REGULAR ORDER-PRESERVING TRANSFORMATION SEMIGROUPS

Yupaporn Kemprasit and Thawhat Changphas

The semigroup $OT(X)$ of all order-preserving total transformations of a finite chain X is known to be regular. We extend this result to subchains of Z; and we characterise when $OT(X)$ is regular for an interval X in R. We also consider the corresponding idea for partial transformations of arbitrary chains and posets.

1. Introduction

If X is a set, we let $P(X)$ denote the semigroup under composition of all partial transformations of X (that is, mappings $\alpha : A \to B$ where $A,B \subseteq X$); and we note that $P(X)$ is regular (that is, for each $\alpha \in P(X)$, there exists $\beta \in P(X)$ such that $\alpha = \alpha \beta \alpha$). Following standard notation, we let $\text{dom} \alpha$ and $\text{ran} \alpha$ denote the domain and range of $\alpha \in P(X)$.

If (X, \leq) is a poset, we say $\alpha \in P(X)$ is order-preserving if for all $x,y \in \text{dom} \alpha$, $x \leq y$ implies $x \alpha \leq y \alpha$; and we let $OP(X)$ denote the semigroup under composition of all order-preserving partial transformations of X. Similarly, $T(X)$ denotes the semigroup of all total transformations of X (that is, mappings $\alpha : X \to X$) and likewise it is regular. Also, if (X, \leq) is a poset, we let $OT(X)$ denote the subsemigroup of $T(X)$ consisting of all order-preserving total transformations of X.

It is known [9, p.203, Exercise 6.1.7] that $OT(X)$ is regular if (X, \leq) is a finite chain. In Section 2, we extend this to any chain which is order-isomorphic to a subset of Z, the set of integers with their natural order. We also prove that if X is an interval in R, the set of real numbers, then $OT(X)$ is regular if and only if X is closed and bounded. Then we answer similar questions for $OP(X)$ and some of its subsemigroups for arbitrary chains X. And in Section 3, we suppose X is not a chain and characterise when $OP(X)$ is regular. We also list some conditions under which $OT(X)$ is (or is not) regular when X is not a chain.

Received 3rd May, 2000
This paper formed part of an M.Sc. thesis written under the supervision of the first author. The second author greatly appreciates the help of his supervisor in this work; and both authors are very grateful for the assistance of Bob Sullivan, University of Western Australia, in the preparation of this paper.
2. ORDER-PRESERVING TRANSFORMATIONS OF CHAINS

If \((X, \leq)\) is a poset, we define the opposite partial order \(\leq_{\text{opp}}\) on \(X\) via:

\[x \leq_{\text{opp}} y \text{ if and only if } y \leq x. \]

Note that if \(\alpha \in P(X)\) then \(\alpha\) preserves \(\leq\) if and only if it preserves \(\leq_{\text{opp}}\). Consequently, \(OP(X, \leq) = OP(X, \leq_{\text{opp}})\) and the regularity of \(OP(X, \leq)\) holds equally for \(OP(X, \leq_{\text{opp}})\). Similar statements are true for \(OT(X, \leq)\) and for \(OI(X, \leq)\), the semigroup of all order-preserving partial transformations of \(X\) which are one-to-one ("injective").

For the chain \(Z\) of integers, we let \(Z^+\) denote the set of positive integers and \(Z^-\) the set of negative integers. If \(X\) is a chain which is order-isomorphic to a subset of \(Z\) with its natural order then \(X\) has one of the following forms:

1. \(\{x_1, x_2, \ldots, x_n\}\) where \(n \in \mathbb{Z}^+\) and \(x_1 < x_2 < \cdots < x_n\),
2. \(\{x_i : i \in \mathbb{Z}^+\}\) where \(x_i < x_j\) if \(i < j\),
3. \(\{x_i : i \in \mathbb{Z}\}\) where \(x_i < x_j\) if \(i < j\), or
4. \(\{x_i : i \in \mathbb{Z}^-\}\) where \(x_i < x_j\) if \(i < j\).

Our first result will be needed often in what follows: its simple proof is omitted.

Lemma 2.1. Let \(X\) be a chain. If \(\alpha \in OP(X)\) and \(a, b \in \text{ran } \alpha\) satisfy \(a < b\) then \(x < y\) for all \(x \in \text{ran } \alpha^{-1}\) and \(y \in b\alpha^{-1}\).

For any \(A \subseteq X\), we let \(\min(A)\) and \(\max(A)\) denote the minimum and the maximum elements of \(A\) if they exist.

Theorem 2.2. Let \(X\) be a chain. If \(X\) is order-isomorphic to a subset of \(Z\) then the semigroup \(OT(X)\) is regular.

Proof: We regard \(X\) as being one of the chains (1)-(4) listed above. Then, if \(A\) is any nonempty subset of \(X\), \(\max(A)\) exists if \(A\) has an upper bound in \(X\), and \(\min(A)\) exists if \(A\) has a lower bound in \(X\). It follows from this and Lemma 2.1 that, if \(\alpha \in OP(X)\) and \(a \in \text{ran } \alpha\), then \(\max(a\alpha^{-1})\) exists if \(a < b\) for some \(b \in \text{ran } \alpha\), and \(\min(a\alpha^{-1})\) exists if \(b < a\) for some \(b \in \text{ran } \alpha\).

