Canad. Math. Bull. Vol. **53** (1), 2010 pp. 37–50 doi:10.4153/CMB-2010-008-4 © Canadian Mathematical Society 2010



# *C*\*-Crossed-Products by an Order-Two Automorphism

## Man-Duen Choi and Frédéric Latrémolière

Abstract. We describe the representation theory of  $C^*$ -crossed-products of a unital  $C^*$ -algebra A by the cyclic group of order 2. We prove that there are two main types of irreducible representations for the crossed-product: those whose restriction to A is irreducible and those who are the sum of two unitarily unequivalent representations of A. We characterize each class in term of the restriction of the representations to the fixed point  $C^*$ -subalgebra of A. We apply our results to compute the K-theory of several crossed-products of the free group on two generators.

## 1 Introduction

This paper explores the structure of the representation theory of  $C^*$ -crossed-products [5] of unital  $C^*$ -algebras by order-two automorphisms. We show that irreducible representations of the  $C^*$ -crossed-products  $A \rtimes \mathbb{Z}_2$  of a unital  $C^*$ -algebra A by  $\mathbb{Z}_2$  fall into two categories: either their restriction to A is already irreducible, or it is the direct sum of two irreducible representations of A that are related by the automorphism and not unitarily equivalent to each other.

Given a unital  $C^*$ -algebra A and an order-two automorphism  $\sigma$  of A, the  $C^*$ crossed-product  $A \rtimes_{\sigma} \mathbb{Z}_2$  is the  $C^*$ -algebra generated by A and a unitary W with  $W^2 = 1$  satisfying the following universal property: if  $\psi: A \to B$  is a unital \*morphism for some unital  $C^*$ -algebra B such that B contains a unitary u satisfying  $u^2 = 1$  and  $u\psi(a)u^* = \psi \circ \sigma(a)$  for all  $a \in A$ , then  $\psi$  extends uniquely to  $A \rtimes_{\sigma} \mathbb{Z}_2$  with  $\psi(W) = u$ . The general construction of  $A \rtimes_{\sigma} \mathbb{Z}_2$  can be found in [5]. In particular,  $W = W^*$  since W is unitary, the spectrum of W is  $\{-1, 1\}$  and  $WaW^* = \sigma(a)$  for all  $a \in A$ . We call the unitary W the canonical unitary of  $A \rtimes_{\sigma} \mathbb{Z}_2$ . Proposition 2.2 will offer an alternative description of  $A \rtimes_{\sigma} \mathbb{Z}_2$ .

The question raised in this paper is: what is the connection between the representation theory of  $A \rtimes_{\sigma} \mathbb{Z}_2$  and the representation theory of *A*? Of central importance is the fixed point  $C^*$ -algebra  $A_1$  for  $\sigma$  defined by  $A_1 = \{a \in A : \sigma(a) = a\}$  and the natural decomposition  $A = A_1 + A_{-1}$  where  $A_{-1} = \{a \in A : \sigma(a) = -a\}$ , with  $A_1 \cap A_{-1} = \{0\}$ . We obtain a complete description of the irreducible representations of  $A \rtimes_{\sigma} \mathbb{Z}_2$  from the representation theory of *A* and  $A_1$ .

Note that, if we considered the crossed-product  $A \rtimes_{\sigma} \mathbb{Z}$  instead of  $A \rtimes_{\sigma} \mathbb{Z}_2$ , then our work applies as well, thanks to a simple observation made at the end of Section 2.

The rest of the paper focuses on applications to examples. We are interested in several natural order-two automorphisms of the full  $C^*$ -algebra of free group  $\mathbb{F}_2$ ,

Received by the editors January 10, 2007.

Published electronically December 4, 2009.

AMS subject classification: 46L55, 46L80.

Keywords:  $C^*$ -algebra,  $C^*$ -crossed-product, fixed point  $C^*$ -algebra, action of finite groups, free group  $C^*$ -algebras.

namely the universal  $C^*$ -algebra generated by two unitaries U and V. We define the automorphism  $\alpha$  by  $\alpha(U) = U^*$  and  $\alpha(V) = V^*$ , while  $\beta$  is the automorphism defined by  $\beta(U) = -U$  and  $\beta(V) = -V$ . We compute the K-theory of the  $C^*$ -crossed-products for these two automorphisms, relying in part on our structure theory for their representations. A third natural automorphism,  $\gamma$ , is defined uniquely by  $\gamma(U) = V$  and  $\gamma(V) = U$ . It is the subject of the companion paper [1], which emphasizes the interesting structure of the associated fixed point  $C^*$ -algebra and uses different techniques from the representation approach of this paper.

## 2 Representation Theory of Crossed-Products

In this section, we derive several general results on the irreducible representations of the crossed-product  $C^*$ -algebra  $A \rtimes_{\sigma} \mathbb{Z}_2$  where  $\sigma$  is an order-2 automorphism of the unital  $C^*$ -algebra A. We recall that  $A \rtimes_{\sigma} \mathbb{Z}_2$  is the universal  $C^*$ -algebra generated by A and a unitary W such that  $W^2 = 1$  and  $WaW^* = \sigma(a)$ .

#### 2.1 Representations from the Algebra

A central feature of the crossed-products by finite groups is their connection with the associated fixed point  $C^*$ -algebra [4]. In our case, the following easy lemma will prove useful:

**Lemma 2.1** Let A be a unital C<sup>\*</sup>-algebra and  $\sigma$  an order-2 automorphism of A. The set  $A_1 = \{a + \sigma(a) : a \in A\}$  is the fixed point C<sup>\*</sup>-algebra of A for  $\sigma$  and the set  $A_{-1} = \{a - \sigma(a) : a \in A\}$  is the space of elements  $b \in A$  such that  $\sigma(b) = -b$ . Then  $A = A_1 + A_{-1}$  and  $A_1 \cap A_{-1} = \{0\}$ .

**Proof** If *a* is any element in *A* then  $a + \sigma(a)$  (resp.  $a - \sigma(a)$ ) is a fixed point for  $\sigma$  (resp. an element  $b \in A$  such that  $\sigma(b) = -b$ ). Conversely, let  $x \in A$ . Then  $x = \frac{1}{2}(x + \sigma(x)) + \frac{1}{2}(x - \sigma(x))$ . If *x* is  $\sigma$ -invariant then  $x - \sigma(x) = 0$  so  $x = \frac{1}{2}(x + \sigma(x))$  indeed, and thus the fixed point  $C^*$ -algebra is  $A_1$  (similarly  $\{b \in A : \sigma(b) = -b\} = A_{-1}$ ). Of course, if  $a \in A_1 \cap A_{-1}$ , then  $\sigma(a) = a = -a$  so a = 0.

We exhibit a simple algebraic description of the crossed-product.

**Proposition 2.2** Let  $\sigma$  be an order 2-automorphism of a unital  $C^*$ -algebra A. Then the  $C^*$ -crossed-product  $A \rtimes_{\sigma} \mathbb{Z}_2$  is \*-isomorphic to

$$\left\{ \begin{bmatrix} a & b \\ \sigma(b) & \sigma(a) \end{bmatrix} : a, b \in A \right\} \subseteq M_2(A)$$

via the following isomorphism:  $a \in A \mapsto \begin{bmatrix} a & 0 \\ 0 & \sigma(a) \end{bmatrix}$  and  $W \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ , where W is the canonical unitary of  $A \rtimes_{\sigma} \mathbb{Z}_2$ .

**Proof** Let  $\psi: a \in A \mapsto \begin{bmatrix} a & 0 \\ 0 & \sigma(a) \end{bmatrix} \in M_2(A)$  and set  $\psi(W) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in M_2(A)$ . Since  $\psi(W)\psi(a)\psi(W) = \psi(\sigma(a))$  we deduce by universality that  $\psi$  extends to a (unique) \*-automorphism of  $A \rtimes_{\sigma} \mathbb{Z}_2$  valued in  $M_2(A)$ . Now, let  $c \in A \rtimes_{\sigma} \mathbb{Z}_2$ . By construction of  $A \rtimes_{\sigma} \mathbb{Z}_2$ , there exists a sequence  $(a_n + b_n W)_{n \in \mathbb{N}}$  with  $a_n, b_n \in A$  such

that  $c = \lim_{n \to \infty} a_n + b_n W$  in  $A \rtimes_{\sigma} \mathbb{Z}_2$ . Now,  $\psi(a_n + b_n W) = \begin{bmatrix} a_n & b_n \\ \sigma(b_n) & \sigma(a_n) \end{bmatrix}$  for all  $n \in \mathbb{N}$ , and converges to  $\psi(c) = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$  when  $n \to \infty$ . In particular,  $(a_n)_{n \in \mathbb{N}}$ converges to  $c_{11} \in A$  and  $(b_n)_{n \in \mathbb{N}}$  converges to  $c_{12} \in A$ . Consequently,  $c = c_{11} + c_{12} W$ . Hence A + AW is a closed dense \*-subalgebra of  $A \rtimes_{\sigma} \mathbb{Z}_2$  and thus  $A \rtimes_{\sigma} \mathbb{Z}_2 = A + AW$ .

