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C∗-Crossed-Products by an Order-Two
Automorphism

Man-Duen Choi and Frédéric Latrémolière

Abstract. We describe the representation theory of C∗-crossed-products of a unital C∗-algebra A by

the cyclic group of order 2. We prove that there are two main types of irreducible representations for

the crossed-product: those whose restriction to A is irreducible and those who are the sum of two

unitarily unequivalent representations of A. We characterize each class in term of the restriction of the

representations to the fixed point C∗-subalgebra of A. We apply our results to compute the K-theory

of several crossed-products of the free group on two generators.

1 Introduction

This paper explores the structure of the representation theory of C∗-crossed-

products [5] of unital C∗-algebras by order-two automorphisms. We show that ir-

reducible representations of the C∗-crossed-products A ⋊ Z2 of a unital C∗-algebra

A by Z2 fall into two categories: either their restriction to A is already irreducible,

or it is the direct sum of two irreducible representations of A that are related by the

automorphism and not unitarily equivalent to each other.

Given a unital C∗-algebra A and an order-two automorphism σ of A, the C∗-

crossed-product A ⋊σ Z2 is the C∗-algebra generated by A and a unitary W with

W 2
= 1 satisfying the following universal property: if ψ : A → B is a unital ∗-

morphism for some unital C∗-algebra B such that B contains a unitary u satisfying

u2
= 1 and uψ(a)u∗

= ψ◦σ(a) for all a ∈ A, then ψ extends uniquely to A⋊σ Z2 with

ψ(W ) = u. The general construction of A ⋊σ Z2 can be found in [5]. In particular,

W = W ∗ since W is unitary, the spectrum of W is {−1, 1} and WaW ∗
= σ(a) for

all a ∈ A. We call the unitary W the canonical unitary of A ⋊σ Z2. Proposition 2.2

will offer an alternative description of A ⋊σ Z2.

The questioqn raised in this paper is: what is the connection between the represen-

tation theory of A ⋊σ Z2 and the representation theory of A? Of central importance

is the fixed point C∗-algebra A1 for σ defined by A1 = {a ∈ A : σ(a) = a} and the

natural decomposition A = A1 + A−1 where A−1 = {a ∈ A : σ(a) = −a}, with

A1 ∩A−1 = {0}. We obtain a complete description of the irreducible representations

of A ⋊σ Z2 from the representation theory of A and A1.

Note that, if we considered the crossed-product A ⋊σ Z instead of A ⋊σ Z2, then

our work applies as well, thanks to a simple observation made at the end of Section 2.

The rest of the paper focuses on applications to examples. We are interested in

several natural order-two automorphisms of the full C∗-algebra of free group F2,
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namely the universal C∗-algebra generated by two unitaries U and V . We define the

automorphism α by α(U ) = U ∗ and α(V ) = V ∗, while β is the automorphism

defined by β(U ) = −U and β(V ) = −V . We compute the K-theory of the C∗-

crossed-products for these two automorphisms, relying in part on our structure the-

ory for their representations. A third natural automorphism, γ, is defined uniquely

by γ(U ) = V and γ(V ) = U . It is the subject of the companion paper [1], which

emphasizes the interesting structure of the associated fixed point C∗-algebra and uses

different techniques from the representation approach of this paper.

2 Representation Theory of Crossed-Products

In this section, we derive several general results on the irreducible representations of

the crossed-product C∗-algebra A ⋊σ Z2 where σ is an order-2 automorphism of the

unital C∗-algebra A. We recall that A ⋊σ Z2 is the universal C∗-algebra generated by

A and a unitary W such that W 2
= 1 and WaW ∗

= σ(a).

2.1 Representations from the Algebra

A central feature of the crossed-products by finite groups is their connection with

the associated fixed point C∗-algebra [4]. In our case, the following easy lemma will

prove useful:

Lemma 2.1 Let A be a unital C∗-algebra and σ an order-2 automorphism of A. The

set A1 = {a + σ(a) : a ∈ A} is the fixed point C∗-algebra of A for σ and the set

A−1 = {a − σ(a) : a ∈ A} is the space of elements b ∈ A such that σ(b) = −b. Then

A = A1 + A−1 and A1 ∩ A−1 = {0}.

Proof If a is any element in A then a+σ(a) (resp. a−σ(a)) is a fixed point for σ (resp.

an element b ∈ A such that σ(b) = −b). Conversely, let x ∈ A. Then x =
1
2

(
x +

σ(x)
)

+ 1
2

(
x−σ(x)

)
. If x is σ-invariant then x−σ(x) = 0 so x =

1
2

(
x+σ(x)

)
indeed,

and thus the fixed point C∗-algebra is A1 (similarly {b ∈ A : σ(b) = −b} = A−1).

Of course, if a ∈ A1 ∩ A−1, then σ(a) = a = −a so a = 0.

We exhibit a simple algebraic description of the crossed-product.

Proposition 2.2 Let σ be an order 2-automorphism of a unital C∗-algebra A. Then

the C∗-crossed-product A ⋊σ Z2 is ∗-isomorphic to

{[
a b

σ(b) σ(a)

]
: a, b ∈ A

}
⊆ M2(A)

via the following isomorphism: a ∈ A 7→
[

a 0
0 σ(a)

]
and W 7→

[
0 1
1 0

]
, where W is the

canonical unitary of A ⋊σ Z2.

Proof Let ψ : a ∈ A 7→
[

a 0
0 σ(a)

]
∈ M2(A) and set ψ(W ) =

[
0 1
1 0

]
∈ M2(A).