Let \(\alpha \in OT(X)\). If \(\alpha\) is a constant map, it is clearly regular. Therefore, suppose \(\text{ran } \alpha\) contains at least two elements and note that, since it is a subchain of \(X\), it takes one of the forms listed in (1)-(4) above. In cases (1)-(3), we define \(\beta : X \rightarrow X\) as follows:

1. if \(\text{ran } \alpha = \{a_1, a_2, \ldots, a_n\}\), let
2. \(x\beta = \begin{cases}
\max(a_1\alpha^{-1}) & \text{if } x \leq a_1, \\
\min(a_i\alpha^{-1}) & \text{if } a_i < x \leq a_{i+1} \text{ and } i \neq n, \\
\min(a_n\alpha^{-1}) & \text{if } x > a_n.
\end{cases}\)
(2) if ran $\alpha = \{a_i : i \in \mathbb{Z}^+\}$, let

$$x\beta = \begin{cases}
\max (a_i \alpha^{-1}) & \text{if } x \leq a_1, \\
\min (a_i+1 \alpha^{-1}) & \text{if } a_i < x \leq a_{i+1} \text{ for some } i \in \mathbb{Z}^+.
\end{cases}$$

(3) if ran $\alpha = \{a_i : i \in \mathbb{Z}\}$, let

$$x\beta = \max (a_i+1 \alpha^{-1}) \quad \text{if } a_i < x \leq a_{i+1} \text{ for some } i \in \mathbb{Z}.$$

Now, if $x \in X$ then $x\alpha = a_k$ for some $k \in \mathbb{Z}$. By definitions (1)–(3), $a_k\beta$ equals $\max (a_k \alpha^{-1})$ or $\min (a_k \alpha^{-1})$: in each case, this means $(a_k\beta)\alpha = a_k$, and hence $x(\alpha\beta\alpha) = x\alpha$ for all $x \in X$; that is, $\alpha = \alpha\beta\alpha$.

To show β is order-preserving, suppose $x < y$ in X. In cases (1) and (2), if $y \leq a_1$ then $x\beta = y\beta$, and the same conclusion holds in case (1) if $x \geq a_n$. On the other hand, in each of (1)–(3), if $a_k < x < y \leq a_{k+1}$ for some k then $x\beta = y\beta$, by the definition of β. Suppose instead that $a_k < x \leq a_{k+1} \leq a_\ell < y \leq a_{\ell+1}$

for some k, ℓ. Then $a_{k+1} < a_{\ell+1}$ and Lemma 2.1 imply that $u < v$ for all $u \in a_{k+1} \alpha^{-1}$ and $v \in a_{\ell+1} \alpha^{-1}$. But, by the definition of β, $x\beta \in a_{k+1} \alpha^{-1}$ and $y\beta \in a_{\ell+1} \alpha^{-1}$, hence $x\beta < y\beta$ as required. The remaining possibilities: $x \leq a_1 < a_n \leq y$ in case (1), and $x \leq a_1 \leq a_\ell < y \leq a_{\ell+1}$ in cases (1) and (2), lead to the same conclusion. Therefore, $\beta \in OT(X)$ is regular in cases (1)–(3).

For case (4), we recall from the start of this section that $OT(\mathbb{Z}^+, \leq) = OT(\mathbb{Z}^+, \leq_{opp})$, and clearly (\mathbb{Z}^-, \leq) is order-isomorphic to $(\mathbb{Z}^+, \leq_{opp})$. Hence, from our conclusion in case (3), if X is order-isomorphic to \mathbb{Z}^- then $OT(X)$ is regular. \[\square \]

We now show that $OT(\mathbb{R})$ is not regular when \mathbb{R} is the set of real numbers with their natural order. In fact, the following sequence of Lemmas will eventually characterise when $OT(X)$ is regular for an interval X in \mathbb{R}.

Lemma 2.3. The semigroup $OT(\mathbb{R})$ is not regular.

Proof: Fix $r \in (1, \infty)$ and let $\alpha \in OT(\mathbb{R})$ be the map: $x\alpha = r^x$ for all $x \in \mathbb{R}$. Then ran $\alpha = \mathbb{R}^+$ and α is one-to-one. Suppose $\alpha = \alpha\beta\alpha$ for some $\beta \in OT(\mathbb{R})$. Then, since α is one-to-one, $x = x\alpha\beta$ for each $x \in \mathbb{R}$. Thus, $\mathbb{R}^+ \beta = \mathbb{R}$. Hence, since $0\beta \in \mathbb{R}$, there exists $d \in \mathbb{R}^+$ such that $0\beta = d\beta$. Choose $c \in (0, d)$. Then

$$0\beta \leq c\beta \leq d\beta = 0\beta,$$

and we deduce that $c\beta = d\beta$. Since $c, d \in \mathbb{R}^+ = \text{ran} \alpha$, we can choose $x, y \in \mathbb{R}$ with $x\alpha = c$ and $y\alpha = d$. Then

$$c = x\alpha = x\alpha\beta\alpha = c\beta\alpha = d\beta\alpha = y\alpha\beta\alpha = y\alpha = d.$$
which contradicts \(c < d \). Hence, \(\alpha \) is not a regular element of \(OT(\mathbb{R}) \), and the result follows.

Lemma 2.4. The semigroup \(OT((a, \infty)) \) is not regular for any \(a \in \mathbb{R} \).