Moreover, if  $\psi(c) = 0$  then, writing c = a + bW, by definition of  $\psi$ , we get  $\psi(c) = \begin{bmatrix} a & b \\ \sigma(b) & \sigma(a) \end{bmatrix} = 0$ , so a = b = 0, hence c = 0. Thus  $\psi$  is a \*-isomorphism from  $A \rtimes_{\sigma} \mathbb{Z}_2$  onto the  $C^*$ -algebra  $\left\{ \begin{bmatrix} a & b \\ \sigma(b) & \sigma(a) \end{bmatrix} : a, b \in A \right\} \subseteq M_2(A)$ .

In other words, the abstract canonical unitary W of  $A \rtimes_{\sigma} \mathbb{Z}_2$  can be replaced by the concrete unitary  $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  and  $A \rtimes_{\sigma} \mathbb{Z}_2$  can be seen as the  $C^*$ -algebra  $\psi(A) + \psi(A) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  in  $M_2(A)$  with  $\psi$ :  $a \in A \mapsto \begin{bmatrix} a & 0 \\ 0 & \sigma(a) \end{bmatrix}$ . Equivalently, the \*-subalgebra A + AW in  $A \rtimes_{\sigma} \mathbb{Z}_2$  is in fact equal to  $A \rtimes_{\sigma} \mathbb{Z}_2$ .

From the algebraic description of Proposition 2.2 we get a family of representations of the crossed-product described in the following proposition. These representations are in fact induced representations from the sub-*C*\*-algebra *A* to the *C*\*-algebra  $A \rtimes_{\sigma} \mathbb{Z}_2$  in the sense of [3].

**Proposition 2.3** Let A be a unital C\*-algebra and  $\sigma$  be an order two automorphism of A. Let W be the canonical unitary of the crossed-product  $A \rtimes_{\sigma} \mathbb{Z}_2$  such that  $WaW = \sigma(a)$  for all  $a \in A$ . Then for each representation  $\pi$  of A on some Hilbert space  $\mathfrak{K}$  there exists a representation  $\tilde{\pi}$  of  $A \rtimes_{\sigma} \mathbb{Z}_2$  on  $\mathfrak{H} \oplus \mathfrak{H}$  defined by  $\tilde{\pi}(a) = \pi(a) \oplus \pi \circ \sigma(a)$  for all  $a \in A$  and  $\tilde{\pi}(W) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ .

Moreover, the following are equivalent:

- the representation  $\tilde{\pi}$  is irreducible;
- the representation  $\pi$  is irreducible and not unitarily equivalent to  $\pi \circ \sigma$ ;
- there does not exist a unitary  $U \in \mathcal{B}(\mathcal{H})$  such that  $U\pi U^* = \pi \circ \sigma$  and  $U^2 = 1$ .

If  $\pi$  is a faithful representation of A then  $\tilde{\pi}$  is faithful for  $A \rtimes_{\sigma} \mathbb{Z}_2$ . In particular, if A has a faithful representation that is a direct sum of finite representations, so does  $A \rtimes_{\sigma} \mathbb{Z}_2$ .

**Proof** Let  $\pi$  be a given representation of A. Then by setting  $\widetilde{\pi}(a) = \pi(a) \oplus \pi(\sigma(a))$ and  $\widetilde{\pi}(W) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ , we define a \*-representation of  $A \rtimes_{\sigma} \mathbb{Z}_2$  by universality of  $A \rtimes_{\sigma} \mathbb{Z}_2$ . In fact,  $\widetilde{\pi} = \begin{bmatrix} \pi & 0 \\ 0 & \pi \end{bmatrix} \circ \psi$ , where  $\psi$  is the isomorphism of Proposition 2.2.

Let us now assume that  $\pi$  is irreducible and not unitarily equivalent to  $\pi \circ \sigma$ . Assume *V* is an operator commuting with  $\tilde{\pi}$ . Then since *V* commutes with  $\tilde{\pi}(W)$ , we have  $V = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$  for some  $a, b \in \mathcal{B}(\mathcal{H})$ . Now, since *V* commutes with  $\pi \oplus (\pi \circ \sigma)$  we conclude that *a* commutes with  $\pi$  and, as  $\pi$  is irreducible, this implies that  $V = \begin{bmatrix} \lambda 1 & b \\ b & \lambda 1 \end{bmatrix}$  for some  $\lambda \in \mathbb{C}$  and where 1 is the identity on  $\mathcal{H}$ . Hence, *V* commutes with  $\tilde{\pi}$  if and only if  $\begin{bmatrix} 0 & b \\ b & 0 \end{bmatrix}$  does. Now, if  $\begin{bmatrix} 0 & b \\ b & 0 \end{bmatrix}$  commutes with  $\tilde{\pi}(A \rtimes_{\sigma} \mathbb{Z}_2)$  then so does its square  $\begin{bmatrix} b^2 & 0 \\ 0 & b^2 \end{bmatrix}$ . Hence again  $b^2 = \mu 1$  by irreducibility of  $\pi$ , and up to replacing *b* by  $\frac{1}{2}(b + b^*)$  we can assume that *b* is self-adjoint and thus  $\mu \geq 0$ .

Assume that  $\mu \neq 0$ . Set  $u = (\sqrt{\mu})^{-1}b$ : then  $u = u^*$  and  $u^2 = 1$ , so u is unitary. Moreover, as  $\frac{1}{\sqrt{\mu}}V = \begin{bmatrix} 0 & u \\ u & 0 \end{bmatrix}$  commutes with  $\pi(c) \oplus (\pi \circ \sigma(c))$  for all  $c \in A$ , we check that  $u\pi(\sigma(c)) = \pi(c)u$ , so  $u^*\pi(c)u = \pi(\sigma(c))$  for all  $c \in A$ . Hence, we have reached a contradiction, as we assumed that  $\pi$  is not unitarily equivalent to  $\pi \circ \sigma$ . Therefore  $\mu = 0$  and thus  $V = \lambda(1 \oplus 1)$ , so  $\tilde{\pi}$  is irreducible.

Conversely, if there exists a unitary *u* such that  $u^2 = 1$  and  $u\pi u^* = \pi \circ \sigma$ , then the operator  $V = \begin{bmatrix} 0 & u \\ u & 0 \end{bmatrix}$  commutes with  $\tilde{\pi}$ , so  $\tilde{\pi}$  is not irreducible.

On the other hand, if  $\pi$  is reducible, then let p be a nontrivial projection of  $\mathcal{H}$  such that  $p\pi = \pi p$ . Then  $p \oplus p$  is a nontrivial projection commuting with  $\tilde{\pi}$ , as can easily be checked (it is obvious on  $\tilde{\pi}(A)$  and easy for  $\tilde{\pi}(W)$ ). Hence  $\tilde{\pi}$  is reducible as well. This proves the first two equivalences.

Now, we observe that  $\pi$  is unitarily equivalent to  $\pi \circ \sigma$  if and only if there exists a unitary u with  $u^2 = 1$  such that  $u\pi u^* = \pi \circ \sigma$ . One implication is trivial; let us check the easy other one. Let v be unitary such that  $v\pi v^* = \pi \circ \sigma$ . Then  $v^2\pi v^{*2} =$  $\pi \circ \sigma^2 = \pi$ . Hence, as  $\pi$  is irreducible,  $v^2 = \exp(2i\pi\theta)1$  for some  $\theta \in [0, 1)$ . Hence,  $u = \exp(-i\pi\theta)v$  satisfies both  $u^2 = 1$  and  $\pi \circ \sigma = u\pi u^*$ .