Since ψ(W )ψ(a)ψ(W ) = ψ
(
σ(a)

)
we deduce by universality that ψ extends to a

(unique) ∗-automorphism of A ⋊σ Z2 valued in M2(A). Now, let c ∈ A ⋊σ Z2. By

construction of A ⋊σ Z2, there exists a sequence (an + bnW )n∈N with an, bn ∈ A such
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that c = limn→∞ an + bnW in A ⋊σ Z2. Now, ψ(an + bnW ) =
[

an bn

σ(bn) σ(an)

]
for

all n ∈ N, and converges to ψ(c) =
[

c11 c12
c21 c22

]
when n → ∞. In particular, (an)n∈N

converges to c11 ∈ A and (bn)n∈N converges to c12 ∈ A. Consequently, c = c11 +c12W .

Hence A + AW is a closed dense ∗-subalgebra of A⋊σ Z2 and thus A⋊σ Z2 = A + AW .

Moreover, if ψ(c) = 0 then, writing c = a + bW , by definition of ψ, we get

ψ(c) =
[

a b
σ(b) σ(a)

]
= 0, so a = b = 0, hence c = 0. Thus ψ is a ∗-isomorphism from

A ⋊σ Z2 onto the C∗-algebra
{[

a b
σ(b) σ(a)

]
: a, b ∈ A

}
⊆ M2(A).

In other words, the abstract canonical unitary W of A⋊σ Z2 can be replaced by the

concrete unitary
[

0 1
1 0

]
and A ⋊σ Z2 can be seen as the C∗-algebra ψ(A) + ψ(A)

[
0 1
1 0

]

in M2(A) with ψ : a ∈ A 7→
[

a 0
0 σ(a)

]
. Equivalently, the ∗-subalgebra A + AW in

A ⋊σ Z2 is in fact equal to A ⋊σ Z2.

From the algebraic description of Proposition 2.2 we get a family of represen-

tations of the crossed-product described in the following proposition. These rep-

resentations are in fact induced representations from the sub-C∗-algebra A to the

C∗-algebra A ⋊σ Z2 in the sense of [3].

Proposition 2.3 Let A be a unital C∗-algebra and σ be an order two automorphism

of A. Let W be the canonical unitary of the crossed-product A ⋊σ Z2 such that WaW =

σ(a) for all a ∈ A. Then for each representation π of A on some Hilbert space H there

exists a representation π̃ of A ⋊σ Z2 on H ⊕ H defined by π̃(a) = π(a) ⊕ π ◦ σ(a) for

all a ∈ A and π̃(W ) =
[

0 1
1 0

]
.

Moreover, the following are equivalent:

• the representation π̃ is irreducible;
• the representation π is irreducible and not unitarily equivalent to π ◦ σ;
• there does not exist a unitary U ∈ B(H) such that UπU ∗

= π ◦ σ and U 2
= 1.

If π is a faithful representation of A then π̃ is faithful for A ⋊σ Z2. In particular,

if A has a faithful representation that is a direct sum of finite representations, so does

A ⋊σ Z2.

Proof Let π be a given representation of A. Then by setting π̃(a) = π(a)⊕π
(
σ(a)

)

and π̃(W ) =
[

0 1
1 0

]
, we define a ∗-representation of A⋊σZ2 by universality of A⋊σZ2.

In fact, π̃ =
[

π 0
0 π

]
◦ ψ, where ψ is the isomorphism of Proposition 2.2.

Let us now assume that π is irreducible and not unitarily equivalent to π ◦ σ.

Assume V is an operator commuting with π̃. Then since V commutes with π̃(W ),

we have V =
[

a b
b a

]
for some a, b ∈ B(H). Now, since V commutes with π⊕ (π ◦σ)

we conclude that a commutes with π and, as π is irreducible, this implies that V =[
λ1 b
b λ1

]
for some λ ∈ C and where 1 is the identity on H. Hence, V commutes with

π̃ if and only if
[

0 b
b 0

]
does. Now, if

[
0 b
b 0

]
commutes with π̃(A ⋊σ Z2) then so does

its square
[

b2 0
0 b2

]
. Hence again b2

= µ1 by irreducibility of π, and up to replacing b

by 1
2
(b + b∗) we can assume that b is self-adjoint and thus µ ≥ 0.

Assume that µ 6= 0. Set u = (
√

µ)−1b: then u = u∗ and u2
= 1, so u is unitary.

Moreover, as 1√
µ

V =
[

0 u
u 0

]
commutes with π(c) ⊕

(
π ◦ σ(c)

)
for all c ∈ A, we

check that uπ
(
σ(c)

)
= π(c)u, so u∗π(c)u = π

(
σ(c)

)
for all c ∈ A. Hence, we have
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reached a contradiction, as we assumed that π is not unitarily equivalent to π ◦ σ.

Therefore µ = 0 and thus V = λ(1 ⊕ 1), so π̃ is irreducible.

Conversely, if there exists a unitary u such that u2
= 1 and uπu∗

= π ◦σ, then the

operator V =
[

0 u
u 0

]
commutes with π̃, so π̃ is not irreducible.

On the other hand, if π is reducible, then let p be a nontrivial projection of H

such that pπ = πp. Then p ⊕ p is a nontrivial projection commuting with π̃, as can

easily be checked (it is obvious on π̃(A) and easy for π̃(W )). Hence π̃ is reducible as

well. This proves the first two equivalences.

Now, we observe that π is unitarily equivalent to π ◦ σ if and only if there exists

a unitary u with u2
= 1 such that uπu∗

= π ◦ σ. One implication is trivial; let us

check the easy other one. Let v be unitary such that vπv∗ = π ◦ σ. Then v2πv∗2
=

π ◦ σ2
= π. Hence, as π is irreducible, v2

= exp(2iπθ)1 for some θ ∈ [0, 1). Hence,

u = exp(−iπθ)v satisfies both u2
= 1 and π ◦ σ = uπu∗.

Proposition 2.3 describes a family of representations and gives us a criterion for

their irreducibility. Conversely, given an irreducible representation of A ⋊σ Z2, what

can be said about its structure relative to the representation theory of A and its fixed

point algebra A1? This is the subject of the next section, which establishes a sort of

converse for Proposition 2.3.