Proof: Fix \(r \in [1, \infty) \) and let \(\alpha \in OT((a, \infty)) \) be the map: \(x\alpha = x + r \) for all \(x \in (a, \infty) \). Then \(\text{ran} \alpha = (a + r, \infty) \) and \(\alpha \) is one-to-one. Suppose \(\alpha = \alpha\beta\alpha \) for some \(\beta \in OT((a, \infty)) \). Then, since \(\alpha \) is one-to-one, \(x = x\alpha\beta \) for each \(x \in (a, \infty) \). Thus, \((a + r, \infty)\beta = (a, \infty) \). Hence, since \((a + r)\beta \in (a, \infty) \), there exists \(d \in (a + r, \infty) \) such that \((a + r)\beta = d\beta \). Choose \(c \in (a + r, d) \). Then

\[
(a + r)\beta \leq c\beta \leq d\beta = (a + r)\beta,
\]
and we deduce that \(c\beta = d\beta \). Since \(c, d \in (a + r, \infty) = \text{ran} \alpha \), we can choose \(x, y \in (a, \infty) \) with \(x\alpha = c \) and \(y\alpha = d \). Then

\[
c = x\alpha = x\alpha\beta\alpha = c\beta\alpha = d\beta\alpha = y\alpha\beta\alpha = y\alpha = d
\]
which contradicts \(c < d \). Hence, \(\alpha \) is not a regular element of \(OT((a, \infty)) \), and the result follows.

Lemma 2.5. The semigroup \(OT([a, \infty)) \) is not regular for any \(a \in \mathbb{R} \).

Proof: Fix \(r \in [1, \infty) \) and let \(\alpha \) be the map:

\[
x\alpha = a + \frac{x - a}{x - a + r} \quad \text{for all} \ x \in [a, \infty).
\]

Then \(\text{ran} \alpha = [a, a + 1) \). Moreover, since the derivative of \(\alpha \) is strictly positive on \((a, \infty) \), we know \(\alpha \) is increasing and hence it is one-to-one. Therefore, \(\alpha \in OT([a, \infty)) \). Suppose \(\alpha = \alpha\beta\alpha \) for some \(\beta \in OT([a, \infty)) \). Then, since \(\alpha \) is one-to-one, \(x = x\alpha\beta \) for each \(x \in [a, \infty) \), and so \([a, a + 1)\beta = [a, \infty) \). Hence, since \((a + 1)\beta \in [a, \infty) \), we know \((a + 1)\beta = d\beta \) for some \(d \in [a, a + 1) \). Choose \(c \in (d, a + 1) \). Then

\[
d\beta \leq c\beta \leq (a + 1)\beta = d\beta,
\]
and we deduce that \(c\beta = d\beta \). Since \(c, d \in [a, a + 1) = \text{ran} \alpha \), we can choose \(x, y \in [a, \infty) \) with \(x\alpha = c \) and \(y\alpha = d \). The result then follows as in the proofs of the last Lemmas.

Lemma 2.6. The semigroup \(OT((a, b)) \) is not regular for any \(a, b \in \mathbb{R} \) with \(a < b \).

Proof: Fix \(r \in (0, b - a) \) and let \(\alpha \) be the map:

\[
x\alpha = \left(1 - \frac{r}{b - a}\right)x + \frac{rb}{b - a} \quad \text{for all} \ x \in (a, b).
\]
That is, the graph of α is a line segment with positive slope, and clearly $\text{ran}\,\alpha = (a + r, b)$. Therefore, $\alpha \in \text{OT}((a, b))$. Suppose $\alpha = \alpha\beta\alpha$ for some $\beta \in \text{OT}((a, b))$. Then, since α is one-to-one, $x = x\alpha\beta$ for each $x \in (a, b)$, and so $(a + r, b)\beta = (a, b)$. Hence, since $(a + r)\beta \in (a, b)$, we know $(a + r)\beta = d\beta$ for some $d \in (a + r, b)$. Choose $c \in (a + r, d)$. Then

$$d\beta = (a + r)\beta \leq c\beta \leq d\beta,$$

and we deduce that $c\beta = d\beta$. Since $c, d \in (a + r, b) = \text{ran}\,\alpha$, we can choose $x, y \in (a, b)$ with $x\alpha = c$ and $y\alpha = d$, and the result follows as before.

Lemma 2.7. The semigroup $\text{OT}((a, b))$ is not regular for any $a, b \in \mathbb{R}$ with $a < b$.

Proof: Fix $r \in (0, b-a)$ and let α be the map:

$$x\alpha = \frac{rx}{b-a} + a - \frac{ra}{b-a} \quad \text{for all } x \in [a, b).$$

That is, the graph of α is a line segment with positive slope, and clearly $\text{ran}\,\alpha = [a, a + r)$. Therefore, $\alpha \in \text{OT}((a, b))$. Suppose $\alpha = \alpha\beta\alpha$ for some $\beta \in \text{OT}((a, b))$. Then, since α is one-to-one, $x = x\alpha\beta$ for each $x \in [a, b)$, and so $[a, a + r)\beta = [a, b)$. Hence, since $(a + r)\beta \in [a, b)$, we know $(a + r)\beta = d\beta$ for some $d \in [a + r, b)$. Choose $c \in (d, a + r)$. Then

$$d\beta \leq c\beta \leq (a + r)\beta = d\beta,$$

and we deduce that $c\beta = d\beta$. Since $c, d \in [a + r, b) = \text{ran}\,\alpha$, we can choose $x, y \in [a, b)$ with $x\alpha = c$ and $y\alpha = d$, and the result follows as before.

With the notation at the start of this section, if \leq is the natural order on \mathbb{R} then

1. $((-\infty, a), \leq)$ is order-isomorphic to $((-a, \infty), \leq_{\text{opp}})$ for each $a \in \mathbb{R}$,
2. $((-\infty, a], \leq)$ is order-isomorphic to $([-a, \infty), \leq_{\text{opp}})$ for each $a \in \mathbb{R}$, and
3. $([a, b], \leq)$ is order-isomorphic to $([-b, -a), \leq_{\text{opp}})$ for each $a, b \in \mathbb{R}$.