Proposition 2.3 describes a family of representations and gives us a criterion for their irreducibility. Conversely, given an irreducible representation of  $A \rtimes_{\sigma} \mathbb{Z}_2$ , what can be said about its structure relative to the representation theory of *A* and its fixed point algebra *A*<sub>1</sub>? This is the subject of the next section, which establishes a sort of converse for Proposition 2.3.

#### 2.2 Irreducible Representations

The following theorem is the main result of this paper and shows that any irreducible representation of  $A \rtimes_{\sigma} \mathbb{Z}_2$  is built from either a single unitary representation of A (and is then just an extension of it) or from two non-equivalent irreducible representations of A.

**Theorem 2.4** Let  $\sigma$  be an order-two-automorphism of a unital  $C^*$ -algebra A. We denote by W the canonical unitary of the  $C^*$ -crossed-product  $A \rtimes_{\sigma} \mathbb{Z}_2$  such that  $WaW = \sigma(a)$  for all  $a \in A$ .

Let  $\pi$  be an irreducible representation of  $A \rtimes_{\sigma} \mathbb{Z}_2$  on a Hilbert space  $\mathcal{H}$ . Let  $\pi'$  be the restriction of  $\pi$  to A and  $\pi''$  be the restriction of  $\pi$  to the fixed point  $C^*$ -algebra  $A_1$ . Then one and only one of the following two alternatives hold:

- (i) The operator  $\pi(W)$  is either the identity Id or Id and  $\pi(A \rtimes_{\sigma} \mathbb{Z}_2) = \pi'(A) = \pi''(A_1)$ .
- (ii) The spectrum of π(W) is {-1, 1}. Then ℋ = ℋ<sub>1</sub> ⊕ ℋ<sub>-1</sub> where ℋ<sub>ε</sub> is the spectral Hilbert space of π(W) for the eigenvalue ε. With this decomposition of ℋ, we have π(W) = [ <sup>1</sup>/<sub>0</sub> <sup>0</sup>/<sub>-1</sub>]. Let us write π'(a) = [ <sup>α(a)</sup>/<sub>γ(a)</sub> <sup>β(a)</sup>/<sub>δ(a)</sub>] for a ∈ A. Then α, δ restrict to irreducible representations of A<sub>1</sub>, and α(A<sub>-1</sub>) = δ(A<sub>-1</sub>) = {0}. Moreover, β(A<sub>1</sub>) = γ(A<sub>1</sub>) = {0}.

Furthermore, the representation  $\pi'$  is irreducible if and only if  $\alpha$  and  $\delta$  are not unitarily equivalent.

**Proof** Let  $\pi$  be an irreducible representation of  $A \rtimes_{\sigma} \mathbb{Z}_2$  on  $\mathcal{H}$ . Let  $w = \pi(W)$ . Since w is unitary and  $w^2 = 1$ , the spectrum of w is either  $\{-1, 1\}$  or w = 1 or w = -1. In the latter two cases, w commutes with  $\pi(A \rtimes_{\sigma} \mathbb{Z}_2)$ . Since  $A \rtimes_{\sigma} \mathbb{Z}_2 = A + AW$  from

Proposition 2.2, we have  $\pi(A \rtimes_{\sigma} \mathbb{Z}_2) = \pi'(A) + \pi'(A)w = \pi'(A)$  (as  $w = \pm 1$ ). Thus as  $\pi$  is irreducible, so is  $\pi'$ . Moreover, since  $w\pi'(a)w = \pi'(a) = \pi' \circ \sigma(a)$ , we see that  $\pi'$  is null on  $A_{-1}$  and thus  $\pi' = \pi''$ . Conversely if  $\pi(A_{-1}) = 0$  then w must commute with  $\pi(A) = \pi(A_1)$  and thus with  $\pi(A \rtimes_{\sigma} \mathbb{Z}_2) = \pi(A) + \pi(A)w$ . Therefore, as  $\pi$  is irreducible, w is scalar, and as w unitary and  $w^2 = 1$  we conclude w is 1 or -1.

Assume now that the unitary *w* has spectrum  $\{-1, 1\}$ . Write  $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_{-1}$  accordingly. In this decomposition, we have

$$w = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 and  $\pi(a) = \begin{bmatrix} \alpha(a) & \beta(a) \\ \gamma(a) & \delta(a) \end{bmatrix}$ 

where  $\alpha, \beta, \gamma, \delta$  are linear maps on A. Thus,

$$w\pi(a)w^* = \begin{bmatrix} \alpha(a) & -\beta(a) \\ -\gamma(a) & \delta(a) \end{bmatrix}$$

In particular, if  $a \in A_{-1}$ , then  $\pi \circ \sigma(a) = -\pi(a)$  so  $\alpha(a) = -\alpha(a) = 0$ . Since  $A = A_1 \oplus A_{-1}$  as a vector space, we conclude that  $\alpha(a) \in \alpha(A_1)$  for all  $a \in A$ . Similarly  $\delta(a) \in \delta(A_1)$ ,  $\beta(a) \in \beta(A_{-1})$  and  $\gamma(a) \in \gamma(A_{-1})$  for all  $a \in A$  while  $\gamma(A_1) = \beta(A_1) = \{0\}$ .

Consequently,  $\pi'' = \alpha \oplus \beta$  and  $\alpha, \beta$  are representations of  $A_1$  (but not of A). We observe that  $A \rtimes_{\sigma} \mathbb{Z}_2 = A + AW$  by Proposition 2.2, so

$$\pi(A \rtimes_{\sigma} \mathbb{Z}_2) = \left\{ \begin{bmatrix} \alpha(a_1) + \alpha(a_2) & \beta(a_1) - \beta(a_2) \\ \gamma(a_1) + \gamma(a_2) & \delta(a_1) - \delta(a_2) \end{bmatrix} : a_1, a_2 \in A \right\}.$$

(Note that *w* is given in this form by  $a_1 = 1$  and  $a_2 = 0$ , since  $1 \in A_1$  so  $\beta(a_1) = \gamma(a_1) = 0$ .) Now,  $\alpha(a) \in \alpha(A_1)$  for all  $a \in A$ , so  $\{\alpha(a_1) + \alpha(a_2) : a_1, a_2 \in A\}$  is the set  $\alpha(A_1)$ . Furthermore, since  $\pi$  is irreducible, we have  $\pi(A \rtimes_{\sigma} \mathbb{Z}_2)'' = \mathcal{B}(\mathcal{H})$ , *i.e.*, the range of  $\pi$  is SOT-dense, and in particular  $\alpha(A_1)$  is SOT-dense in  $\mathcal{B}(\mathcal{H}_1)$ , so  $\alpha$  is an irreducible representation of  $A_1$  on  $\mathcal{H}_1$ . The same applies to  $\delta$ .

We now distinguish according to the two following cases: either  $\alpha$  and  $\delta$  are unitarily equivalent as representations of  $A_1$  or they are not.

Assume that  $\alpha$  and  $\delta$  are not unitarily equivalent. Let us assume *P* is a projection which commutes with  $\pi'$ . Then in particular, *P* commutes with  $\pi''$ . Writing  $P = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$ , this gives the relations

$$\begin{bmatrix} \alpha & 0 \\ 0 & \delta \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} \alpha p_{11} & \alpha p_{12} \\ \delta p_{21} & \delta p_{22} \end{bmatrix}$$
$$\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 0 & \delta \end{bmatrix} = \begin{bmatrix} p_{11}\alpha & p_{12}\delta \\ p_{21}\alpha & p_{22}\delta \end{bmatrix}.$$

Hence, since both  $\alpha$  and  $\delta$  are irreducible, we deduce that  $p_{11}, p_{22}$  are scalar. Now, as P is a projection,  $p_{11} = p_{11}^*$  and  $||p_{11}|| \le 1$  so  $p_{11} \in [-1, 1]$ . Again since  $P = P^* = P^2$ , we have  $p_{12} = p_{21}^*$  and  $p_{12}p_{12}^* + p_{11}^2 = p_{11} \in \mathbb{R}$ . Assume  $\lambda = p_{11}(1 - p_{11}) \ne 0$ . Since  $p_{11} \in [-1, 1]$ , we have  $\lambda \in [0, 1]$ . Then  $\nu = \frac{1}{\sqrt{\lambda}}p_{12}$  is a unitary operator and

since  $\alpha p_{12} = p_{12}\delta$ , we obtain  $\nu \alpha \nu^* = \delta$ . This contradicts our assumption that  $\alpha$  and  $\delta$  are not unitarily equivalent. Hence  $\lambda = 0$  and so  $p_{11} = 1$  or 0 and  $p_{12} = 0$  (since  $p_{12}p_{12}^* = 0$ ). Now, again since *P* is a projection,  $p_{22}^2 + p_{12}p_{12}^* = p_{22}$  yet  $p_{12} = 0$  and  $p_{22}$  is a scalar so  $p_{22} = 0$  or 1 as well. Thus, in the decomposition  $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_{-1}$  the projection *P* is either  $0 \oplus 0$ ,  $1 \oplus 0$ ,  $0 \oplus 1$  or  $1 \oplus 1$ .