2.2 Irreducible Representations

The following theorem is the main result of this paper and shows that any irreducible

representation of A⋊σ Z2 is built from either a single unitary representation of A (and

is then just an extension of it) or from two non-equivalent irreducible representations

of A.

Theorem 2.4 Let σ be an order-two-automorphism of a unital C∗-algebra A. We

denote by W the canonical unitary of the C∗-crossed-product A⋊σ Z2 such that WaW =

σ(a) for all a ∈ A.

Let π be an irreducible representation of A ⋊σ Z2 on a Hilbert space H. Let π ′ be

the restriction of π to A and π ′ ′ be the restriction of π to the fixed point C∗-algebra A1.

Then one and only one of the following two alternatives hold:

(i) The operator π(W ) is either the identity Id or − Id and π(A ⋊σ Z2) = π ′(A) =

π ′ ′(A1).

(ii) The spectrum of π(W ) is {−1, 1}. Then H = H1 ⊕H−1 where Hε is the spectral

Hilbert space of π(W ) for the eigenvalue ε. With this decomposition of H, we have

π(W ) =
[

1 0
0 −1

]
. Let us write π ′(a) =

[
α(a) β(a)
γ(a) δ(a)

]
for a ∈ A. Then α, δ restrict

to irreducible representations of A1, and α(A−1) = δ(A−1) = {0}. Moreover,

β(A1) = γ(A1) = {0}.

Furthermore, the representation π ′ is irreducible if and only if α and δ are not uni-

tarily equivalent.

Proof Let π be an irreducible representation of A ⋊σ Z2 on H. Let w = π(W ). Since

w is unitary and w2
= 1, the spectrum of w is either {−1, 1} or w = 1 or w = −1.

In the latter two cases, w commutes with π(A ⋊σ Z2). Since A ⋊σ Z2 = A + AW from
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Proposition 2.2, we have π(A ⋊σ Z2) = π ′(A) + π ′(A)w = π ′(A) (as w = ±1). Thus

as π is irreducible, so is π ′. Moreover, since wπ ′(a)w = π ′(a) = π ′ ◦ σ(a), we see

that π ′ is null on A−1 and thus π ′
= π ′ ′. Conversely if π(A−1) = 0 then w must

commute with π(A) = π(A1) and thus with π(A ⋊σ Z2) = π(A) +π(A)w. Therefore,

as π is irreducible, w is scalar, and as w unitary and w2
= 1 we conclude w is 1 or −1.

Assume now that the unitary w has spectrum {−1, 1}. Write H = H1 ⊕ H−1

accordingly. In this decomposition, we have

w =

[
1 0

0 −1

]
and π(a) =

[
α(a) β(a)

γ(a) δ(a)

]

where α, β, γ, δ are linear maps on A. Thus,

wπ(a)w∗
=

[
α(a) −β(a)

−γ(a) δ(a)

]
.

In particular, if a ∈ A−1, then π ◦ σ(a) = −π(a) so α(a) = −α(a) = 0. Since

A = A1 ⊕ A−1 as a vector space, we conclude that α(a) ∈ α(A1) for all a ∈ A.

Similarly δ(a) ∈ δ(A1), β(a) ∈ β(A−1) and γ(a) ∈ γ(A−1) for all a ∈ A while

γ(A1) = β(A1) = {0}.

Consequently, π ′ ′
= α ⊕ β and α, β are representations of A1 (but not of A).

We observe that A ⋊σ Z2 = A + AW by Proposition 2.2, so

π(A ⋊σ Z2) =

{[
α(a1) + α(a2) β(a1) − β(a2)

γ(a1) + γ(a2) δ(a1) − δ(a2)

]
: a1, a2 ∈ A

}
.

(Note that w is given in this form by a1 = 1 and a2 = 0, since 1 ∈ A1 so β(a1) =

γ(a1) = 0.) Now, α(a) ∈ α(A1) for all a ∈ A, so {α(a1) + α(a2) : a1, a2 ∈ A} is the

set α(A1). Furthermore, since π is irreducible, we have π(A ⋊σ Z2) ′ ′ = B(H), i.e.,

the range of π is SOT-dense, and in particular α(A1) is SOT-dense in B(H1), so α is

an irreducible representation of A1 on H1. The same applies to δ.

We now distinguish according to the two following cases: either α and δ are uni-

tarily equivalent as representations of A1 or they are not.

Assume that α and δ are not unitarily equivalent. Let us assume P is a projection

which commutes with π ′. Then in particular, P commutes with π ′ ′. Writing P =[ p11 p12
p21 p22

]
, this gives the relations

[
α 0

0 δ

] [
p11 p12

p21 p22

]
=

[
αp11 αp12

δp21 δp22

]
,

[
p11 p12

p21 p22

] [
α 0

0 δ

]
=

[
p11α p12δ

p21α p22δ

]
.

Hence, since both α and δ are irreducible, we deduce that p11, p22 are scalar. Now, as

P is a projection, p11 = p∗
11 and ‖p11‖ ≤ 1 so p11 ∈ [−1, 1]. Again since P = P∗

=

P2, we have p12 = p∗
21 and p12 p∗

12 + p2
11 = p11 ∈ R. Assume λ = p11(1 − p11) 6= 0.

Since p11 ∈ [−1, 1], we have λ ∈ [0, 1]. Then ν =
1√
λ

p12 is a unitary operator and
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since αp12 = p12δ, we obtain ναν∗
= δ. This contradicts our assumption that α and

δ are not unitarily equivalent. Hence λ = 0 and so p11 = 1 or 0 and p12 = 0 (since

p12 p∗
12 = 0). Now, again since P is a projection, p2

22 + p12 p∗
12 = p22 yet p12 = 0 and

p22 is a scalar so p22 = 0 or 1 as well. Thus, in the decomposition H = H1 ⊕ H−1

the projection P is either 0 ⊕ 0, 1 ⊕ 0, 0 ⊕ 1 or 1 ⊕ 1.