Consequently, Lemmas 2.4, 2.5 and 2.7 show that the semigroups $\text{OT}((-\infty, a))$, $\text{OT}((-\infty, a])$ and $\text{OT}((a, b))$ are not regular for any $a, b \in \mathbb{R}$. This covers all nonempty intervals of \mathbb{R} except one: namely, $[a, b)$ with $a < b$ and we shall prove that the semigroup $\text{OT}([a, b))$ is regular. But, to do this, we need one more Lemma.

Lemma 2.8. Let $\alpha \in \text{OT}([a, b])$ where $a, b \in \mathbb{R}$ and $a < b$, and suppose $x \in (a\alpha, b\alpha)$. If $A_x = [a, x]\alpha^{-1}$ and $B_x = (x, b]\alpha^{-1}$ then $\{A_x, B_x\}$ is a partition of $[a, b]$ such that $c < d$ for all $c \in A_x$ and $d \in B_x$.

Proof: Since $x \in (a\alpha, b\alpha)$, we know $a \leq a\alpha < x$ and $x < b\alpha \leq b$, so $a \in [a, x]\alpha^{-1} = A_x$ and $b \in (x, b]\alpha^{-1} = B_x$. The result then follows from Lemma 2.1 and the fact that $[a, b] = [a, x] \cup (x, b)$. \square
For the next result, we recall: if I is an interval in \mathbb{R} and if $\{A, B\}$ is a partition of I such that $x < y$ for all $x \in A$ and $y \in B$ then either $\max(A)$ or $\min(B)$ exists (but not both).

Lemma 2.9. The semigroup $OT([a, b])$ is regular for any $a, b \in \mathbb{R}$ with $a < b$.

Proof: Let $\alpha \in OT([a, b])$ and note that $a\alpha \leq b\alpha$ and $\text{ran }\alpha \subseteq [a\alpha, b\alpha]$. Define d_x for each $x \in [a, b]$ as follows:

$$
\begin{align*}
 d_x =
 \begin{cases}
 a & \text{if } x \in [a, a\alpha), \\
 b & \text{if } x \in (b\alpha, b], \\
 xa^{-1} & \text{if } x \in \text{ran }\alpha.
 \end{cases}
\end{align*}
$$

To complete the definition, suppose $x \in (a\alpha, b\alpha) \setminus \text{ran }\alpha$ and put $A_x = [a, x]a^{-1}$ and $B_x = (x, b]a^{-1}$. By Lemma 2.8, $\{A_x, B_x\}$ is a partition of $[a, b]$ with a special property; and, by a remark above, either $\max(A_x)$ or $\min(B_x)$ exists (but not both). Hence, we can define:

$$
 d_x = \begin{cases}
 \max(A_x) & \text{if } x \in (a\alpha, b\alpha) \setminus \text{ran }\alpha \text{ and } \max(A_x) \text{ exists}, \\
 \min(B_x) & \text{if } x \in (a\alpha, b\alpha) \setminus \text{ran }\alpha \text{ and } \min(B_x) \text{ exists}.
 \end{cases}
$$

Finally, we let $\beta : [a, b] \to [a, b], x \to d_x$. If $x \in [a, b]$ then $x\alpha \in \text{ran }\alpha$, so the definition of d_x implies that $d_{x\alpha}\alpha = x\alpha$. Hence,

$$
 x\alpha\beta\alpha = ((x\alpha)\beta)\alpha = d_{x\alpha}\alpha = x\alpha
$$

which shows that $\alpha = \alpha\beta\alpha$ on $[a, b]$.

To show that β is order-preserving, let $x, y \in [a, b]$ and $x < y$. Then $x \in [a, y]$ and $y \in (x, b]$, and we consider six cases.

Case 1. $x < a\alpha$. Then $x\beta = d_x = a$, so $x\beta \leq y\beta$.

Case 2. $y > b\alpha$. Then $y\beta = d_y = b$, so $x\beta \leq y\beta$.

Case 3. $x, y \in \text{ran }\alpha$. By Lemma 2.1, $u < v$ for all $u \in x\alpha^{-1}$ and $v \in y\alpha^{-1}$. In particular, by definition, $x\beta = d_x < d_y = y\beta$.

Case 4. $x \in \text{ran }\alpha$ and $y \in (a\alpha, b\alpha) \setminus \text{ran }\alpha$. Then $d_x \in x\alpha^{-1} \subseteq [a, y]\alpha^{-1} = A_y$. Hence, if $\max(A_y)$ exists then

$$
 x\beta = d_x \leq \max(A_y) = d_y = y\beta.
$$

On the other hand, if $\min(B_y)$ exists then, by Lemma 2.8, we have:

$$
 x\beta = d_x < d_y = \min(B_y) = y\beta.
$$

Case 5. $x \in (a\alpha, b\alpha) \setminus \text{ran }\alpha$ and $y \in \text{ran }\alpha$. An argument similar to that in case (4) shows $x\beta \leq y\beta$ in this case also.
CASE 6. \(x, y \in (a\alpha, b\alpha) \setminus \text{ran } \alpha\). If \([x, y] \cap \text{ran } \alpha = \emptyset\) then

\[
A_x = [a, x]\alpha^{-1} = [a, y]\alpha^{-1} = A_y \quad \text{and} \quad B_x = (x, b]\alpha^{-1} = (y, b]\alpha^{-1} = B_y
\]

and hence, by definition, \(x\beta = d_x = d_y = y\beta\). However, if \([x, y] \cap \text{ran } \alpha \neq \emptyset\) then there exists \(c \in \text{ran } \alpha\) such that \(x < c < y\). In this event, we can choose \(p \in [a, b]\) with \(p\alpha = c\). Then

\[
p \in [a, y]\alpha^{-1} \cap (x, b]\alpha^{-1} = A_y \cap B_x
\]

and so, using a standard property of \(\mathbb{R}\), we have:

\[
\sup(A_x) \leq \inf(B_x) \leq p \leq \sup(A_y) \leq \inf(B_y).
\]

