ENGEL CONGRUENCES IN GROUPS OF
PRIME-POWER EXPONENT

N. D. GUPTA AND M. F. NEWMAN

It is a well-known result of Sanov (5) that groups of exponent p* (p prime)
satisfy the (kp* — 1)th Engel congruence (definition below). Recently, an alter-
native proof of this has been given by Glauberman, Krause, and Struik (3).
Bruck (2) has conjectured that such groups satisfy the (kp* — (k — 1)p*1—1)th
Engel congruence. In this note we go some way towards proving this.

THEOREM 1. Groups of exponent p* satisfy the (kp* — 1 — X524 pt + k)th
Engel congruence.

For & = 2, a slight modification of our argument proves Bruck’s conjecture.

THEOREM 2. Groups of exponent p* satisfy the (2p* — p — 1)th Engel
congruence.

This result is close to best possible for there are metabelian groups (1,
Corollary 2) of exponent p? which do not satisfy the (2p? — 2p — 1)th Engel
congruence.

As usual, we write [a, 0] for the commutator a~~'ab, use the left-normed
convention [a, b, ¢] = [[a, 0], ¢] and define [a, #b] = [a, (n — 1)b, b] for
n 2 2. The nth term v, (G) of the lower central series of a group G is the normal
subgroup generated by the commutators [ay, ..., a,] foralla,, ..., a,in G. If
la, nb] € v,42(G), then G satisfies the nth Engel congruence.

Let p be a prime and % a positive integer; let F be free in the variety of groups
of exponent p* freely generated by ¥ = {v,, y1, . ..}. For each commutator ¢
with entries in Y, let w;(c) denote its weight in y; and w(c) its weight. Let Z
be the subset of commutators-in-Y defined (recursively) by: ¢ € Z if

(@) wo(c) 21 and w(c) = 2;
thus ¢ = [cy, €2}, and

(b) ¢c1 € Z,orcy € Z,or forall 7in {1, 2}, we(c;) = 1 or w(c;) = 2.
Clearly, Z is closed under commutation. The subgroup K generated by Z is
normal because F has finite exponent. Consider G = F/K and let d be the
coset yoK. Obviously, the normal closure N of d is abelian. Let T be the
multiplicative subgroup of the endomorphism ring E of N consisting of the
automorphisms induced in N by the action of G, that is, £ € T if and only if
there is an x in G such that d*¢ = x~1d*x for all d* € N. Let P be the subring
of E generated by T, then, clearly, P is a commutative ring with identity one.
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Since G has exponent dividing p*, we have (4, equation (3)) that

k=1 r(n)

&y I @ -1 =0
forall £;,in T'and all % € {0, ..., k& — 1}, where f(r) = p¥—" — pF—7-1
We now prove by double induction on ¢t —k € {0, ..., & — k — 1} and
s €40, ..., f()} that
t—1 f(r)+(r) 7()—s 7()+1=6n,t
@ I I G- I1 @' -1 I -1~
r=h i=1 i=1 i=f(0)—s+1
k=1 7(n)
X IT [T " -1n=0
r=t+1 i=1

for all &; in I, where 6() =1—68,, —p(1 — 8_1,,) and 6,,, = 0 for
m#= n and 8y, = 1. For t —h =0, s =0 this comes from (1). Suppose
that the result is true for some t — 2 € {0, ..., k. —h — 2} and s = f(¢),
then putting £;; = &,¢4n + L1fore € {f(¢) +6¢) + 1,...,f¢) + 6@¢) + p}
gives the result for t — & 4+ 1, s = 0. Finally, suppose that the result is true

uptosomet —h €{0,...,k —h — 1} and some s € {0, ..., f(t) — 1}. Let
t—1 r(r)+8(r) . f()—s—1 . F(D+1-8n,:¢ .
p=2"I1 Il Gw—-0" Il & -1 I G.—1"
r=h i=1 i=1 i=r(t)—s+1
k=1 f(n .
x IT IT G = 1),
r=1t+1 i=1

then by the inductive hypothesis, p(&(y—s,: — 1) = 0 and pp = 0 (the latter
has % replaced by # + 1 and thus has lower ‘¢ — &’’). The binomial theorem
then gives p(&,(y—s,: — 1)? = 0 which is the case ¢ — k, s -+ 1. Thus (2) is
proved.
Putting 2 = 0,¢t =%k — 1, and s = f(¢ — 1) in (2) yields
k=1 f(D+8(r)

®@) IT Il ¢G.—-1D"=0

=0 i=1

for all £;;in T. Let

m, = ?:6 (fG) +6@()) and m = my_s;
then (3) yields, in particular,

c = [3’0, yly e ey ymor pymo-}»ly “ ey Pymu ) pk—lym] 6 K

Hence, using a lemma of Higman's (see 6, Lemma 5.1), ¢ can be written as a
product of elements of Z each of which has positive weight in v1, ..., Ym.
Putting ¥1 = y» = ... = ¥, in this we have that [y,, kp*~1(p — 1)y:] can be
written as a product of commutators of weight at least 2 in y, and at least m
in ¥;. By a lemma of Lyndon (see 3, Lemma 4.1) the 2 in the last sentence can
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be replaced by p. Since F is relatively free, yo can be replaced in the resulting
expression by
1 pP—1
yo, \ B — P—_‘_l“ +k—=1)y
k

[yo, n31] € Yayo(F),  where n =kp" —1— %:_Tl + k.

to yield

Theorem 1 then follows.

The proof of Theorem 2 is similar. We have (4, equation (10) with & = 2)

that
p(p—1)

p ] G.—1)=0 forallfin T
i=1

and thus, taking # = 0 and £ = 2 in (1) and applying the binomial theorem,
we obtain
p(p—=1)

p-1
I ¢:=DJ] = 1)"=0 forall &, n,in T.
i=1 1==1
Hence, in particular,

Yo Y10+ oy Yooy PYoo-141 + -+ PY2] € K

and, arguing as before, [yo, (2p2 — p — 1)y1] € vop2—py1(F), and Theorem 2
follows.
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