Now, the first part of this proof established that π(W ) must be scalar if π is irre-

ducible and π(A) = π(A1). Since we assume that π(W ) is not scalar, we conclude

that π(A) 6= π(A1). Consequently, there exists a0 ∈ A\A1 such that π(a0) is not di-

agonal in the decomposition H1 ⊕ H−1. Thus π(a0) does not commute with
[

1 0
0 0

]

and
[

0 0
0 1

]
. So P is scalar, and thus π ′ is irreducible. Note that π(W )π ′(a)π(W ) =

π ′ ◦ σ(a) for all a ∈ A, so π ′ is unitarily equivalent to π ′ ◦ σ.

Conversely, assume α and δ are unitarily equivalent. Assume moreover that π ′

is irreducible. Then π ′(A) is WOT-dense in B(H1 ⊕ H−1). In particular, π(W ) =[
1 0
0 −1

]
is the limit of a WOT-converging net

(
π ′(aλ)

)
λ∈Λ

in π ′(A). Since we assume

that there exists a unitary u ∈ B(H1,H−1) such that for all a ∈ A we have α(a) =

uδ(a)u∗, and since the map c ∈ B(H1) 7→ ucu∗ is WOT-continuous, we get the

contradiction 1 = limλ∈Λ α(aλ) = u
(

limλ∈Λ δ(aλ)
)

u∗
= u(−1)u∗

= −1. Hence, if

α and δ are unitarily equivalent then π ′ is reducible.

We can extend Theorem 2.4 with the following description of some irreducible

representations of A ⋊σ Z2 which completes the statement of Proposition 2.2.

Proposition 2.5 Let σ be an order-two automorphism of A and let A1 = {a ∈ A :

σ(a) = a} be the associated fixed point C∗-algebra. Let π be an irreducible repre-

sentation of A ⋊σ Z2 on a Hilbert space and π ′ ′ its restriction A1. Then the following

statements are equivalent:

• π ′ ′ is the direct sum of exactly two unitarily equivalent representations, where each

is an irreducible representation on A1.
• π is unitarily equivalent to a representation ρ such that ρ(W ) =

[
0 1
1 0

]
and ρ(a) =[

ρ ′(a) 0

0 ρ ′◦σ(a)

]
, where ρ ′ is an irreducible representation of A and W is the canonical

unitary in A ⋊σ Z2 and ρ ′ is not unitarily equivalent to ρ ′ ◦ σ.

The proof of this proposition relies upon the following lemma.

Lemma 2.6 Let H be a Hilbert space. Let A, B be two bounded linear operators on

H such that BTA = ATB for all bounded linear operators T on H. Then A and B are

linearly dependent.

Proof The result is obvious if A = 0 or B = 0, so we assume henceforth that A 6= 0

and B 6= 0. Let γ ∈ H such that Aγ 6= 0. Assume that there exists x0 ∈ H such

that {Ax0, Bx0} is linearly independent. Then let T be any bounded linear operator

such that T(Ax0) = 0 and T(Bx0) = γ. Such a T is well defined by the Hahn–Banach

theorem. But then 0 = BTAx0 = ATBx0 = Aγ which is a contradiction. Hence for

all x ∈ H there exists λx ∈ C such that Bx = λxAx.

Now, let y ∈ H. Let T be any bounded operator on H such that TAγ = y. Then

we compute By = BTAγ = ATBγ = AT(λγAγ) = λγAy. Hence B = λγA. This

concludes our theorem.
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Note that we can prove the following similarly.

Lemma 2.7 Let A, B be two bounded operators on a Hilbert space H and assume that

for all bounded operators T of H we have ATA∗
= BTB∗. Then there exists θ ∈ [0, 1)

such that B = exp(2iπθ)A.

We can then prove Proposition 2.5.

Proof of Proposition 2.5 We use the same notations as in Theorem 2.4 and its proof.

We can now work out in greater detail the decomposition of π ′ when α and δ are

unitarily equivalent, i.e., when there exists a unitary u ∈ B(H1,H−1) such that α =

uδu∗. By conjugating π with u ′
=

[
1 0
0 u

]
, we obtain u ′π(a)u ′∗

=
[

α(a) β(a)u∗

uγ(a) α(a)

]
. To

ease notation, we set β ′ : a ∈ A 7→ β(a)u∗ and γ ′ : a ∈ A 7→ uγ(a). We also denote

H1 by J and (up to a trivial isomorphism) we write H = J ⊕ J. Now α, β ′, and γ ′

are all linear maps on J. The representation u ′πu ′∗ is denoted by θ.

Let b ∈ A1 and a ∈ A−1. Then (ba)2 ∈ A1 and

[
α
(

(ba)2
)

0

0 α
(

(ba)2
)
]

= θ
(

(ba)2
)

=
(
θ(b)θ(a)

) 2

=

([
α(b) 0

0 α(b)

] [
0 β ′(a)

γ ′(a) 0

])2

=

[
α(b)β ′(a)α(b)γ ′(a) 0

0 α(b)γ ′(a)α(b)β ′(a)

]
,

and thus for all a ∈ A−1 and b ∈ A1 we have

α(b)β ′(a)α(b)γ ′(a) = α(b)γ ′(a)α(b)β ′(a).