Note that \(\sup(A_x)\) equals \(\max(A_x)\) if this maximum exists, and it equals \(\min(B_x)\) if this minimum exists; and a similar comment can be made for \(\inf(B_y)\). Hence, we conclude from the above that \(d_x \leq d_y\) and so \(x\beta \leq y\beta\). \(\square\)

The combination of Lemmas 2.3-2.9, and the remarks between them, give us the following result.

Theorem 2.10. For any interval \(X\) of \(\mathbb{R}\), the semigroup \(\mathcal{O}T(X)\) is regular if and only if \(X\) is closed and bounded.

In passing, we note that in [11] Howie showed that \(\mathcal{O}T(X)\) is also idempotent-generated if \(X\) is a finite chain, and in [8] the authors extended this to \(\mathcal{O}P(X)\), while in [7] Garba investigated the same idea for various subsemigroups of \(\mathcal{O}P(X)\); see [12] for a brief survey of this and related work; and see [10] for an alternative approach to the same idea for \(\mathcal{O}T(X)\) and its subsemigroup consisting of all decreasing transformations (that is, \(x\alpha \leq x\) for all \(x \in X\)). For an arbitrary chain \(X\), the elements of \(\mathcal{O}T(X)\) which are products of idempotents were described in [14]; and the corresponding notion for products of "nilpotents" in \(\mathcal{O}P(X)\) and \(\mathcal{O}I(X)\) has been examined in [6] and [5] for finite chains.

In [3] the authors considered the semigroup \(\mathcal{O}P'(X)\) consisting of all order-preserving transformations \(\alpha\) whose domains are final segments in a chain \(X\) (that is, \(x \in \text{dom } \alpha\) and \(x \leq y\) imply \(y \in \text{dom } \alpha\)); and they observed that this semigroup need not be regular. By contrast with this fact and the above results for \(\mathcal{O}T(X)\), we prove the following Theorem.

Theorem 2.11. If \(X\) is a chain then the semigroup \(\mathcal{O}P(X)\) is regular.

Proof: Let \(\alpha \in \mathcal{O}P(X)\) and, for each \(a \in \text{ran } \alpha\), choose \(d_a \in a\alpha^{-1}\). Define a partial transformation \(\beta\) via: \(\text{dom } \beta = \text{ran } \alpha\) and \(a\beta = d_a\) for each \(a \in \text{ran } \alpha\). Then \(x(a\beta\alpha) = xa\) for all \(x \in \text{dom } \alpha\) (since \(d_a\alpha = a\) for all \(a \in \text{ran } \alpha\)) and in fact
dom (αβα) = dom α. Hence, α = αβα. Also, if a < b in dom β = ran α then da < db by Lemma 2.1, so β is order-preserving, and the result follows.

As usual, if X is a set and α ∈ P(X), we define the shift of α to be

\[s(\alpha) = |S(\alpha)| \]

where

\[S(\alpha) = \{ x \in \text{dom } \alpha : x \alpha \neq x \} \]

and we write

\[P(X, \aleph_0) = \{ \alpha \in P(X) : s(\alpha) < \aleph_0 \} \]

It is well-known that P(X, \aleph_0) is a semigroup: it is sometimes called the semigroup of almost identical partial transformations of X [15]. If X is a poset, we let OP(X, \aleph_0) denote the semigroup of all order-preserving partial transformations of X with finite shift, and OI(X, \aleph_0) will denote the semigroup of all one-to-one transformations in OP(X, \aleph_0).

If X is a chain and α ∈ OP(X, \aleph_0), we can define a map β ∈ OP(X) as in the proof of Theorem 2.11 so that α = αβα. In fact, since αα⁻¹ = {a} for all a ∈ ran α \ S(α)α, we have aβα = a for all a ∈ ran α \ S(α)α and so S(β) ⊆ S(α)α (since dom β = ran α). Hence, β ∈ OP(X, \aleph_0) and we have proved that OP(X, \aleph_0) is regular.

In passing, we note that Lavers [13] considered certain subsemigroups of OP(\mathbb{Z}^+, \aleph_0) in a different context, with the aim of giving presentations for them and describing their principal left (right) ideals.

In [4, Proposition 1.4], Fernandes noted that OI(X) is regular if X is a finite chain. In fact, following the proof of Theorem 2.11, it is clear that if X is any chain and α ∈ OI(X) then there exists β ∈ OI(X) with α = αβα. So, OI(X) is regular for any chain X. Indeed, since the idempotents of OI(X) are simply those transformations which fix a subchain of X pointwise, and hence they commute, we deduce that OI(X) is an inverse semigroup. The significance of OI(X) is illustrated by a result in [2]: namely, any set X with |X| ≠ 3 can be ordered so that OI(X) forms a transversal of the set of H–classes in I(X).

