)2−n have an asymptotic density of zero.
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1. Introduction

Let k, n be integers and let p be a prime. Natural numbers of the special form k2n
+ 1

have long attracted much interest. In 1960, Sierpiński [11] proved that there are
infinitely many positive odd integers k such that k2n

+ 1 is composite for all positive
integers n. In 1979, Erdős and Odlyzko [8] established that the lower asymptotic
density of odd integers k such that k2n

+ 1 is prime for some positive integer n is
positive. In 1962, J. L. Selfridge discovered (unpublished) that for any positive integer
n, the number 78557 · 2n

+ 1 is divisible by one of the primes 3, 5, 7, 13, 19, 37 or 73.
It is still an open question whether 78557 is the least positive odd number k for which
k2n
+ 1 (n = 1, 2, . . .) are all composite. In [2], Chen proved that the set of positive

odd integers k such that k2n
+ 1 possesses at least three distinct prime factors for all

positive integers n has a positive lower asymptotic density. In [3], Chen further showed
that the set of positive odd integers k such that k2n

+ 1 has at least three distinct prime
factors for all positive integers n contains an infinite arithmetic progression. For other
related results, we refer the reader to the works of Chen [1–6], Chen and Sun [7],
Guy [9], and Luca and Stǎnicǎ [10].
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In [8], Erdős and Odlyzko proposed the question: do all odd integers k which are
not representable as (p − 1)2−n actually fail to be of this form because of a covering
system? In the present paper, we answer this question in the case of an arithmetic
progression. We also consider the following problem.

PROBLEM 1. Is it possible to characterize all arithmetic progressions in which the
natural numbers that can be expressed in the form (p − 1)2−n constitute a positive
proportion?

For integers m and a, let a (mod m)= {a + mk : k ∈ Z}. A system of congruences
{ai (mod mi )}

t
i=1 is called a covering system if every integer b satisfies b ≡ ai

(mod mi ) for at least one value of i .

REMARK. Let {ai (mod mi )}
t
i=1 be a covering system such that there exist distinct

primes p1, p2, . . . , pt with

pi |2mi − 1 (1≤ i ≤ t).

By the Chinese remainder theorem, there exists an arithmetic progression x ≡ x0
(mod p1 p2 · · · pt ) satisfying

x2ai + 1≡ 0 (mod pi ) (1≤ i ≤ t).

Now we consider any positive integer M with M ≡ x0 (mod p1 p2 · · · pt ).
Assume that M can be expressed in the form (p − 1)2−n; then there exists at least

one index i with n ≡ ai (mod mi ).
Thus

M2n
+ 1≡ M2ai + 1≡ 0 (mod pi ).

So p = pi and M = (pi − 1)2−n .
This implies that the asymptotic density of integers in x0 (mod p1 p2 · · · pt ) which

can be expressed in the form (p − 1)2−n is zero.

The above discussion naturally leads us to consider the inverse problem.

PROBLEM 2. Can any arithmetic progression of odd numbers in which the asymptotic
density of integers that can be expressed in the form (p − 1)2−n is zero be obtained
from a covering system?

For a positive integer m, let m = 2r m′, 26 | m′. Denote by e(m) the multiplicative
order of 2 (mod m′); in other words, e(m) is the smallest positive integer l such that
2l
≡ 1 (mod m′).
In this paper, we solve the above two problems completely, and prove the following

main results.
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THEOREM. Let m and s be integers with 26 | s and 2|m.

(a) If there exists an integer n0 with 1≤ n0 ≤ e(m) such that (2n0s + 1, m′)= 1,
then the lower density of natural numbers in the arithmetic progression
{s + mk}∞k=1 which can be expressed as (p − 1)2−n is positive.

(b) If there is no integer with 1≤ n ≤ e(m) such that (2ns + 1, m′)= 1, then the
density of natural numbers in the arithmetic progression {s + mk}∞k=1 which can
be expressed as (p − 1)2−n is zero, and such an arithmetic progression can be
obtained from a covering system.

COROLLARY. An arithmetic progression of odd numbers can be obtained from a
covering system if and only if the asymptotic density of integers in such a progression
which can be expressed in the form (p − 1)2−n is zero.

2. Proofs

In this paper, π(x; m, a) denotes the number of primes p ≤ x which satisfy p ≡ a
(mod m). Before proving the theorem, we need the following lemmas.

LEMMA 3 [8, Lemma 1]. Given positive integers n and b with (b, n)= 1, there exist
positive constants c1 and c2 depending only on the prime factors of n such that

π(x, n, b)≥
c1x

n log x
for x ≥ nc2 .