Now, since α(A1) is SOT-dense in B(J), we conclude that for all T ∈ B(J) we have

for all a ∈ A−1

Tβ ′(a)Tγ ′(a) = Tγ ′(a)Tβ ′(a)

and thus we have β ′(a)Tγ ′(a) = γ ′(a)Tβ ′(a) for all T ∈ B(J) and a ∈ A−1. By

Lemma 2.6, for each a ∈ A−1 there exists λ(a) ∈ C such that λ(a)β ′(a) = γ ′(a). On

the other hand, let a, b ∈ A−1 be given. Then

λ(a)β ′(a) + λ(b)β ′(b) = γ ′(a) + γ ′(b) = λ(a + b)β ′(a + b)

= λ(a + b)β ′(a) + λ(a + b)β ′(b).

If β ′(a) and β ′(b) are linearly independent then λ(a) = λ(b) = λ(a + b) (thus λ is

constant if β ′(A−1) is at least two dimensional).

If instead, β ′(a) = tβ ′(b) for some t ∈ C, then we get

λ(ta)β ′(ta) = γ ′(ta) = tγ ′(a) = tλ(a)β ′(a).

Hence, if t 6= 0 and β ′(a) 6= 0, then λ(ta) = λ(a).

https://doi.org/10.4153/CMB-2010-008-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-008-4


44 M-D. Choi and F. Latrémolière

Thus, if a, b ∈ A−1 and a, b are not in ker β ′, then λ(a) = λ(b) (as {a, b} is either

linearly independent or they are dependant but β ′(a) and β ′(b) are not zero). We can

make the choice we wish for λ(a) when a ∈ ker β ′, so naturally we set λ(a) = λ(b)

for any b ∈ A−1\ ker β ′ (note that A−1\ ker β ′ 6= ∅ since θ is irreducible and since

β ′(a) = γ ′(a∗)∗ for all a ∈ A). With this choice, we have shown that there exists a

λ ∈ C such that λβ ′(a) = γ ′(a) for all a ∈ A−1.

Moreover, let a ∈ A−1. Then β ′(a∗) = γ ′(a)∗ and β ′(a)∗ = γ ′(a∗) by definition

of β ′ and γ ′, yet γ ′(a) = λβ ′(a). So if a = a∗, then

γ ′(a) = λβ ′(a) = λβ ′(a∗) = λγ ′(a)∗ = λ
(
λβ ′(a)

)∗

= |λ|2β ′(a)∗ = |λ|2γ ′(a).

Now, suppose that γ ′(a) = 0 for all a = a∗ ∈ A−1. By assumption, γ ′ is not zero

(since then β ′ would be since β ′(a) = γ ′(a∗)∗ and then θ would be reducible), so

there exists a ∈ A−1 such that a∗ = −a and γ ′(a) 6= 0 (since γ ′ linear and every

element in A−1 is of the sum of a self-adjoint and anti-selfadjoint element in A−1).

But then ia is self-adjoint, and since γ ′ is linear, γ ′(ia) = 0. This is a contradiction.

Hence there exists a ∈ A−1 such that a = a∗ and γ ′(a) 6= 0. Therefore, |λ|2 = 1. Let

η be any square root of λ in C.

Set ν =
[

1 0
0 η

]
and ψ = νθν∗ so that

ψ(a) =

[
α(a) ηβ ′(a)

ηβ ′(a) α(a)

]
.

Let v ′
=

1√
2

(
1 1
1 −1

]
so that

v ′ψ(a)v ′∗
=

[
α(a) + ηβ ′(a) 0

0 α(a) − ηβ ′(a)

]
.

Letting ϕ = α + ηβ ′ we see that ϕ is a ∗-representation of A and that π is unitarily

equivalent to the representation πϕ defined by πϕ(a) =
[

ϕ(a) 0
0 ϕ(σ(a))

]
and πϕ(W ) =[

0 1
1 0

]
. In particular, π ′

= ϕ ⊕ ϕ ◦ σ is a reducible representation of A.

Note that we could have done the same proof by limiting ourselves to the case

where a ∈ A−1 is selfadjoint and by calculating π(a)∗π(a), using Lemma 2.7 instead

of Lemma 2.6.

We easily observe that both types of representations described in Proposition 2.3

and Theorem 2.4 do actually occur.

Example 2.8 Let A = M2 and σ : a ∈ M2 7→ WaW , where W =
[

1 0
0 −1

]
. All

irreducible representations of M2 ⋊σ Z2 are unitarily equivalent to the identity rep-

resentation of M2.

Example 2.9 Let A = C(T) and σ : f 7→ f ◦ σ∗, where σ∗ : ω ∈ T 7→ −ω.

Then all irreducible representations of C(T) ⋊σ Z2 are given by the construction of

Proposition 2.3. Indeed, if π ′ is the restriction of an irreducible representation π of
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C(T) ⋊σ Z2, then π ′ is irreducible if and only if π ′ is one-dimensional. In this case,

π is one-dimensional and thus corresponds to a fixed point in T for σ. Since there

is no such fixed point, π ′ is reducible and the direct sum of the evaluations at ω and

−ω for some ω ∈ T.

Example 2.10 Both types of representations occur if we replace σ∗ in Example 2.9

by σ∗∗ : ω ∈ T 7→ ω. With the notations of Example 2.9, π ′ is irreducible if and only

if it is the evaluation at one of the fixed points 1 or −1. In this case, π(W ) = ±1.

Otherwise, π ′ is reducible and the direct sum (up to unitary conjugation) of the

evaluations at ω and ω for ω ∈ T\{−1, 1}.

We can deduce one more interesting piece of information on the structure of irre-

ducible representations of A ⋊σ Z2 from the proof of Theorem 2.4.

Corollary 2.11 Let π be an irreducible representation of A. Then there exists a uni-

tary u such that u2
= 1 and uπu∗

= π ◦ σ if and only if the restriction π ′ ′ of π to

the fixed point C∗-algebra A1 is the sum of two unitarily non-equivalent (irreducible)

representations of A1.