Finally, we consider the semigroup:

\[OT(X, \aleph_0) = \{ \alpha \in OT(X) : s(\alpha) < \aleph_0 \} \]

and aim to show it is regular if X is a chain. However, for this we need another three Lemmas.

Lemma 2.12. Let X be a poset, α ∈ OP(X) and a ∈ dom α. Then

\[\{ x \in \text{dom } \alpha : aa < x < a \} \subseteq S(\alpha) \quad \text{and} \quad \{ x \in \text{dom } \alpha : a < x < aa \} \subseteq S(\alpha). \]

Proof: If x ∈ dom α and aa < x < a then xα ≤ aaα. Thus, if xα = x, we have x ≤ aaα, a contradiction; so, x ∈ S(α) as required. The other containment follows similarly. \[\square \]
LEMMA 2.13. Let X be a poset, \(\alpha \in OP(X) \) and \(A \subseteq \text{ran} \alpha \). If \(\max(A) \) and \(\max(A\alpha^{-1}) \) exist then \(\max(A) = [\max(A\alpha^{-1})]\alpha \).

PROOF: Since \(\max(A) \in A \subseteq \text{ran} \alpha \), there exists \(x \in \text{dom} \alpha \) such that \(\max(A) = x\alpha \). Then \(x \in A\alpha^{-1} \), so \(x \leq \max(A\alpha^{-1}) \) and, since \(\alpha \) is order-preserving, we deduce that \(\max(A) \leq [\max(A\alpha^{-1})]\alpha \). Since \(\max(A\alpha^{-1}) \in A\alpha^{-1} \) and \(A \subseteq \text{ran} \alpha \), we know \([\max(A\alpha^{-1})]\alpha \in A\) and this implies \([\max(A\alpha^{-1})]\alpha \leq \max(A) \). Hence, equality holds as required.

LEMMA 2.14. Let X be a poset, \(\alpha \in OP(X) \) and \(A,B \subseteq \text{ran} \alpha \), and suppose \(\max A, \max B, \max(A\alpha^{-1}) \) and \(\max(B\alpha^{-1}) \) exist.

1. If \(\max A = \max B \) then \(\max(A\alpha^{-1}) = \max(B\alpha^{-1}) \).
2. If X is a chain and \(\max A < \max B \) then \(\max(A\alpha^{-1}) < \max(B\alpha^{-1}) \).

PROOF: By Lemma 2.13, \([\max(A\alpha^{-1})]\alpha = \max A\). Therefore, if \(\max A = \max B \), we have \([\max(A\alpha^{-1})]\alpha \in B\) and hence \(\max(A\alpha^{-1}) \in B\alpha^{-1} \). Consequently, \(\max(A\alpha^{-1}) \leq \max(B\alpha^{-1}) \), and a dual argument establishes equality in (1). On the other hand, if \(\max A < \max B \) then Lemma 2.13 implies \([\max(A\alpha^{-1})]\alpha < [\max(B\alpha^{-1})]\alpha \). Therefore, if X is a chain, we must have \(\max(A\alpha^{-1}) < \max(B\alpha^{-1}) \)(since \(\alpha \) is order-preserving).

We can now prove the following result.

THEOREM 2.15. If X is a chain then the semigroup \(OT(X, \mathbb{N}_0) \) is regular.

PROOF: Let \(\alpha \in OT(X, \mathbb{N}_0) \) and note that \(\text{dom} \alpha = X \). For each \(x \in X \), we define \(d_x \in X \) as follows.

CASE I. \(x \in \text{ran} \alpha \). Since \(x\alpha^{-1} \) is nonempty and finite for each \(x \in \text{ran} \alpha \), and X is a chain, we know \(\max(x\alpha^{-1}) \) always exists in this case. So, we put
\[
d_x = \max(x\alpha^{-1}) \quad \text{if} \ x \in \text{ran} \alpha.
\]

CASE II. \(x \notin \text{ran} \alpha \). In this case, \(x \in S(\alpha) \) and this implies \(x\alpha < x \) or \(x < x\alpha \) since X is a chain. Then, from Lemma 2.12, we deduce that \(\{z \in X : x\alpha < z < x\} \) and \(\{z \in X : x < z < x\alpha\} \) are finite sets. In turn this implies \(\{y \in \text{ran} \alpha : x\alpha \leq y < x\} = C \) say, and \(\{y \in \text{ran} \alpha : x < y \leq x\alpha\} = D \) say, are finite sets. Therefore, since \(y\alpha^{-1} \) is finite for each \(y \in \text{ran} \alpha \), the inverse images of C and D are also finite. Hence, if \(x\alpha < x \) then \(C \neq \emptyset \) and \(\max(C\alpha^{-1}) \) exists; and if \(x < x\alpha \) then \(D \neq \emptyset \) and \(\min(D\alpha^{-1}) \) exists. So, in this case, we put
\[
d_x = \begin{cases}
\max(\{y \in \text{ran} \alpha : x\alpha \leq y < x\}\alpha^{-1}) & \text{if } x\alpha < x, \\
\min(\{y \in \text{ran} \alpha : x < y \leq x\alpha\}\alpha^{-1}) & \text{if } x < x\alpha.
\end{cases}
\]
Now let $\beta : X \to X, x \to d_x$ and note that $\alpha = \alpha \beta \alpha$ as in the proof of Theorem 2.11. Also note that

$$\left\{ x \in \text{ran } \alpha : \max (x \alpha^{-1}) \neq x \right\} \subseteq \left\{ x \in \text{ran } \alpha : x \alpha^{-1} \neq \{x\} \right\}$$

and the second set in this display is finite since $S(\alpha)$ is finite. By definition of β, this means $\{ x \in \text{ran } \alpha : x \beta \neq x \}$ is finite. But we have:

$$S(\beta) \subseteq (X \setminus \text{ran } \alpha) \cup \{ x \in \text{ran } \alpha : x \beta \neq x \}$$

where both sets in this union are finite. Hence, $\beta \in T(X, \mathbb{N}_0)$.

