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Abstract

The yeast Saccharomyces cerevisiae has emerged as an ideal model system to study the
dynamics of prion proteins which are responsible for a number of fatal neurodegenerative
diseases in humans. Within an infected cell, prion proteins aggregate in complexes which
may increase in size or be fragmented and are transmitted upon cell division. Recent work
in yeast suggests that only aggregates below a critical size are transmitted efficiently. We
formulate a continuous-time branching process model of a yeast colony under conditions
of prion curing. We generalize previous approaches by providing an explicit formula
approximating prion loss as influenced by both aggregate growth and size-dependent
transmission.
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1. Introduction

Prion proteins are responsible for a variety of neurodegenerative diseases in mammals
such as Creutzfeldt–Jakob disease in humans and ‘mad-cow disease’ (Bovine Spongiform
Encephalopathy or BSE) in cattle [5], [9], [16]. Although the precise mechanisms remain
unclear, the infectious agent itself is a protein produced by the cells of the host. While these
diseases are fatal to mammals, a host of harmless phenotypes have been associated with prion
proteins in the yeast S. cerevisiae [7], [20], [22], making yeast an ideal model to study the prion
process in isolation.

According to the prion hypothesis, new phenotypes arise when misfolded versions of a
protein appear (Figure 1(a)) and are joined together in aggregates. These aggregates are
complexes of multiple misfolded proteins and can range in size from tens to hundreds of
proteins. The misfolded (prion) state is infectious and can spread to normal proteins within
the cell by converting their conformation to the misfolded state. During this process, the
newly misfolded protein joins the complex and the aggregate increases in size by one unit (see
Figure 1(b)).

Since cell division results in an exponentially increasing number of cells, in order for prions
to be present throughout a colony, the total number of aggregates must increase. In total,
there are four biochemical processes essential to maintaining the prion phenotype in a growing
yeast culture (Figure 1(c)): (i) synthesis of new normal protein; (ii) conversion of normal
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Figure 1: The prion pathway in yeast. (a) A prion protein is capable of distinct conformations. (b) The
prion form of the protein aggregates into complexes which then may convert normal proteins. (c) Several
steps are required for the prion state to persist: normal protein must be continuously synthesized; normal
protein must be converted by existing aggregates; aggregates must increase in number by fragmentation,
and a subset of the aggregates must be passed on during cell division. Perturbation of any of these parts
of the prion pathway results in dilution of existing aggregates due to cell division and loss of the prion

state at the population level.

protein to the misfolded state by existing aggregates; (iii) creation of new prion aggregates
through fragmentation of existing aggregates into smaller complexes, and (iv) transmission of
aggregates through cell division.

A single protein may correspond to multiple prion strains (distinct misfolded conformations)
each of which are associated with biochemical rates of conversion, fragmentation and
transmission [6], [21]. In yeast, a common tool used to characterize prion strains is the number
of transmissible aggregates within a typical cell. These transmissible aggregates, sometimes
called propagons or prion seeds, are the infectious agent of the prion disease [20]. The dominant
experimental method used to infer the number of transmissible aggregates in a cell is treatment
with guanidine hydrochloride (GdnHCl). Sufficiently high concentrations of GdnHCl have been
shown to severely disrupt the fragmentation process [2], thus the total number of aggregates
will not change. Exposure to GdnHCl does not alter other biochemical processes, so aggregates
may continue to increase in size, through conversion, and will be diluted in the population due
to cell division. Over time the population will be cured of the prion disease as the fraction of
cells with aggregates approaches zero.

Mathematical approaches have been developed to estimate the number of transmissible
aggregates in a founder cell by examining loss of aggregates over time due to population
growth [3], [4], [12]. These models assume that all aggregates are equally transmissible;
however, recent studies have revealed that only aggregates below a threshold size, about 20
monomers, can be efficiently transmitted during cell division [6]. Thus, without size-dependent
transmission of aggregates, these previous models underestimate the number of transmissible
aggregates [19].