Take

c3 =
1

2c2 log 2
.

Then, for x >max{e1/c3, m2c2},

c3 log x > 1 and mc2 < x1/2.

Hence
(2c3 log x m)

c2
= (xc3 log 2m)c2 = xc2c3 log 2mc2 < x .

Define

r(k, n)=

{
1 if k2n

+ 1 is prime,
0 otherwise

and
R(k, x)=

∑
n≤c3 log x

r(k, n).

LEMMA 4. Let m and s be integers with 26 | s and 2|m. If there exists an integer n0
with 1≤ n0 ≤ e(m) and (2n0s + 1, m′)= 1, then there is a positive constant c6 such
that ∑

k≤x
k≡s (mod m)

R(k, x)≥ c6x .
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PROOF. ∑
k≤x

k≡s (mod m)

R(k, x)

=

∑
k≤x

k≡s (mod m)

∑
n≤c3 log x

r(k, n)

=

∑
n≤c3 log x

∑
k≤x

k≡s (mod m)

r(k, n)

=

∑
n≤c3 log x

#{q : q = k2n
+ 1, q is a prime, k ≡ s (mod m), k ≤ x}

=

∑
n≤c3 log x

π(x2n
+ 1; 2nm, 2ns + 1)

≥

∑
n0+e(m)l≤c3 log x

π(x2n0+e(m)l
+ 1; 2n0+e(m)lm, 2n0+e(m)ls + 1).

Combining the facts that

(2c3 log x m)
c2
< x and n0 + e(m)l ≤ c3 log x,

we obtain
x2n0+e(m)l

+ 1≥ (2n0+e(m)lm)c2 .

From Lemma 3, it follows that∑
n0+e(m)l≤c3 log x

π(x2n0+e(m)l
+ 1; 2n0+e(m)lm, 2n0+e(m)ls + 1)

≥ c1

∑
n0+e(m)l≤c3 log x

x2n0+e(m)l
+ 1

2n0+e(m)lm log(x2n0+e(m)l + 1)

≥ c4x
∑

n0+e(m)l≤c3 log x

1

log(x2n0+e(m)l + 1)

≥ c5x
∑

n0+e(m)l≤c3 log x

1
log x

≥ c6x .

This completes the proof of Lemma 4. 2

LEMMA 5 [8, Lemma 2]. There exists a positive constant c7 such that∑
k≤x

R2(k, x)≤ c7x .
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PROOF OF THE THEOREM, PART (a). By the Cauchy–Schwarz inequality,( ∑
k≤x

k≡s (mod m)

R(k, x)

)2

≤ #{k : 1≤ k ≤ x, k ≡ s (mod m), R(k, x)≥ 1}
∑
k≤x

k≡s (mod m)

R2(k, x)

≤ #{k : 1≤ k ≤ x, k ≡ s (mod m), R(k, x)≥ 1}
∑
k≤x

R2(k, x).

Then, by Lemmas 4 and 5,

#{k : 1≤ k ≤ x, k ≡ s (mod m), R(k, x)≥ 1} ≥ c8x .

This completes the proof of statement (a) in the theorem. 2

PROOF OF THE THEOREM, PART (b). Let p1, p2, . . . , pt be all the distinct odd prime
factors of m such that, for each 1≤ i ≤ t , there exists a nonnegative integer ai with
2ai s + 1≡ 0 (mod pi ). Let mi be the multiplicative order of 2 (mod pi ). We shall
prove that {ai (mod mi )}

t
i=1 is a covering system.

For arbitrary positive integer a, let l be an integer with 1≤ l ≤ e(m) such that
l ≡ a (mod e(m)).

By the assumption, there is no l ′ with 1≤ l ′ ≤ e(m) such that (2l ′s + 1, m′)= 1, so

(2ls + 1, m′) > 1.

Since l ≡ a (mod e(m)), it follows that

2ls + 1≡ 2as + 1 (mod m′),

and then (2as + 1, m′) > 1. Hence there exists some i such that pi |2as + 1.
Noting that 2ai s + 1≡ 0 (mod pi ), we obtain

2as + 1≡ 2ai s + 1 (mod pi ),

so
a ≡ ai (mod mi ).

Thus we have proved that {ai (mod mi )}
t
i=1 is a covering system. From the above

discussion, we can show that the arithmetic progression {s + mk}∞k=1 may be obtained
from a covering system {ai (mod mi )}

t
i=1. By the remark in Section 1, we know that

the density of integers in such an arithmetic progression which can be expressed in the
form (p − 1)2−n is zero. This completes the proof of statement (b) in the theorem. 2
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