Now, the first part of this proof established that  $\pi(W)$  must be scalar if  $\pi$  is irreducible and  $\pi(A) = \pi(A_1)$ . Since we assume that  $\pi(W)$  is not scalar, we conclude that  $\pi(A) \neq \pi(A_1)$ . Consequently, there exists  $a_0 \in A \setminus A_1$  such that  $\pi(a_0)$  is not diagonal in the decomposition  $\mathcal{H}_1 \oplus \mathcal{H}_{-1}$ . Thus  $\pi(a_0)$  does not commute with  $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$  and  $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ . So *P* is scalar, and thus  $\pi'$  is irreducible. Note that  $\pi(W)\pi'(a)\pi(W) = \pi' \circ \sigma(a)$  for all  $a \in A$ , so  $\pi'$  is unitarily equivalent to  $\pi' \circ \sigma$ .

Conversely, assume  $\alpha$  and  $\delta$  are unitarily equivalent. Assume moreover that  $\pi'$  is irreducible. Then  $\pi'(A)$  is WOT-dense in  $\mathcal{B}(\mathcal{H}_1 \oplus \mathcal{H}_{-1})$ . In particular,  $\pi(W) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$  is the limit of a WOT-converging net  $(\pi'(a_\lambda))_{\lambda \in \Lambda}$  in  $\pi'(A)$ . Since we assume that there exists a unitary  $u \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_{-1})$  such that for all  $a \in A$  we have  $\alpha(a) = u\delta(a)u^*$ , and since the map  $c \in \mathcal{B}(\mathcal{H}_1) \mapsto ucu^*$  is WOT-continuous, we get the contradiction  $1 = \lim_{\lambda \in \Lambda} \alpha(a_\lambda) = u(\lim_{\lambda \in \Lambda} \delta(a_\lambda))u^* = u(-1)u^* = -1$ . Hence, if  $\alpha$  and  $\delta$  are unitarily equivalent then  $\pi'$  is reducible.

We can extend Theorem 2.4 with the following description of some irreducible representations of  $A \rtimes_{\sigma} \mathbb{Z}_2$  which completes the statement of Proposition 2.2.

**Proposition 2.5** Let  $\sigma$  be an order-two automorphism of A and let  $A_1 = \{a \in A : \sigma(a) = a\}$  be the associated fixed point  $C^*$ -algebra. Let  $\pi$  be an irreducible representation of  $A \rtimes_{\sigma} \mathbb{Z}_2$  on a Hilbert space and  $\pi''$  its restriction  $A_1$ . Then the following statements are equivalent:

- $\pi''$  is the direct sum of exactly two unitarily equivalent representations, where each is an irreducible representation on  $A_1$ .
- $\pi$  is unitarily equivalent to a representation  $\rho$  such that  $\rho(W) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  and  $\rho(a) = \begin{bmatrix} \rho'(a) & 0 \\ 0 & \rho'(\sigma(a) \end{bmatrix}$ , where  $\rho'$  is an irreducible representation of A and W is the canonical unitary in  $A \rtimes_{\sigma} \mathbb{Z}_2$  and  $\rho'$  is not unitarily equivalent to  $\rho' \circ \sigma$ .

The proof of this proposition relies upon the following lemma.

**Lemma 2.6** Let  $\mathcal{H}$  be a Hilbert space. Let A, B be two bounded linear operators on  $\mathcal{H}$  such that BTA = ATB for all bounded linear operators T on  $\mathcal{H}$ . Then A and B are linearly dependent.

**Proof** The result is obvious if A = 0 or B = 0, so we assume henceforth that  $A \neq 0$ and  $B \neq 0$ . Let  $\gamma \in \mathcal{H}$  such that  $A\gamma \neq 0$ . Assume that there exists  $x_0 \in \mathcal{H}$  such that  $\{Ax_0, Bx_0\}$  is linearly independent. Then let *T* be any bounded linear operator such that  $T(Ax_0) = 0$  and  $T(Bx_0) = \gamma$ . Such a *T* is well defined by the Hahn–Banach theorem. But then  $0 = BTAx_0 = ATBx_0 = A\gamma$  which is a contradiction. Hence for all  $x \in \mathcal{H}$  there exists  $\lambda_x \in \mathbb{C}$  such that  $Bx = \lambda_x Ax$ .

Now, let  $y \in \mathcal{H}$ . Let *T* be any bounded operator on  $\mathcal{H}$  such that  $TA\gamma = y$ . Then we compute  $By = BTA\gamma = ATB\gamma = AT(\lambda_{\gamma}A\gamma) = \lambda_{\gamma}Ay$ . Hence  $B = \lambda_{\gamma}A$ . This concludes our theorem.

Note that we can prove the following similarly.

**Lemma 2.7** Let A, B be two bounded operators on a Hilbert space  $\mathcal{H}$  and assume that for all bounded operators T of  $\mathcal{H}$  we have  $ATA^* = BTB^*$ . Then there exists  $\theta \in [0, 1)$  such that  $B = \exp(2i\pi\theta)A$ .

We can then prove Proposition 2.5.

**Proof of Proposition 2.5** We use the same notations as in Theorem 2.4 and its proof. We can now work out in greater detail the decomposition of  $\pi'$  when  $\alpha$  and  $\delta$  are unitarily equivalent, *i.e.*, when there exists a unitary  $u \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_{-1})$  such that  $\alpha = u\delta u^*$ . By conjugating  $\pi$  with  $u' = \begin{bmatrix} 1 & 0 \\ 0 & u \end{bmatrix}$ , we obtain  $u'\pi(a)u'^* = \begin{bmatrix} \alpha(a) & \beta(a)u^* \\ u\gamma(a) & \alpha(a) \end{bmatrix}$ . To ease notation, we set  $\beta' : a \in A \mapsto \beta(a)u^*$  and  $\gamma' : a \in A \mapsto u\gamma(a)$ . We also denote  $\mathcal{H}_1$  by  $\mathcal{J}$  and (up to a trivial isomorphism) we write  $\mathcal{H} = \mathcal{J} \oplus \mathcal{J}$ . Now  $\alpha, \beta'$ , and  $\gamma'$  are all linear maps on  $\mathcal{J}$ . The representation  $u'\pi u'^*$  is denoted by  $\theta$ .

Let  $b \in A_1$  and  $a \in A_{-1}$ . Then  $(ba)^2 \in A_1$  and

$$\begin{bmatrix} \alpha((ba)^2) & 0\\ 0 & \alpha((ba)^2) \end{bmatrix} = \theta((ba)^2) = (\theta(b)\theta(a))^2$$

$$= \left( \begin{bmatrix} \alpha(b) & 0\\ 0 & \alpha(b) \end{bmatrix} \begin{bmatrix} 0 & \beta'(a)\\ \gamma'(a) & 0 \end{bmatrix} \right)^2$$

$$= \begin{bmatrix} \alpha(b)\beta'(a)\alpha(b)\gamma'(a) & 0\\ 0 & \alpha(b)\gamma'(a)\alpha(b)\beta'(a) \end{bmatrix},$$

and thus for all  $a \in A_{-1}$  and  $b \in A_1$  we have

$$\alpha(b)\beta'(a)\alpha(b)\gamma'(a) = \alpha(b)\gamma'(a)\alpha(b)\beta'(a).$$

Now, since  $\alpha(A_1)$  is SOT-dense in  $\mathcal{B}(\mathcal{J})$ , we conclude that for all  $T \in \mathcal{B}(\mathcal{J})$  we have for all  $a \in A_{-1}$ 

$$T\beta'(a)T\gamma'(a) = T\gamma'(a)T\beta'(a)$$

and thus we have  $\beta'(a)T\gamma'(a) = \gamma'(a)T\beta'(a)$  for all  $T \in \mathcal{B}(\mathcal{J})$  and  $a \in A_{-1}$ . By Lemma 2.6, for each  $a \in A_{-1}$  there exists  $\lambda(a) \in \mathbb{C}$  such that  $\lambda(a)\beta'(a) = \gamma'(a)$ . On the other hand, let  $a, b \in A_{-1}$  be given. Then

$$\lambda(a)\beta'(a) + \lambda(b)\beta'(b) = \gamma'(a) + \gamma'(b) = \lambda(a+b)\beta'(a+b)$$
$$= \lambda(a+b)\beta'(a) + \lambda(a+b)\beta'(b).$$

If  $\beta'(a)$  and  $\beta'(b)$  are linearly independent then  $\lambda(a) = \lambda(b) = \lambda(a+b)$  (thus  $\lambda$  is constant if  $\beta'(A_{-1})$  is at least two dimensional).