To show β is order-preserving, suppose $a < b$ in X and consider four cases.

CASE 1. $a, b \in \text{ran } \alpha$. Then, by definition, $d_a \in \alpha a^{-1}$ and $d_b \in \alpha b^{-1}$, so $d_a < d_b$ by Lemma 2.1.

CASE 2. $a \in \text{ran } \alpha$ and $b \notin \text{ran } \alpha$. Then $b \alpha \neq b$, so $b \alpha < b$ or $b < b \alpha$ since X is a chain, and we consider two possibilities.

(i) Suppose $b \alpha < b$. If $a \in \{ y \in \text{ran } \alpha : b \alpha < y < b \} = B$ say, then

$$\max (a \alpha^{-1}) \leq \max (B \alpha^{-1})$$

which implies $d_a \leq d_b$. On the other hand, if $a \notin B$ then, since $a \in \text{ran } \alpha$ and $a < b$ by supposition, we must have $a < b \alpha$ and so $a < y$ for all $y \in B$. Hence, Lemma 2.1 implies $u < v$ for all $u \in a \alpha^{-1}$ and $v \in B \alpha^{-1}$, and so $\max (a \alpha^{-1}) < \max (B \alpha^{-1})$: that is, $d_a < d_b$.

(ii) Suppose $b < b \alpha$. Then $a < b < b \alpha$, so $a < y$ for all $y \in \text{ran } \alpha$ such that $b < y \leq b \alpha$. Hence, Lemma 2.1 implies

$$\max (a \alpha^{-1}) < \min (\{ y \in \text{ran } \alpha : b < y \leq b \alpha \})$$

and we have shown $d_a < d_b$.

CASE 3. $a \notin \text{ran } \alpha$ and $b \in \text{ran } \alpha$. In this case, $a \alpha < a$ or $a < a \alpha$. Since $a < b$, the first possibility leads to

$$\max (\{ y \in \text{ran } \alpha : a \alpha \leq y < a \}) < \max (b \alpha^{-1})$$

and so $d_a < d_b$. If the second possibility occurs then $a < b \leq a \alpha$ or $a \alpha < b$, and an argument similar to that in the first paragraph of Case 2 leads to

$$\min (\{ y \in \text{ran } \alpha : a < y \leq a \alpha \}) \leq \max (b \alpha^{-1})$$

and it follows that $d_a \leq d_b$.

Case 4. $a \notin \text{ran } \alpha$ and $b \notin \text{ran } \alpha$. Then $a \alpha < a$ or $a < a \alpha$, and similarly for b. So, we put

$$A = \{ y \in \text{ran } \alpha : a \alpha \leq y < a \} \quad \text{and} \quad B = \{ y \in \text{ran } \alpha : b \alpha \leq y < b \}$$

and consider four possibilities.

(i) Suppose $a \alpha < a$ and $b \alpha < b$. Since X is a chain, we have

$$a \alpha \leq y < b \quad \text{if and only if} \quad b \alpha \leq y < b \quad \text{or} \quad a \alpha \leq y < b \alpha.$$

Moreover, $\max B$ exists (as in the definition of d_x in Case II) and this is greater than all $y \in \text{ran } \alpha$ such that $a \alpha \leq y < b \alpha$. Hence, $\max \{ y \in \text{ran } \alpha : a \alpha \leq y < b \}$ exists and it equals $\max B$. Then $a < b$ implies

$$\max A \leq \max \{ y \in \text{ran } \alpha : a \alpha \leq y < b \} = \max B$$

and so Lemma 2.14 implies $\max (A \alpha^{-1}) \leq \max (B \alpha^{-1})$, so $d_a \leq d_b$ as required.

(ii) Suppose $a \alpha < a$ and $b < b \alpha$. Then $a \alpha < a < b < b \alpha$ and so $u < u'$ for all $u \in A$ and $u' \in \{ y \in \text{ran } \alpha : b < y \leq b \alpha \}$. Hence, $v < v'$ for all $v \in A \alpha^{-1}$ and $v' \in \{ y \in \text{ran } \alpha : b < y \leq b \alpha \} \alpha^{-1}$, and it follows that

$$\max (A \alpha^{-1}) < \min \{ \{ y \in \text{ran } \alpha : b < y \leq b \alpha \} \alpha^{-1} \}.$$

Thus, $d_a < d_b$ for this possibility.

(iii) Suppose $a < a \alpha$ and $b \alpha < b$. Then $a < a \alpha \leq b \alpha < b$ and so $u \leq u'$ for all $u \in \{ y \in \text{ran } \alpha : a < y \leq a \alpha \}$ and $u' \in B$. Hence,

$$\max \{ y \in \text{ran } \alpha : a < y \leq a \alpha \} \leq \max B$$

and, using Lemma 2.14, we obtain

$$\min \{ \{ y \in \text{ran } \alpha : a < y \leq a \alpha \} \alpha^{-1} \} \leq \max (B \alpha^{-1}).$$

Thus, $d_a \leq d_b$ for this possibility.