2.3 Representation Theory of A ⋊σ Z with σ2
= Id

We wish to point out that the previous description of the representation theory of

the crossed-product A ⋊σ Z2 can be used to derive just as well the representation

theory of A ⋊σ Z, as described in the following proposition. The C∗-crossed-product

A⋊σ Z is the universal C∗-algebra generated by A and a unitary WZ with the relations

WZaW ∗
Z

= σ(a) for all a ∈ A [5].

Proposition 2.12 Let σ be an order-two ∗-automorphism of a unital C∗-algebra A.

Let π2 be an irreducible representation of A ⋊σ Z2 on some Hilbert space H. Let λ ∈ T.

Denote by W the canonical unitary in A⋊σ Z2 and WZ the canonical unitary in A⋊σ Z.

Set π on A by π(a) = π2(a) for all a ∈ A and set π(WZ) = λπ2(W ). Then π extends

uniquely to a representation of A ⋊σ Z. Moreover, all irreducible representations of

A ⋊σ Z are obtained this way.

Proof It is obvious that π thus constructed from π2 is an irreducible representation

of A⋊σ Z. Now let π be an irreducible representation of A⋊σ Z. Since π is irreducible

and π(WZ)2 commutes with π(A) (since σ2
= 1), we conclude that π(WZ)2

= λ2

for some λ ∈ T. Let U = λ−1π(WZ). Then U is an order-two unitary. Define

π2(a) = π(a) for all a ∈ A and π2(W ) = U : by universality of A ⋊σ Z2, the map π2

extends to a representation of A ⋊σ Z2. It is irreducible since π is. This proves our

proposition.

3 Application to C∗-Crossed-Products of C∗(F2)

This section concerns itself with two examples of an action on the free group F2

on two generators. This paper deals with representation theory, so we present here

examples which can be handled using representation theory more or less directly.
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More precisely, given the universal C∗-algebra C∗(F2) generated by two unitaries U

and V , there are three obvious and natural automorphisms of order 2 to consider: α

defined by α(U ) = U ∗ and α(V ) = V ∗, as well as β defined by β(U ) = −U and

β(V ) = −V , and finally γ defined by γ(U ) = V and γ(V ) = U . A companion

paper [1] to this one by the same authors deals with the interesting structure of the

fixed point C∗-algebra for γ, and thus the study of the related C∗-crossed-product of

C∗(F2) by γ is done in [1] as well. The study of α and β is undertaken in this section.

The following propositions will help us compute the K-theory of these crossed-

products by bringing the problem back to simple type crossed-products on abelian

C∗-algebras, to which it will be easy to apply Theorem 2.4.

Proposition 3.1 Let A1 and A2 be two unital C∗-algebras, and let α1 and α2 be two

actions of a discrete group G on A1 and A2, respectively. Let α be the unique action of G

on A1 ∗C A2 extending α1 and α2. Then

(A1 ∗C A2) ⋊α G = (A1 ⋊α1
G) ∗C∗(G) (A2 ⋊α2

G),

where the free product is amalgated over the natural copies of C∗(G) in A1 ⋊α1
G and

A2 ⋊α2
G, respectively.

Proof This result follows from universality. Since G is discrete, there is a natural

embedding ik : C∗(G) → Ak ⋊αk
G for k = 1, 2. Now, given a commuting diagram

(3.1) C∗(G)

i2

²²

i1 // A1 ⋊α1
G

j1

²²
A2 ⋊α2

G
j2 // B,

by universality of the amalgated free product, there exists a unique surjection

ϕB : (A1 ⋊α1
G) ∗C∗(G) (A2 ⋊α2

G) → B such that, if we use the notations

C∗(G)

i2

²²

i1 // A1 ⋊α1
G

ϕ1

²²
A2 ⋊α2

G
ϕ2 // (A1 ⋊α1

G) ∗C∗(G) (A2 ⋊α2
G),

then ϕB ◦ ϕk = jk for k = 1, 2. Of course, up to a ∗-isomorphism, there is a unique

such universal object. Let us prove that (A1 ∗C A2)⋊α G is this universal object, which

will prove the proposition.

First, let g ∈ G and let U g ∈ C∗(G), U
g
1 = i1(U g) ∈ A1 ⋊α1

G and U
g
2 = i2(U g) ∈

A2 ⋊α2
G and U

g
3 ∈ (A1 ∗C A2) ⋊α G be the naturally associated unitaries. Now we
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observe that (A1 ∗C A2) ⋊α G fits in the commutative diagram

(3.2) C∗(G)

i2

²²

i1 // A1 ⋊α1
G

θ1

²²
A2 ⋊α2

G
θ2 // (A1 ∗C A2) ⋊α G,

where θk(a) = a and θk(U
g
k ) = U

g
3 for a ∈ Ak and k = 1, 2. Indeed, one checks

immediately that, for k = 1, 2, the map θk satisfies θk(U
g
k )θk(a)θk(U

g
k )∗ = αk(a) =

θk(αk(a)), and then we can extend θk by universality of A ⋊αk
G. The commutativity

of the diagram is obvious.

Now, let us be given a C∗-algebra B fitting in the commutative diagram (3.1). Let

a ∈ Ak (k = 1, 2). Then set ψ(a) = jk(a). Note that ψ(1) = j1(1) = j2(1) =

jk ◦ ik(1) as ik is unital for k = 1, 2. Hence, ψ extends to A1 ∗C A2 by universality

of A1 ∗C A2. Now, with the notations of (3.2), we have θ1(U
g
1 ) = θ2(U

g
2 ) = U

g
3

by construction. We set ψ(U
g
3 ) = j1(U

g
1 ) = j1 ◦ i1(U g). As the diagram (3.1) is

commutative, ψ(U
g
3 ) = j1 ◦ i2(U g). Moreover, ψ(U

g
3 )ψ(a)ψ(U

g
3 )∗ = jk(U

g
k aU

g∗
k ) =

jk(αk(a)) for all a ∈ Ak with k = 1, 2 by construction of ψ. It is easy to deduce

that ψ(U
g
3 )ψ(a)ψ(U

g
3 )∗ = ψ ◦ α(a) for all a ∈ A1 ∗C A2. Hence, by universality of

the crossed-product, the map ψ extends to (A1 ∗C A2) ⋊α G into B. Moreover, by

construction ψ ◦ θ1 = j1 and ψ ◦ θ2 = j2. Thus, (A1 ∗C A2) ⋊α G is universal for the

diagram (3.1), so (A1 ∗C A2) ⋊α G = (A1 ⋊α1
G) ∗C∗(G) (A2 ⋊α2

G).