Prion loss with size-dependent transmission has been considered by two recent studies
[15], [19]. Palmer et al. [15] studied curing through computer simulations of yeast populations,
but did not attempt to explicitly represent prion loss as a function of time. Furthermore, their
simulations focused on only a single well-studied prion strain, the [PSI+] strong strain [21].
As such, the rate of conversion was assumed to be known. Thus, while their simulations yielded
a detailed analysis of curing for a specific strain, their simulation-based approach cannot be
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used to determine the number of transmissible aggregates for other strains or, more generally,
an unknown strain [1]. In [19] Sindi and Olofsson provided analytical solutions for curing, but
only under the assumption of discrete-time cell division. Since yeast cells have an asymmetric
cell-cycle, this approach greatly simplifies the age-structure of a population [4].

In this study we follow [19] by modeling aggregate conversion as a Poisson process, but
now consider this process embedded within a yeast population growing under a continuous-
time branching process. We derive a closed-form approximation for the expected rate of curing
as a function of time. By using the rate of conversion as an explicit parameter, our model is
suitable for analyzing loss for arbitrary strains without resorting to time-intensive simulations.
Finally, our explicit formula may provide a way to assess in vivo conversion rates; most current
estimates of conversion rates are based on in vitro analyses [21].

2. The branching process model

We model the yeast population in continuous time with a general (Crump–Mode–Jagers)
branching process. In such a process, an individual may give birth at different points in time
during its life. It applies naturally to budding-yeast populations where there is a clear distinction
between a mother and her daughter. The central mathematical object is the reproduction process
which describes the (stochastic) process according to which offspring are born. For yeast, a
newborn cell first needs time to reach maturity after which it enters the cell cycle and eventually
produces a daughter cell. Thereafter, the cell enters the cell cycle again and produces daughter
cells indefinitely. In reality, a mother cell can only have a finite number of daughter cells, the
replicative lifespan. For example, Sinclair et al. [18] estimated this number to be on average 25,
but during the time of a typical curing experiment we can safely neglect this finite replicative
lifespan and for practical purposes assume indefinite reproduction; see also [13] and [14]. If
needed, the model can easily be adjusted to incorporate the finite lifespan.

For simplicity, we refer to a cell that has not yet reproduced as a ‘daughter’ and a cell
that has reproduced at least once as a ‘mother’. Furthermore, we shall refer to the
time between any two reproduction events as a ‘division time’ and consider the two cells
resulting from a reproduction event (the mother and the newborn daughter) as belonging to
the same generation. Assume that a mother cell has a division time M that has cumulative
distribution function (CDF) FM and that a daughter cell has a division time D that has CDF
FD . The division time of a mother cell is equal to the amount of time to go through the cell
cycle. Newly born daughter cells require additional time to reach maturity before dividing, and
thus have a distinct CDF for division times. Thus, the reproduction process has points at times
D, D + M1, D + M1 + M2, . . ., where the Mj are independent with common CDF FM . For
details, see Appendix A.1.

We assume that (prion) aggregates grow one unit at a time according to a Poisson process
with rate β, and once an aggregate has grown to a critical size c, it can no longer be transmitted
to the daughter but must stay in the mother. The population starts from one ancestor cell that
contains a number of transmissible aggregates of different sizes. Let Nk denote the number of
aggregates that are k units (conversion events) away from reaching the critical size, k = 1, . . . , c,
let N = (N1, . . . , Nc), let Zt be the number of cells with aggregates at time t , and let Yt be the
total number of cells present at time t . We approximate the expected proportion of cells with
aggregates at time t , conditioned on N as

P N
t ≈ E[Zt | N ]

E[Yt ] (2.1)
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and, unconditionally,

Pt ≈ E[Zt ]
E[Yt ] . (2.2)

Following previous approaches [3], [4], [12], [19], (2.1) and (2.2) represent a truncated Taylor
series approximation to Pt . We next explicitly derive E[Zt ] and E[Yt ], which requires deriving
the division time of the ancestor (founding cell).