(iv) Suppose $a < a \alpha$ and $b < b \alpha$. An argument dual to that in (i), which uses the dual of Lemma 2.14, shows that $d_a \leq d_b$ for this possibility.

Hence, $a < b$ implies $a \beta \leq b \beta$ in all possible cases, and the Theorem is completely proved.
3. ORDER-PRESERVING TRANSFORMATIONS OF NON-CHAINS

Very little (if any) research appears to have been done on semigroups of order-preserving transformations of arbitrary posets. In this section, we suppose X is not a chain and determine when $OP(X)$ is regular, and then we state conditions under which $OT(X)$ is regular. We need two preliminary results, the first of which we are unable to find in the literature. If X is a poset, we say $a \in X$ is isolated if for every $x \in X$, $x \leq a$ or $x \geq a$ implies $x = a$, and X is isolated if all its elements are isolated.

Lemma 3.1. Suppose X is a poset which is not a chain. If X is not isolated then it contains a subposet with one of the following forms:

- $\Pi_1 = \{a, b, c : \{a, c\} \text{ and } \{b, c\} \text{ are isolated, and } a < b\}$
- $\Pi_2 = \{a, b, c : \{b, c\} \text{ is isolated, and } a < b, a < c\}$
- $\Pi_3 = \{a, b, c : \{b, c\} \text{ is isolated, and } b < a, c < a\}$

Proof: Since X is not isolated, it contains a non-isolated element a, say. Then there exists $b \in X$ with $a < b$ or $b < a$ and, without loss of generality, we assume $a < b$. By Zorn's Lemma, there is a maximal chain M in X containing a and b; and, since X is not a chain, we can choose $c \in X \setminus M$. If c is not comparable with any element of M, we obtain Π_1. On the other hand, suppose $d < c$ for some $d \in M$ and note that, in this case, if $y \in M$ and $y < d$ then $y < c$. Therefore, if for every $x \in M$, $d < x$ implies $c < x$ or $x < c$, we deduce that $M \cup \{c\}$ is a chain, contradicting the maximality of M. Hence, there exists $e \in M$ such that $d < e$ and $c \not< e$ and $e \not< c$, and we obtain Π_2. Finally, if $c < d$ for some $d \in M$, the dual of the above argument gives us Π_3. □

Lemma 3.2. Suppose X is a poset which contains a subposet of the form Π_1, Π_2 or Π_3. If S denotes one of the semigroups $OP(X),OI(X),OP(X,\mathbb{N}_0)$ or $OI(X,\mathbb{N}_0)$ then S is not regular.

Proof: We consider three cases. □

Case 1. X contains Π_1. Let $\alpha \in P(X)$ satisfy: $\text{dom} \alpha = \{a, c\}$ and $\alpha a = b, \alpha c = a$. Then, $\alpha \in S$ since $\{a, c\}$ is isolated. Suppose $\alpha = \alpha \beta \alpha$ for some $\beta \in S$. Then $b = \alpha \alpha = (b\beta)\alpha$ and $a = \alpha c = (a\beta)\alpha$ which implies $b\beta = a$ and $a\beta = c$. But, since $a < b$ and $c \not< a$, this means β is not order-preserving, a contradiction. Hence, α is not a regular element of S.

Case 2. X contains Π_2. Let $\alpha \in P(X)$ satisfy: $\text{dom} \alpha = \{b, c\}$ and $\beta a = b, \beta c = a$. Then, $\alpha \in S$ since $\{b, c\}$ is isolated. Suppose $\alpha = \alpha \beta \alpha$ for some $\beta \in S$. Then $b = \beta \alpha = (b\beta)\alpha$ and $a = \alpha c = (a\beta)\alpha$ which implies $b\beta = b$ and $a\beta = c$. But, since $a < b$ and $c \not< b$, this means β is not order-preserving, a contradiction. Hence, α is not a regular element of S.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 05 Aug 2021 at 23:50:20, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S000497270001902X
CASE 3. X contains Π_3. The result follows in this case by recalling the notation at the start of Section 2 and applying Case 2 to $S(X, \leq_{\text{opp}})$.

The next result now follows easily from the above Lemmas.

Theorem 3.3. Let X be a poset which is not a chain and suppose S is one of the semigroups $OP(X), OI(X), OP(X, \mathfrak{R}_0)$ or $OI(X, \mathfrak{R}_0)$. Then S is regular if and only if X is isolated.

In [1, pp.27-33], Changphas provides various conditions under which $OT(X)$ is or is not regular when X is not a chain. We summarise some of that work in the following three results without proof.

Theorem 3.4. Suppose X is a poset. Then $OT(X)$ is not regular if X contains a subposet of the form

\[\{a, b, c, d : \{a, b\} \text{ is isolated, and } d < c < a \text{ and } d < c < b\} \]

or

\[\{a, b, c, d : \{a, b\} \text{ and } \{b, c\} \text{ are isolated, and } d < c < a \text{ and } d < b\}. \]

Theorem 3.5. Suppose X is a poset and let $m(X) [M(X)]$ denote the set of all minimal [maximal] elements of X. Then $OT(X)$ is regular if $X = m(X) \cup M(X)$ and $x < y$ for all $x \in m(X)$ and $y \in M(X)$.

Theorem 3.6. Suppose X is a poset with a minimum element 0 and a maximum element 1. Then $OT(X)$ is regular if $\{x, y\}$ is isolated for all distinct $x, y \in X \setminus \{0, 1\}$.

References

Department of Mathematics Department of Mathematics
Chulalongkorn University Khon Kaen University
Bangkok 10330 Khon Kaen 40002
Thailand Thailand