Proposition 3.2 Let A1 and A2 be two unital C∗-algebras with two respective one-

dimensional representations ε1 and ε2. Let α1 and α2 be two actions of a discrete group

G on A1 and A2 respectively such that ε1 ◦ α1 = ε1 and ε2 ◦ α2 = ε2. Let α be the

unique action of G on A1 ∗C A2 extending α1 and α2. Let ik be the natural injection of

C∗(G) into Ak ⋊αk
G for k = 1, 2. Then K∗

(
(A1 ∗C A2) ⋊α G

)
equals

(
K∗(A1 ⋊α1

G) ⊕ K∗(A2 ⋊α2
G)

)/
ker(i∗1 ⊕ (−i∗2 )),

where for any ∗-morphism ϕ : A → B between two C∗-algebras A and B we denote by

Kε(ϕ) the lift of ϕ to the K-groups by functoriality (where ε ∈ {0, 1}).

Proof Let k ∈ {1, 2}. Denote by V
g
k the canonical unitary in Ak ⋊αk

G for g ∈ G

such that V
g
k a(V

g
k )∗ = αk(a) for all a ∈ Ak. Identify εk(a) with εk(a)1 ∈ C∗(G)

for all a ∈ Ak. Then by universality of the crossed-product Ak ⋊αk
G and since

Ugεk(a)U ∗
g = εk(a) = εk ◦αk(a) for all a ∈ Ak (the latter equality is by hypothesis on

εk), the map εk extends to Ak ⋊αk
G uniquely with εk(V

g
k ) = U g for all g ∈ G, where

Ug is the canonical unitary associated to g ∈ G in C∗(G). Note that εk thus extended

is valued in C∗(G).

Using the retractions εk : Ak ⋊αk
G −→ C∗(G) for k ∈ {1, 2}, we can apply [2]

and thus the sequence:

0 −→ K∗(C∗(G))
K∗(i1)⊕K∗(i2)−−−−−−−−→ K∗(A1 ⋊α1

G) ⊕ K∗(A2 ⋊α2
G)

−→ K∗
(

(A1 ⋊α1
G) ∗C∗(G) (A2 ⋊α2

G)
)
−→ 0
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is exact. This calculates the K-groups of (A1 ⋊α1
G) ∗C∗(G) (A2 ⋊α2

G) which, by

Proposition 3.1 is the crossed-product (A1 ∗C A2) ⋊α G.

Remark 3.3 In particular, if A1 is abelian then the existence of ε1 is equivalent to

the existence of a fixed point for the action α1.

Of course, C∗(Z2) = C(Z2) = C
2. Thus K1(C∗(Z2)) = 0 while K0(C∗(Z2)) = Z

2

is generated by the spectral projection of the universal unitary W such that W 2
= 1.

Now we use Proposition 3.2 to compute the K-theory of two examples. The key in

each case is to calculate explicitly the type I crossed-products C(T) ⋊ Z2. We propose

to do so using Theorem 2.4.

Proposition 3.4 Let β be the ∗-automorphism of C∗(F2) defined by β(U ) = −U and

β(V ) = −V . Then

K0

(
C∗(F2) ⋊β Z2

)
= Z and K1

(
C∗(F2) ⋊β Z2

)
= Z

2.

Proof Let z be the map ω ∈ T 7→ ω. Write β = β1 ∗ β1 where β1(z) = −z.

The crossed-product C(T) ⋊β1
Z2 is C = C(T, M2) = C(T) ⊗ M2. Indeed, if we

set ψ( f )(x) 7→
[ f (x) 0

0 f (−x)

]
and ψ(W ) =

[
0 1
1 0

]
, then ψ extends naturally to a ∗-

morphism from C(T) ⋊β1
Z2 into C. Moreover, the range of ψ is the C∗-algebra

spanned by ψ(z) and ψ(W ), which is easily checked to be C by the Stone–Weierstrass

theorem, so ψ is surjective. It is injective as well; let a ∈ ker ψ. If π is an irreducible ∗-

representation of C(T) ⋊β1
Z2, then by Theorem 2.4, π is (up to unitary equivalence)

acting on M2 by π( f ) =
[ f (x) 0

0 f (−x)

]
and π(W ) =

[
0 1
1 0

]
, for some fixed x ∈ T.

Thus, if ρx is the evaluation at x in C, then ρ ◦ ψ = π and thus π(a) = 0. Thus a = 0

as π arbitrary, and thus ψ is a ∗-isomorphism.

Of course, K∗(M2(C(T))) = K∗(T) so K0(C(T) ⋊β1
Z2) = Z and K1(C(T) ⋊β1

Z2) = Z. Moreover, K1 is generated by z while K0 is simply generated by the identity

of C(T). The map ik : C∗(Z2) → C maps the generator of C∗(Z2) to w, and thus

i∗k maps the two spectral projections of w to 1. Hence, i0
k : Z

2 → Z is defined by

ik(0, 1) = ik(1, 0) = 1. Thus by Proposition 3.1, we have K0

(
C∗(F2) ⋊ Z2

)
= Z and

K1

(
C∗(F2) ⋊ Z2

)
= Z

2.