2.1. Expected number of cells in the population

Since cells from any generation may be present at time t , we first decompose the population
by generation. Note that a given cell in the nth generation may be described by a sequence
consisting of the ancestor, d daughters, and n−d mothers, and that there are

(
n
d

)
such sequences

for d = 0, 1, . . . , n. Of those
(
n
d

)
sequences,

(
n−1
d−1

)
have a daughter in the nth position and

(
n−1
d

)
have a mother in the nth position. For the first type of sequence, let pD

nd(t) be the probability
that the nth generation cell is present at time t ; for the second type, denote the corresponding
probability by pM

nd(t). The case n = 0 is special as only the ancestor is present. The ancestor
needs to be treated separately as this cell may be sampled from a population and thus will have
already started its life at our time t = 0. Denote its remaining division time at time t = 0 by
A and the CDF of A by FA. The probability that the ancestor is still present at time t is then
1 − FA(t) and we obtain

E[Yt ] = 1 − FA(t) +
∞∑

n=1

n∑
d=0

[(
n − 1

d − 1

)
pD

nd(t) +
(

n − 1

d

)
pM

nd(t)

]
,

where
(
n−1
−1

) = (
n−1
n

) = 0. We need to find expressions for pM
nd(t) and pD

nd(t). Let Fn,d(t)

denote the CDF of the sum of n division times, d of which belong to daughters, that is,

Fn,d(t) = F ∗d
D ∗ F

∗(n−d)
M (t), (2.3)

where ‘∗’ denotes convolution. The following expression for E[Yt ] is proved in Appendix A.2.

Proposition 2.1. It holds that

E[Yt ] = 1 − FA(t) +
∞∑

n=1

n∑
d=0

[(
n − 1

d − 1

)
(FA ∗ Fn−1,d−1(t) − FA ∗ Fn,d(t))

+
(

n − 1

d

)
(FA ∗ Fn−1,d (t) − FA ∗ Fn,d(t))

]
. (2.4)

2.2. Expected number of cells with aggregates

Turning next to E[Zt | N ], first note that once an aggregate reaches critical size, it cannot be
transmitted to a daughter cell but must remain in the mother. (This limitation on transmission,
while strict, is consistent with previously reported findings [6].) For the nth generation, we
divide the set of the 2n possible sequences of mothers and daughters into subsets Snld of
sequences where the last daughter is in position l and there is a total of d daughters. For example,
the sequence DDMMM is in S522, the sequences DMDMM and MDDMM are both in S532,
and so on. Let nld be the number of sequences in Snld ; then nld = (

l−1
d−1

)
for l = 0, . . . , n and

d = 0, . . . , l (where
(−1
−1

) = (−1
0

) = 1 and
(
l−1
−1

) = 0 for l ≥ 1). Note that the nld do not depend
on n since after the last daughter, there are no further choices. Also note that for fixed n, the
nld sum to 2n as they should.

Let C(t) denote the event that a cell in Snld is present in the population at time t and let B

denote the event that at least one of the initial aggregates is present in the cell. The expected
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number of cells with aggregates at time t , conditioned on N , is then

E[Zt | N ] =
∞∑

n=0

n∑
l=0

l∑
d=0

(
l − 1

d − 1

)
P(B ∩ C(t) | N). (2.5)

Now note that

B =
c⋃

k=1

Nk⋃
j=1

Bjk, (2.6)

where Bjk is the event that the j th aggregate among those that are Nk conversion events
away from critical size is present in the cell. Denote the successive division times by T0 ≡
0, T1, T2, . . ., and let A(u) be the event that Tj = uj for j = l, . . . , n, i.e.

A(u) = {Tl = ul, . . . , Tn = un}.
We start at Tl and not at T1 because if an aggregate grows beyond the critical size before the
lth division, it cannot be present in a cell whose lineage has the last daughter at position l.
Furthermore, let u = (ul, . . . , un), S(t) = {u : 0 ≤ ul ≤ · · · ≤ un ≤ t}, and let f denote the
joint probability distribution function (PDF) of (Tl, . . . , Tn) to obtain

P(B ∩ C(t) | N) =
∫

S(t)

P(B | C(t) ∩ A(u), N)P(C(t) | A(u))f (u) du. (2.7)

To deal with the three factors of the integrand, note that f (u) is easily obtained from the cell
cycle distributions as

f (u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fA ∗ f
∗(d−1)
D ∗ f

∗(l−d)
M (ul)fD(ul+1 − ul)

n∏
k=l+2

fM(uk − uk−1) for l ≥ 1, l < n,

fA ∗ f
∗(d−1)
D ∗ f

∗(l−d)
M (ul) for l ≥ 1, l = n,

fA(u1)

n∏
k=2

fM(uk − uk−1) for l = 0,

where f
∗(d−1)
D ∗ f

∗(l−d)
M is the PDF corresponding to the CDF Fl−1,d in (2.3) and fA is the

PDF of the remaining cell cycle time of the ancestor (and as usual, an empty product equals 1
and a 0th-order convolution power is a unit point mass at 0).