If instead,  $\beta'(a) = t\beta'(b)$  for some  $t \in \mathbb{C}$ , then we get

$$\lambda(ta)\beta'(ta) = \gamma'(ta) = t\gamma'(a) = t\lambda(a)\beta'(a).$$

Hence, if  $t \neq 0$  and  $\beta'(a) \neq 0$ , then  $\lambda(ta) = \lambda(a)$ .

Thus, if  $a, b \in A_{-1}$  and a, b are not in ker  $\beta'$ , then  $\lambda(a) = \lambda(b)$  (as  $\{a, b\}$  is either linearly independent or they are dependent but  $\beta'(a)$  and  $\beta'(b)$  are not zero). We can make the choice we wish for  $\lambda(a)$  when  $a \in \ker \beta'$ , so naturally we set  $\lambda(a) = \lambda(b)$ for any  $b \in A_{-1} \setminus \ker \beta'$  (note that  $A_{-1} \setminus \ker \beta' \neq \emptyset$  since  $\theta$  is irreducible and since  $\beta'(a) = \gamma'(a^*)^*$  for all  $a \in A$ ). With this choice, we have shown that there exists a  $\lambda \in \mathbb{C}$  such that  $\lambda \beta'(a) = \gamma'(a)$  for all  $a \in A_{-1}$ .

Moreover, let  $a \in A_{-1}$ . Then  $\beta'(a^*) = \gamma'(a)^*$  and  $\beta'(a)^* = \gamma'(a^*)$  by definition of  $\beta'$  and  $\gamma'$ , yet  $\gamma'(a) = \lambda \beta'(a)$ . So if  $a = a^*$ , then

$$\begin{split} \gamma'(a) &= \lambda \beta'(a) = \lambda \beta'(a^*) = \lambda \gamma'(a)^* = \lambda \left( \lambda \beta'(a) \right)^* \\ &= |\lambda|^2 \beta'(a)^* = |\lambda|^2 \gamma'(a). \end{split}$$

Now, suppose that  $\gamma'(a) = 0$  for all  $a = a^* \in A_{-1}$ . By assumption,  $\gamma'$  is not zero (since then  $\beta'$  would be since  $\beta'(a) = \gamma'(a^*)^*$  and then  $\theta$  would be reducible), so there exists  $a \in A_{-1}$  such that  $a^* = -a$  and  $\gamma'(a) \neq 0$  (since  $\gamma'$  linear and every element in  $A_{-1}$  is of the sum of a self-adjoint and anti-selfadjoint element in  $A_{-1}$ ). But then *ia* is self-adjoint, and since  $\gamma'$  is linear,  $\gamma'(ia) = 0$ . This is a contradiction. Hence there exists  $a \in A_{-1}$  such that  $a = a^*$  and  $\gamma'(a) \neq 0$ . Therefore,  $|\lambda|^2 = 1$ . Let  $\eta$  be any square root of  $\lambda$  in  $\mathbb{C}$ .

Set  $\nu = \begin{bmatrix} 1 & 0 \\ 0 & \eta \end{bmatrix}$  and  $\psi = \nu \theta \nu^*$  so that

$$\psi(a) = \begin{bmatrix} \alpha(a) & \eta\beta'(a) \\ \eta\beta'(a) & \alpha(a) \end{bmatrix}.$$

Let  $v' = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$  so that

$$\nu'\psi(a)\nu'^* = \begin{bmatrix} \alpha(a) + \eta\beta'(a) & 0\\ 0 & \alpha(a) - \eta\beta'(a) \end{bmatrix}.$$

Letting  $\varphi = \alpha + \eta \beta'$  we see that  $\varphi$  is a \*-representation of *A* and that  $\pi$  is unitarily equivalent to the representation  $\pi_{\varphi}$  defined by  $\pi_{\varphi}(a) = \begin{bmatrix} \varphi(a) & 0\\ 0 & \varphi(\sigma(a)) \end{bmatrix}$  and  $\pi_{\varphi}(W) = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$ . In particular,  $\pi' = \varphi \oplus \varphi \circ \sigma$  is a reducible representation of *A*.

Note that we could have done the same proof by limiting ourselves to the case where  $a \in A_{-1}$  is selfadjoint and by calculating  $\pi(a)^*\pi(a)$ , using Lemma 2.7 instead of Lemma 2.6.

We easily observe that both types of representations described in Proposition 2.3 and Theorem 2.4 do actually occur.

**Example 2.8** Let  $A = M_2$  and  $\sigma: a \in M_2 \mapsto WaW$ , where  $W = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ . All irreducible representations of  $M_2 \rtimes_{\sigma} \mathbb{Z}_2$  are unitarily equivalent to the identity representation of  $M_2$ .

**Example 2.9** Let  $A = C(\mathbb{T})$  and  $\sigma: f \mapsto f \circ \sigma^*$ , where  $\sigma^*: \omega \in \mathbb{T} \mapsto -\omega$ . Then all irreducible representations of  $C(\mathbb{T}) \rtimes_{\sigma} \mathbb{Z}_2$  are given by the construction of Proposition 2.3. Indeed, if  $\pi'$  is the restriction of an irreducible representation  $\pi$  of

 $C(\mathbb{T}) \rtimes_{\sigma} \mathbb{Z}_2$ , then  $\pi'$  is irreducible if and only if  $\pi'$  is one-dimensional. In this case,  $\pi$  is one-dimensional and thus corresponds to a fixed point in  $\mathbb{T}$  for  $\sigma$ . Since there is no such fixed point,  $\pi'$  is reducible and the direct sum of the evaluations at  $\omega$  and  $-\omega$  for some  $\omega \in \mathbb{T}$ .

**Example 2.10** Both types of representations occur if we replace  $\sigma^*$  in Example 2.9 by  $\sigma^{**}$ :  $\omega \in \mathbb{T} \mapsto \overline{\omega}$ . With the notations of Example 2.9,  $\pi'$  is irreducible if and only if it is the evaluation at one of the fixed points 1 or -1. In this case,  $\pi(W) = \pm 1$ . Otherwise,  $\pi'$  is reducible and the direct sum (up to unitary conjugation) of the evaluations at  $\omega$  and  $\overline{\omega}$  for  $\omega \in \mathbb{T} \setminus \{-1, 1\}$ .

We can deduce one more interesting piece of information on the structure of irreducible representations of  $A \rtimes_{\sigma} \mathbb{Z}_2$  from the proof of Theorem 2.4.

**Corollary 2.11** Let  $\pi$  be an irreducible representation of A. Then there exists a unitary u such that  $u^2 = 1$  and  $u\pi u^* = \pi \circ \sigma$  if and only if the restriction  $\pi''$  of  $\pi$  to the fixed point  $C^*$ -algebra  $A_1$  is the sum of two unitarily non-equivalent (irreducible) representations of  $A_1$ .

## **2.3** Representation Theory of $A \rtimes_{\sigma} \mathbb{Z}$ with $\sigma^2 = \text{Id}$

We wish to point out that the previous description of the representation theory of the crossed-product  $A \rtimes_{\sigma} \mathbb{Z}_2$  can be used to derive just as well the representation theory of  $A \rtimes_{\sigma} \mathbb{Z}$ , as described in the following proposition. The  $C^*$ -crossed-product  $A \rtimes_{\sigma} \mathbb{Z}$  is the universal  $C^*$ -algebra generated by A and a unitary  $W_{\mathbb{Z}}$  with the relations  $W_{\mathbb{Z}}aW_{\mathbb{Z}}^* = \sigma(a)$  for all  $a \in A$  [5].