Proposition 3.5 Let α be the ∗-automorphism of C∗(F2) = C∗(U ,V ) defined by

α(U ) = U ∗ and α(V ) = V ∗. Then

K0

(
C∗(F2) ⋊α Z2

)
= Z

4 and K0

(
C∗(F2) ⋊α Z2

)
= 0.

Proof Write α = a1 ∗ α1 where α1(z) = z where z is the map ω ∈ T 7→ ω. Now, the

crossed-product C(T) ⋊α1
Z2 is the C∗-algebra

B = {h ∈ C([−1, 1], M2) : h(1), h(−1) diagonal}.

Indeed, define ψ( f )(t) for all f ∈ C(T) and t ∈ [0, 1] by

1

2

[
f (t,−y) + f (t, y) f (t,−y) − f (t, y)

f (t,−y) − f (t, y) f (t,−y) + f (t, y)

]
,
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where y =
√

1 − t2. Set ψ(W ) = w =
[

1 0
0 −1

]
. Then w2

= 1 and wψ( f )w =

ψ(α1( f )), so ψ extends to a unique ∗-morphism from C(T) ⋊α1
Z2 into B. By

the Stone–Weierstrass theorem, one can check that ψ is indeed onto. Last, let π

be an irreducible ∗-representation of C(T) ⋊α1
Z2. If the restriction π ′ of π to

C(T) is irreducible, then π ′ is one-dimensional and there exists x ∈ T such that

π ′( f ) = π( f ) = f (x) for all f ∈ C(T). By Theorem 2.4 since π ′ is irreducible, π is

also one-dimensional and π(W ) is a scalar unitary (hence it is 1 or −1 since W 2
= 1),

so it commutes with π( f ) for all f . Since (W f W )(x) = f (x) we conclude that x = 1

or x = −1. Either way let ρx be the evaluation at x in B. Then ρx(h) is diagonal

by definition of B for all h ∈ B. Let ρx,+1 be the one-dimensional representation

defined by the upper-left corner of ρx and let ρx,−1 be the one-dimensional represen-

tation defined by the lower-right corner of ρx. Note that either way, ρx,+(ψ( f )) =

ρx,−(ψ( f )) = f (x) for all f ∈ C(T). On the other hand, ρx,ε(ψ(W )) = ε. Hence,

we have proved that ρx,W ◦ ψ = π. Thus if a ∈ C(T) ⋊α1
Z2 and ψ(a) = 0, then

π(a) = 0.

If instead, π restricted to C(T) is reducible, then by Theorem 2.4 π is unitarily

equivalent to a representation π ′ acting on M2 defined as follows: there exists x ∈ T

such that π ′( f ) =
[ f (x) 0

0 f (x)

]
for all f ∈ C(T) and π ′(W ) =

[
0 1
1 0

]
. Up to con-

jugating by the unitary 1√
2

[
1 −1
1 1

]
, we see that if we set ρ(h) = h(t) for all h ∈ B,

where t is defined by x = (t,
√

1 − t2), then ρ ◦ ψ = π ′ and thus, if a ∈ ker ψ, then

π ′(a) = 0, so π(a) = 0. In conclusion, if a ∈ ker ψ, then π(a) = 0 for all (irre-

ducible) ∗-representations of C(T) ⋊α1
Z2 and thus a = 0, so ψ is a ∗-isomorphism.

The K-theory of B is easy to calculate. We start with the exact sequence 0 →
C0((−1, 1), M2)

i−→ B
q−→ C

4 → 0 where i the inclusion and q the quotient map, also

defined by q(a) = a(1) ⊕ a(−1) for a ∈ B and identifying the diagonal matrices in

M2 with C
2. We also used the notation C0(X) for the space of continuous functions

on a locally compact space X vanishing at infinity. The associated six-term exact

sequence is then simply

K0(C(−1, 1)) = 0
K0(i) // K0(B)

K0(q) //
Z

4

δ

²²

0

OO

K1(B)
K1(q)oo Z = K1(C0(−1, 1)).

K1(i)oo

The generator of the K1 group of C0(−1, 1)⊗M2 is the unitary u1 : t ∈ (−1, 1) 7→
exp(iπt)12, where 12 is the unit of M2. However, u1 is trivial in K1(B) via the obvious

homotopy (uλ)λ∈[0,1] with uλ : t ∈ [−1, 1] 7→ exp(πiλt) (note that uλ for λ ∈ (0, 1)

is not in the unitalization of C0(−1, 1) since uλ(−1) 6= uλ(1)). Thus K1(i) = 0,

K1(B) = 0 and the range of δ is Z by exactness. Hence, again by exactness, ker δ is a

copy of Z
3 inside of Z

4
= K0(C

4).

Let p =
1
2
(W + 1) and p ′

=
1
2
(1 + W z) (note that W zW z = zz = 1, so p ′

is a projection). We calculate easily that K0(q)(p) = (1, 0, 1, 0), while K0(q)(p ′) =

(1, 0, 0, 1).
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The subgroup of Z
4 generated by (1, 0, 1, 0), (1, 1, 1, 1), and (1, 0, 0, 1) is isomor-

phic to Z
3. By exactness, it must be Z

3. Since K0(i) = 0, the map K0(1) is an injection

and thus K0

(
C(T) ⋊α1

Z2

)
= Z

3 generated by the spectral projections of w and of

W z, and K1(C(T) ⋊α1
Z2) = 0.

Moreover, ik : C∗(Z2) → C(T) ⋊α1
Z2 maps the generator of C∗(Z2) to w, so

the range of i∗k is the subgroup generated by [p] and [1]. Thus, by Proposition 3.1,

K0(C∗(F2) ⋊α1
Z2) = Z

4 and K1(C∗(F2) ⋊α1
Z2) = 0.
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