Given A(u), the cell is present at time t if and only if it has not yet divided at t and, hence,

P(C(t) | A(u)) =
{

P(M > t − un) if l < n,

P(D > t − un) if l = n.

To obtain an expression for P(B | C(t)∩A(u)), recall (2.6) and note that theBjk are independent
given C(t) ∩ A(u). Also, note that the Bjk have the same (conditional) probabilities for
j = 1, . . . , Nk . We obtain

P(B | C(t) ∩ A(u), N) = 1 −
c∏

k=1

Nk∏
j=1

(1 − P(Bjk | C(t) ∩ A(u)))

= 1 −
c∏

k=1

(1 − P(B1k | C(t) ∩ A(u)))Nk .

To deal with P(B1k | C(t) ∩ A(u)), condition further on the critical time τk when the initial
aggregate reaches critical size. Since aggregate growth is independent of cell reproduction,
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τk is independent of C(t) ∩ A(u). Furthermore, τk and A(u) together identify in which
generation critical size is reached, and given this information B1k is conditionally independent
of C(t) ∩ A(u). If the aggregate reaches critical size before generation l where the last daughter
is, it cannot be passed on to this daughter and will not be present in the given nth generation
cell which gives

P(B1k | {τk < ul} ∩ A(u)) = 0.

If critical size is reached in generation l ≤ j ≤ n−1, the aggregate must first reach generation j

by chance after which it will stay in the remaining sequence of mothers. As it must be passed
on to a daughter cell d times and to a mother cell j − d times, we obtain

P(B1k | {uj ≤ τk ≤ uj+1} ∩ A(u)) = pd(1 − p)j−d .

Note, as in previous formulations, we assume that aggregates small enough to transmit during
cell division are independently transmitted to the daughter cell with probability p, or retained
in the mother cell with probability (1 − p); see [3] and [19] for other formulations. Finally, if
critical size is reached in generation n or later, the aggregate must make it to generation n by
chance which gives

P(B1k | {τk ≥ un} ∩ A(u)) = pd(1 − p)n−d ,

and putting it all together we obtain

P(B1k | C(t) ∩ A(u)) =
n−1∑
j=l

pd(1 − p)j−d
P(uj ≤ τk ≤ uj+1) + P(τk ≥ un)p

d(1 − p)n−d .

Since conversion occurs according to a Poisson process with rate β, we have τk ∼ �(k, β)

since the subscript k indicates that the aggregate is k conversion events away from reaching
critical size. Thus, with Fk denoting the CDF of the said gamma distribution,

P(uj ≤ τk ≤ uj+1) = Fk(uj+1) − Fk(uj ).

This is summarized in the following proposition.

Proposition 2.2. It holds that

E[Zt | N ] =
∑
n,l,d

∫
S(t)

(
l − 1

d − 1

)(
1 −

c∏
k=1

(1 − P(B1k | C(t) ∩ A(u)))Nk

)

× P(C(t) | A(u))f (u) du, (2.8)

where P(B1k | C(t) ∩ A(u)), P(C(t) | A(u)), and f (u) are given above.

To arrive at the unconditional expectation E[Zt ], let ϕ denote the joint probability generating
function of N and let bk = 1 − P(B1k | C(t) ∩ A(u)) for k = 1, . . . , c to obtain

E[Zt ] = E[E[Zt | N ]]

=
∑
n,l,d

∫
S(t)

(
l − 1

d − 1

)(
1 − E

[ c∏
k=1

(1 − P(B1k | C(t) ∩ A(u)))Nk

])

× P(C(t) | A(u))f (u) du

=
∑
n,l,d

∫
S(t)

(
l − 1

d − 1

)
(1 − ϕ(b1, . . . , bc)P(C(t) | A(u))f (u)) du.
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2.3. Division time of the ancestor

Finally, we consider the distribution of the division time of the ancestor with CDF FA and
PDF fA. Realistically, the ancestor is not newborn at time 0 but rather sampled from a cell
population and has thus already lived for a period of time. Hence, FA is the CDF of the
remaining division time of such a randomly sampled cell which can be either a mother or a
daughter. To obtain an expression for the PDF fA, we apply stable population results from the
theory of general branching processes. The following proposition is proved in Appendix A.3.