**Proposition 2.12** Let  $\sigma$  be an order-two \*-automorphism of a unital  $C^*$ -algebra A. Let  $\pi_2$  be an irreducible representation of  $A \rtimes_{\sigma} \mathbb{Z}_2$  on some Hilbert space  $\mathcal{H}$ . Let  $\lambda \in \mathbb{T}$ . Denote by W the canonical unitary in  $A \rtimes_{\sigma} \mathbb{Z}_2$  and  $W_{\mathbb{Z}}$  the canonical unitary in  $A \rtimes_{\sigma} \mathbb{Z}$ . Set  $\pi$  on A by  $\pi(a) = \pi_2(a)$  for all  $a \in A$  and set  $\pi(W_{\mathbb{Z}}) = \lambda \pi_2(W)$ . Then  $\pi$  extends uniquely to a representation of  $A \rtimes_{\sigma} \mathbb{Z}$ . Moreover, all irreducible representations of  $A \rtimes_{\sigma} \mathbb{Z}$  are obtained this way.

**Proof** It is obvious that  $\pi$  thus constructed from  $\pi_2$  is an irreducible representation of  $A \rtimes_{\sigma} \mathbb{Z}$ . Now let  $\pi$  be an irreducible representation of  $A \rtimes_{\sigma} \mathbb{Z}$ . Since  $\pi$  is irreducible and  $\pi(W_{\mathbb{Z}})^2$  commutes with  $\pi(A)$  (since  $\sigma^2 = 1$ ), we conclude that  $\pi(W_{\mathbb{Z}})^2 = \lambda^2$ for some  $\lambda \in \mathbb{T}$ . Let  $U = \lambda^{-1}\pi(W_{\mathbb{Z}})$ . Then U is an order-two unitary. Define  $\pi_2(a) = \pi(a)$  for all  $a \in A$  and  $\pi_2(W) = U$ : by universality of  $A \rtimes_{\sigma} \mathbb{Z}_2$ , the map  $\pi_2$ extends to a representation of  $A \rtimes_{\sigma} \mathbb{Z}_2$ . It is irreducible since  $\pi$  is. This proves our proposition.

## **3** Application to $C^*$ -Crossed-Products of $C^*(\mathbb{F}_2)$

This section concerns itself with two examples of an action on the free group  $\mathbb{F}_2$  on two generators. This paper deals with representation theory, so we present here examples which can be handled using representation theory more or less directly.

More precisely, given the universal  $C^*$ -algebra  $C^*(\mathbb{F}_2)$  generated by two unitaries Uand V, there are three obvious and natural automorphisms of order 2 to consider:  $\alpha$ defined by  $\alpha(U) = U^*$  and  $\alpha(V) = V^*$ , as well as  $\beta$  defined by  $\beta(U) = -U$  and  $\beta(V) = -V$ , and finally  $\gamma$  defined by  $\gamma(U) = V$  and  $\gamma(V) = U$ . A companion paper [1] to this one by the same authors deals with the interesting structure of the fixed point  $C^*$ -algebra for  $\gamma$ , and thus the study of the related  $C^*$ -crossed-product of  $C^*(\mathbb{F}_2)$  by  $\gamma$  is done in [1] as well. The study of  $\alpha$  and  $\beta$  is undertaken in this section.

The following propositions will help us compute the *K*-theory of these crossed-products by bringing the problem back to simple type crossed-products on abelian  $C^*$ -algebras, to which it will be easy to apply Theorem 2.4.

**Proposition 3.1** Let  $A_1$  and  $A_2$  be two unital  $C^*$ -algebras, and let  $\alpha_1$  and  $\alpha_2$  be two actions of a discrete group G on  $A_1$  and  $A_2$ , respectively. Let  $\alpha$  be the unique action of G on  $A_1 *_{\mathbb{C}} A_2$  extending  $\alpha_1$  and  $\alpha_2$ . Then

$$(A_1 \ast_{\mathbb{C}} A_2) \rtimes_{\alpha} G = (A_1 \rtimes_{\alpha_1} G) \ast_{C^*(G)} (A_2 \rtimes_{\alpha_2} G),$$

where the free product is amalgated over the natural copies of  $C^*(G)$  in  $A_1 \rtimes_{\alpha_1} G$  and  $A_2 \rtimes_{\alpha_2} G$ , respectively.

**Proof** This result follows from universality. Since *G* is discrete, there is a natural embedding  $i_k : C^*(G) \to A_k \rtimes_{\alpha_k} G$  for k = 1, 2. Now, given a commuting diagram

by universality of the amalgated free product, there exists a unique surjection  $\varphi_B$ :  $(A_1 \rtimes_{\alpha_1} G) *_{C^*(G)} (A_2 \rtimes_{\alpha_2} G) \to B$  such that, if we use the notations

then  $\varphi_B \circ \varphi_k = j_k$  for k = 1, 2. Of course, up to a \*-isomorphism, there is a unique such universal object. Let us prove that  $(A_1 *_{\mathbb{C}} A_2) \rtimes_{\alpha} G$  is this universal object, which will prove the proposition.

First, let  $g \in G$  and let  $U^g \in C^*(G)$ ,  $U^g_1 = i_1(U^g) \in A_1 \rtimes_{\alpha_1} G$  and  $U^g_2 = i_2(U^g) \in A_2 \rtimes_{\alpha_2} G$  and  $U^g_3 \in (A_1 *_{\mathbb{C}} A_2) \rtimes_{\alpha} G$  be the naturally associated unitaries. Now we

observe that  $(A_1 *_{\mathbb{C}} A_2) \rtimes_{\alpha} G$  fits in the commutative diagram

where  $\theta_k(a) = a$  and  $\theta_k(U_k^g) = U_3^g$  for  $a \in A_k$  and k = 1, 2. Indeed, one checks immediately that, for k = 1, 2, the map  $\theta_k$  satisfies  $\theta_k(U_k^g)\theta_k(a)\theta_k(U_k^g)^* = \alpha_k(a) = \theta_k(\alpha_k(a))$ , and then we can extend  $\theta_k$  by universality of  $A \rtimes_{\alpha_k} G$ . The commutativity of the diagram is obvious.

Now, let us be given a  $C^*$ -algebra B fitting in the commutative diagram (3.1). Let  $a \in A_k$  (k = 1, 2). Then set  $\psi(a) = j_k(a)$ . Note that  $\psi(1) = j_1(1) = j_2(1) = j_k \circ i_k(1)$  as  $i_k$  is unital for k = 1, 2. Hence,  $\psi$  extends to  $A_1 *_{\mathbb{C}} A_2$  by universality of  $A_1 *_{\mathbb{C}} A_2$ . Now, with the notations of (3.2), we have  $\theta_1(U_1^g) = \theta_2(U_2^g) = U_3^g$  by construction. We set  $\psi(U_3^g) = j_1(U_1^g) = j_1 \circ i_1(U^g)$ . As the diagram (3.1) is commutative,  $\psi(U_3^g) = j_1 \circ i_2(U^g)$ . Moreover,  $\psi(U_3^g)\psi(a)\psi(U_3^g)^* = j_k(U_k^g a U_k^{g^*}) = j_k(\alpha_k(a))$  for all  $a \in A_k$  with k = 1, 2 by construction of  $\psi$ . It is easy to deduce that  $\psi(U_3^g)\psi(a)\psi(U_3^g)^* = \psi \circ \alpha(a)$  for all  $a \in A_1 *_{\mathbb{C}} A_2$ . Hence, by universality of the crossed-product, the map  $\psi$  extends to  $(A_1 *_{\mathbb{C}} A_2) \rtimes_{\alpha} G$  into B. Moreover, by construction  $\psi \circ \theta_1 = j_1$  and  $\psi \circ \theta_2 = j_2$ . Thus,  $(A_1 *_{\mathbb{C}} A_2) \rtimes_{\alpha} G$  is universal for the diagram (3.1), so  $(A_1 *_{\mathbb{C}} A_2) \rtimes_{\alpha} G = (A_1 \rtimes_{\alpha_1} G) *_{C^*(G)} (A_2 \rtimes_{\alpha_2} G)$ .

**Proposition 3.2** Let  $A_1$  and  $A_2$  be two unital  $C^*$ -algebras with two respective onedimensional representations  $\varepsilon_1$  and  $\varepsilon_2$ . Let  $\alpha_1$  and  $\alpha_2$  be two actions of a discrete group G on  $A_1$  and  $A_2$  respectively such that  $\varepsilon_1 \circ \alpha_1 = \varepsilon_1$  and  $\varepsilon_2 \circ \alpha_2 = \varepsilon_2$ . Let  $\alpha$  be the unique action of G on  $A_1 *_{\mathbb{C}} A_2$  extending  $\alpha_1$  and  $\alpha_2$ . Let  $i_k$  be the natural injection of  $C^*(G)$  into  $A_k \rtimes_{\alpha_k} G$  for k = 1, 2. Then  $K_*((A_1 *_{\mathbb{C}} A_2) \rtimes_{\alpha} G)$  equals

$$(K_*(A_1 \rtimes_{\alpha_1} G) \oplus K_*(A_2 \rtimes_{\alpha_2} G)) / \operatorname{ker}(i_1^* \oplus (-i_2^*)),$$

where for any \*-morphism  $\varphi: A \to B$  between two C\*-algebras A and B we denote by  $K_{\varepsilon}(\varphi)$  the lift of  $\varphi$  to the K-groups by functoriality (where  $\varepsilon \in \{0, 1\}$ ).

**Proof** Let  $k \in \{1,2\}$ . Denote by  $V_k^g$  the canonical unitary in  $A_k \rtimes_{\alpha_k} G$  for  $g \in G$  such that  $V_k^g a(V_k^g)^* = \alpha_k(a)$  for all  $a \in A_k$ . Identify  $\varepsilon_k(a)$  with  $\varepsilon_k(a)1 \in C^*(G)$  for all  $a \in A_k$ . Then by universality of the crossed-product  $A_k \rtimes_{\alpha_k} G$  and since  $U_g \varepsilon_k(a) U_g^* = \varepsilon_k(a) = \varepsilon_k \circ \alpha_k(a)$  for all  $a \in A_k$  (the latter equality is by hypothesis on  $\varepsilon_k$ ), the map  $\varepsilon_k$  extends to  $A_k \rtimes_{\alpha_k} G$  uniquely with  $\varepsilon_k(V_k^g) = U^g$  for all  $g \in G$ , where  $U_g$  is the canonical unitary associated to  $g \in G$  in  $C^*(G)$ . Note that  $\varepsilon_k$  thus extended is valued in  $C^*(G)$ .

Using the retractions  $\varepsilon_k$ :  $A_k \rtimes_{\alpha_k} G \longrightarrow C^*(G)$  for  $k \in \{1, 2\}$ , we can apply [2] and thus the sequence:

$$0 \longrightarrow K_*(C^*(G)) \xrightarrow{K_*(i_1) \oplus K_*(i_2)} K_*(A_1 \rtimes_{\alpha_1} G) \oplus K_*(A_2 \rtimes_{\alpha_2} G)$$
$$\longrightarrow K_*(A_1 \rtimes_{\alpha_1} G) *_{C^*(G)} (A_2 \rtimes_{\alpha_2} G)) \longrightarrow 0$$

is exact. This calculates the *K*-groups of  $(A_1 \rtimes_{\alpha_1} G) \ast_{C^*(G)} (A_2 \rtimes_{\alpha_2} G)$  which, by Proposition 3.1 is the crossed-product  $(A_1 \ast_{\mathbb{C}} A_2) \rtimes_{\alpha} G$ .

**Remark 3.3** In particular, if  $A_1$  is abelian then the existence of  $\varepsilon_1$  is equivalent to the existence of a fixed point for the action  $\alpha_1$ .

Of course,  $C^*(\mathbb{Z}_2) = C(\mathbb{Z}_2) = \mathbb{C}^2$ . Thus  $K_1(C^*(\mathbb{Z}_2)) = 0$  while  $K_0(C^*(\mathbb{Z}_2)) = \mathbb{Z}^2$  is generated by the spectral projection of the universal unitary W such that  $W^2 = 1$ .

Now we use Proposition 3.2 to compute the *K*-theory of two examples. The key in each case is to calculate explicitly the type I crossed-products  $C(\mathbb{T}) \rtimes \mathbb{Z}_2$ . We propose to do so using Theorem 2.4.

**Proposition 3.4** Let  $\beta$  be the \*-automorphism of  $C^*(\mathbb{F}_2)$  defined by  $\beta(U) = -U$  and  $\beta(V) = -V$ . Then

$$K_0(C^*(\mathbb{F}_2) \rtimes_{\beta} \mathbb{Z}_2) = \mathbb{Z} \text{ and } K_1(C^*(\mathbb{F}_2) \rtimes_{\beta} \mathbb{Z}_2) = \mathbb{Z}^2$$

**Proof** Let *z* be the map  $\omega \in \mathbb{T} \mapsto \omega$ . Write  $\beta = \beta_1 * \beta_1$  where  $\beta_1(z) = -z$ . The crossed-product  $C(\mathbb{T}) \rtimes_{\beta_1} \mathbb{Z}_2$  is  $\mathbb{C} = C(\mathbb{T}, M_2) = C(\mathbb{T}) \otimes M_2$ . Indeed, if we set  $\psi(f)(x) \mapsto \begin{bmatrix} f(x) & 0 \\ 0 & f(-x) \end{bmatrix}$  and  $\psi(W) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ , then  $\psi$  extends naturally to a \*-morphism from  $C(\mathbb{T}) \rtimes_{\beta_1} \mathbb{Z}_2$  into  $\mathbb{C}$ . Moreover, the range of  $\psi$  is the *C*\*-algebra spanned by  $\psi(z)$  and  $\psi(W)$ , which is easily checked to be  $\mathbb{C}$  by the Stone–Weierstrass theorem, so  $\psi$  is surjective. It is injective as well; let  $a \in \ker \psi$ . If  $\pi$  is an irreducible \*-representation of  $C(\mathbb{T}) \rtimes_{\beta_1} \mathbb{Z}_2$ , then by Theorem 2.4,  $\pi$  is (up to unitary equivalence) acting on  $M_2$  by  $\pi(f) = \begin{bmatrix} f(x) & 0 \\ 0 & f(-x) \end{bmatrix}$  and  $\pi(W) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ , for some fixed  $x \in \mathbb{T}$ . Thus, if  $\rho_x$  is the evaluation at *x* in  $\mathbb{C}$ , then  $\rho \circ \psi = \pi$  and thus  $\pi(a) = 0$ . Thus a = 0 as  $\pi$  arbitrary, and thus  $\psi$  is a \*-isomorphism.

Of course,  $K_*(M_2(C(\mathbb{T}))) = K_*(\mathbb{T})$  so  $K_0(C(\mathbb{T}) \rtimes_{\beta_1} \mathbb{Z}_2) = \mathbb{Z}$  and  $K_1(C(\mathbb{T}) \rtimes_{\beta_1} \mathbb{Z}_2) = \mathbb{Z}$ . Moreover,  $K_1$  is generated by z while  $K_0$  is simply generated by the identity of  $C(\mathbb{T})$ . The map  $i_k \colon C^*(\mathbb{Z}_2) \to \mathbb{C}$  maps the generator of  $C^*(\mathbb{Z}_2)$  to w, and thus  $i_k^*$  maps the two spectral projections of w to 1. Hence,  $i_k^0 \colon \mathbb{Z}^2 \to \mathbb{Z}$  is defined by  $i_k(0,1) = i_k(1,0) = 1$ . Thus by Proposition 3.1, we have  $K_0(C^*(\mathbb{F}_2) \rtimes \mathbb{Z}_2) = \mathbb{Z}$  and  $K_1(C^*(\mathbb{F}_2) \rtimes \mathbb{Z}_2) = \mathbb{Z}^2$ .