Proposition 2.3. The PDF of the division time A of the ancestor equals

fA(t) = α

∫ ∞

0
e−αs(fD(s + t) + fM(s + t)) ds, t ≥ 0,

where fD and fM are the PDFs of division times of daughters and mothers, respectively.

The constant α is the Malthusian parameter which describes the asymptotic growth rate of
the population in the sense that as t → ∞, E[Zt ] grows proportionally to eαt . For the definition
of α and its relation to cell cycle parameters, see Appendix A.1.

Previous studies assume the ancestor has the distribution of the excess life in a renewal
process [4]. However, this assumption is questionable as it is valid only if the cell is sampled
from a lineage and not from a population. As the latter is arguably more realistic, exponential
growth must also be factored in. Although previous approaches such as those used by Cole et
al. [4] will underestimate A, as we later investigate, the practical effect of this underestimation
may be small.

3. Simulation comparison

We next compare (2.5) and (2.8) with the population averages from simulations of the prion
curing process. In accordance with our assumptions above and previous simulation studies
[19, 6], aggregates smaller than the transmission threshold c are transmitted to daughter cells
with probability p = 0.40. (This is consistent with the differences in volume between mother
and daughter cells [6].) We use Monte Carlo integration (see [17]) to evaluate (2.7). Both our
code for simulating yeast populations and evaluating (2.5) and (2.8) are available upon request.

3.1. Comparing theory to empirical averages

In Figure 2 we compare our theoretical expressions (solid line) to averages (dots) over
1000 simulated yeast populations and gamma distributed division times, with fM(t; aM, b)

and fD(t; aD, b), where

f (t; a, b) = t (a−1)e−t/b

�(a)ba
. (3.1)

We varied the numbers of aggregates, the sizes of aggregates, and the rate of conversion β.
In all cases, we found strong agreement between our theory and simulation averages. In
Figure 2 we show representative results under the simplifying assumptions that the founder
is a newly born cell and all initial aggregates are the same size (i.e. they are the same units
away from the transmission threshold c). Figures 2(a) and (c) show a box plot of Zt , the
number of cells with at least 1 aggregate, in simulated yeast populations (box plot) as well as
the empirical (dots) and theoretical (solid) expressions for E[Zt ]. As expected, Zt eventually
stops changing as all aggregates exceed the transmission threshold. Figures 2(b) and (d) show
curves corresponding to the empirical (dots) and theoretical (solid) expressions for E[Zt ]/E[Yt ].
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Figure 2: Theoretical distributions are compared to empirical averages for different aggregate config-
urations. (a)–(b): Identical gamma division times, β = 0.50, # Aggregates = 100, units until c = 5;
(c)–(d) Asymmetric gamma division times, β = 0.25, # Aggregates = 50, units until c = 10. In all cases

our theoretical distributions closely match simulation averages.
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Figure 3: Theoretical curing curves under two choices for ancestor division time closely agree. For each
case, the rate of conversion was β = 0.25 and the population began with 50 aggregates each 10 units

away from c. (See text for more information.)

For both symmetric (Figure 2(a) and (b)) and asymmetric (Figure 2(c) and (d)) cell division,
our theoretical expressions for E[Zt ] and E[Zt ]/E[Yt ] agree well with the empirical averages.

3.2. Incorporating the ancestor division time

We next examine the role of the ancestor distribution. Rather than drawing from a random
lineage, as in previous approaches [3], [4], [12] we consider the ancestor as a random cell from
the population. The PDF of the division time of the ancestor cell is given by Proposition 2.3
above and proven in Appendix A. In Figure 3, we compare E[Zt ] and E[Zt ]/E[Yt ] under two
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choices for the division time of the ancestor. First, as described in [4], the ancestor is chosen
from a random lineage (dashed lines). Alternately, the ancestor is chosen randomly from a
population of yeast cells as defined in Proposition 2.3 (solid lines). In these results fM(t) and
fD(t) were chosen as identical gamma distributions, a = 2 and b = 1

2 in (3.1), and fA(t) is
defined as in Proposition 2.3. We note that the E[Zt ] and E[Zt ]/E[Yt ] closely agree under
both scenarios for division time of the ancestor. Further investigation revealed that, unless
aggregates are likely to exceed c in size within a single generation, the impact of the ancestor
division time on the curing curve was minimal.