**Proposition 3.5** Let  $\alpha$  be the \*-automorphism of  $C^*(\mathbb{F}_2) = C^*(U, V)$  defined by  $\alpha(U) = U^*$  and  $\alpha(V) = V^*$ . Then

$$K_0(C^*(\mathbb{F}_2) \rtimes_{\alpha} \mathbb{Z}_2) = \mathbb{Z}^4$$
 and  $K_0(C^*(\mathbb{F}_2) \rtimes_{\alpha} \mathbb{Z}_2) = 0.$ 

**Proof** Write  $\alpha = a_1 * \alpha_1$  where  $\alpha_1(z) = \overline{z}$  where z is the map  $\omega \in \mathbb{T} \mapsto \omega$ . Now, the crossed-product  $C(\mathbb{T}) \rtimes_{\alpha_1} \mathbb{Z}_2$  is the  $C^*$ -algebra

$$\mathcal{B} = \{h \in C([-1,1], M_2) : h(1), h(-1) \text{ diagonal}\}.$$

Indeed, define  $\psi(f)(t)$  for all  $f \in C(\mathbb{T})$  and  $t \in [0, 1]$  by

$$\frac{1}{2} \begin{bmatrix} f(t,-y) + f(t,y) & f(t,-y) - f(t,y) \\ f(t,-y) - f(t,y) & f(t,-y) + f(t,y) \end{bmatrix},$$

where  $y = \sqrt{1-t^2}$ . Set  $\psi(W) = w = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ . Then  $w^2 = 1$  and  $w\psi(f)w = \psi(\alpha_1(f))$ , so  $\psi$  extends to a unique \*-morphism from  $C(\mathbb{T}) \rtimes_{\alpha_1} \mathbb{Z}_2$  into  $\mathcal{B}$ . By the Stone–Weierstrass theorem, one can check that  $\psi$  is indeed onto. Last, let  $\pi$  be an irreducible \*-representation of  $C(\mathbb{T}) \rtimes_{\alpha_1} \mathbb{Z}_2$ . If the restriction  $\pi'$  of  $\pi$  to  $C(\mathbb{T})$  is irreducible, then  $\pi'$  is one-dimensional and there exists  $x \in \mathbb{T}$  such that  $\pi'(f) = \pi(f) = f(x)$  for all  $f \in C(\mathbb{T})$ . By Theorem 2.4 since  $\pi'$  is irreducible,  $\pi$  is also one-dimensional and  $\pi(W)$  is a scalar unitary (hence it is 1 or -1 since  $W^2 = 1$ ), so it commutes with  $\pi(f)$  for all f. Since  $(WfW)(x) = f(\bar{x})$  we conclude that x = 1 or x = -1. Either way let  $\rho_x$  be the evaluation at x in  $\mathcal{B}$ . Then  $\rho_x(h)$  is diagonal by definition of  $\mathcal{B}$  for all  $h \in \mathcal{B}$ . Let  $\rho_{x,+1}$  be the one-dimensional representation defined by the lower-right corner of  $\rho_x$ . Note that either way,  $\rho_{x,+}(\psi(f)) = \rho_{x,-}(\psi(f)) = f(x)$  for all  $f \in C(\mathbb{T})$ . On the other hand,  $\rho_{x,\varepsilon}(\psi(W)) = \varepsilon$ . Hence, we have proved that  $\rho_{x,W} \circ \psi = \pi$ . Thus if  $a \in C(\mathbb{T}) \rtimes_{\alpha_1} \mathbb{Z}_2$  and  $\psi(a) = 0$ , then  $\pi(a) = 0$ .

If instead,  $\pi$  restricted to  $C(\mathbb{T})$  is reducible, then by Theorem 2.4  $\pi$  is unitarily equivalent to a representation  $\pi'$  acting on  $M_2$  defined as follows: there exists  $x \in \mathbb{T}$  such that  $\pi'(f) = \begin{bmatrix} f(x) & 0 \\ 0 & f(\overline{x}) \end{bmatrix}$  for all  $f \in C(\mathbb{T})$  and  $\pi'(W) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ . Up to conjugating by the unitary  $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ , we see that if we set  $\rho(h) = h(t)$  for all  $h \in \mathcal{B}$ , where *t* is defined by  $x = (t, \sqrt{1 - t^2})$ , then  $\rho \circ \psi = \pi'$  and thus, if  $a \in \ker \psi$ , then  $\pi'(a) = 0$ , so  $\pi(a) = 0$ . In conclusion, if  $a \in \ker \psi$ , then  $\pi(a) = 0$  for all (irreducible) \*-representations of  $C(\mathbb{T}) \rtimes_{\alpha_1} \mathbb{Z}_2$  and thus a = 0, so  $\psi$  is a \*-isomorphism.

The *K*-theory of  $\mathcal{B}$  is easy to calculate. We start with the exact sequence  $0 \rightarrow C_0((-1,1), M_2) \xrightarrow{i} \mathcal{B} \xrightarrow{q} \mathbb{C}^4 \rightarrow 0$  where *i* the inclusion and *q* the quotient map, also defined by  $q(a) = a(1) \oplus a(-1)$  for  $a \in \mathcal{B}$  and identifying the diagonal matrices in  $M_2$  with  $\mathbb{C}^2$ . We also used the notation  $C_0(X)$  for the space of continuous functions on a locally compact space *X* vanishing at infinity. The associated six-term exact sequence is then simply

The generator of the  $K_1$  group of  $C_0(-1, 1) \otimes M_2$  is the unitary  $u_1: t \in (-1, 1) \mapsto \exp(i\pi t)\mathbf{1}_2$ , where  $\mathbf{1}_2$  is the unit of  $M_2$ . However,  $u_1$  is trivial in  $K_1(\mathcal{B})$  via the obvious homotopy  $(u_{\lambda})_{\lambda \in [0,1]}$  with  $u_{\lambda}: t \in [-1,1] \mapsto \exp(\pi i\lambda t)$  (note that  $u_{\lambda}$  for  $\lambda \in (0,1)$ is not in the unitalization of  $C_0(-1,1)$  since  $u_{\lambda}(-1) \neq u_{\lambda}(1)$ ). Thus  $K_1(i) = 0$ ,  $K_1(\mathcal{B}) = 0$  and the range of  $\delta$  is  $\mathbb{Z}$  by exactness. Hence, again by exactness, ker  $\delta$  is a copy of  $\mathbb{Z}^3$  inside of  $\mathbb{Z}^4 = K_0(\mathbb{C}^4)$ .

Let  $p = \frac{1}{2}(W + 1)$  and  $p' = \frac{1}{2}(1 + Wz)$  (note that  $WzWz = \overline{z}z = 1$ , so p' is a projection). We calculate easily that  $K_0(q)(p) = (1, 0, 1, 0)$ , while  $K_0(q)(p') = (1, 0, 0, 1)$ .

The subgroup of  $\mathbb{Z}^4$  generated by (1, 0, 1, 0), (1, 1, 1, 1), and (1, 0, 0, 1) is isomorphic to  $\mathbb{Z}^3$ . By exactness, it must be  $\mathbb{Z}^3$ . Since  $K_0(i) = 0$ , the map  $K_0(1)$  is an injection and thus  $K_0(C(\mathbb{T}) \rtimes_{\alpha_1} \mathbb{Z}_2) = \mathbb{Z}^3$  generated by the spectral projections of w and of Wz, and  $K_1(C(\mathbb{T}) \rtimes_{\alpha_1} \mathbb{Z}_2) = 0$ .

Moreover,  $i_k: C^*(\mathbb{Z}_2) \to C(\mathbb{T}) \rtimes_{\alpha_1} \mathbb{Z}_2$  maps the generator of  $C^*(\mathbb{Z}_2)$  to w, so the range of  $i_k^*$  is the subgroup generated by [p] and [1]. Thus, by Proposition 3.1,  $K_0(C^*(\mathbb{F}_2) \rtimes_{\alpha_1} \mathbb{Z}_2) = \mathbb{Z}^4$  and  $K_1(C^*(\mathbb{F}_2) \rtimes_{\alpha_1} \mathbb{Z}_2) = 0$ .

## References

- [1] M.-D. Choi and F. Latrémolière, *The C\*-algebra of symmetric words in two universal unitaries*. arXivmath.OA/0610467.
- [2] J. Cuntz, *The K-groups for free products of C\*-algebras*. Proc. Sympos. Pure Math. **38**(1982), 81–84.
- M. Rieffel, Induced representations of C\*-algebras. Advances in Math. 13(1974), 176–257. doi:10.1016/0001-8708(74)90068-1
- [4] \_\_\_\_\_, Actions of finite groups on C\*-algebras. Math. Scand. 47(1980), 157–176.
- G. Zeller-Meier, Produits croisés d'une C\*-algèbre par un groupe d'automorphismes. J. Math. Pures Appl. 47 (1968), 101–239.

Department of Mathematics, University of Toronto, Toronto, ON e-mail: choi@math.toronto.edu

Department of Mathematics, University of Denver, Denver, CO 80208, USA e-mail: Frederic.Latremoliere@math.du.edu