4. Discussion

Prion proteins are responsible for a host of neurological disorders in mammals and a host of
phenotypes in yeast. Of particular concern for yeast prion strains, is the number of transmissible
aggregates in a typical cell. Previous approaches to computing this number, see [3], [4], [12],
neglected continued growth of aggregates and size-limited transmission. Recently, studies have
begun exploring these conditions, but have relied on computationally intensive simulations of
yeast populations and, as such, required biochemical rates to be specified [6], [15].

Our work represents the first theoretical treatment of prion curing under realistic models
of aggregate transmission and cell division. We demonstrated the accuracy of our derivations
by comparing to simulations of prion curing. Our formulation enables novel lines of analysis
which we plan to explore in future studies. Because we have parameterized our model in terms
of the aggregate conversion rate, our work is applicable to arbitrary prion strains. Furthermore,
our work offers the potential to estimate in vivo aggregate conversion rates, in addition to the
number of transmissible aggregates.

Appendix A

A.1. General branching processes

We give a brief introduction to general branching process theory; for a comprehensive
account, see [11]. The fundamental object in a general branching process is the reproduction
process which describes how offspring are being born. Denoting the reproduction process by ξ ,
ξ(t) denotes the number of offspring a mother has had before age t , noting that ξ(t) is a random
variable. The corresponding random measure is ξ(dt) so that

ξ(t) =
∫ t

0
ξ(du).

Individuals reproduce according to independent identically distributed copies of ξ . As pointed
out in Section 2, the reproduction process for yeast cells has points at times D, D + M1, D +
M1 +M2, . . . where D has CDF FD , and the Mj are independent (and independent of D) with
common CDF FM .

The asymptotic exponential growth rate of the population is described by the Malthusian
parameter α. Let ξ denote the reproduction process and define its expected Laplace transform
evaluated at a point r as

E[ξ̂ (r)] =
∫ ∞

0
e−rt

E[ξ(dt)].

The Malthusian parameterα is the number satisfying E[ξ̂ (α)] = 1.To obtain an expression for ξ ,
note that offspring are born at times D, D+M1, D+M1 +M2, . . . so if we let Sk = ∑k

j=1 Mj ,
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we obtain the reproduction process

ξ(dt) = δD(dt) +
∞∑

k=1

δD+Sk
(dt),

where δX denotes unit point mass at the random variable X so that∫ ∞

0
e−αt δX(dt) = e−αX.

For a given random variable X with CDF F , let

F̂ (α) = E[e−αX] =
∫ ∞

0
e−αtF (dt),

the Laplace transform of the measure induced by the CDF of the random variable X. The
expected Laplace transform of ξ is now given by

E[ξ̂ (α)] = F̂D(α) + F̂D(α)

∞∑
k=1

F̂M(α)k = F̂D(α)

1 − F̂M(α)
,

which gives the following equation for α:

F̂D(α) + F̂M(α) = 1. (A.1)

(This is the same relation as Equation (2) in [8].) Note that the equation for α can be written

E[e−αD] + E[e−αM ] = 1,

so if D and M are constant, we obtain e−αD + e−αM = 1 as in [10]. Also, note that any given
cell is a mother at age a if and only if it has D ≤ a. Hence, the asymptotic proportion of
mothers is ∫ ∞

0
e−αaFD(da) = F̂D(α),

and since F̂D(α) + F̂M(α) = 1, the asymptotic proportion of daughters is F̂M(α). This fact is
also pointed out in [4] and is obtainable from Equation (5) of [8] by computing his qU

0 + qB
0 .

A.2. Proof of Proposition 2.1

Recall that a given cell in the nth generation can be described by a sequence consisting of
the ancestor, d daughters, and n− d mothers. Of those sequences,

(
n−1
d−1

)
have a daughter in the

nth position and
(
n−1
d

)
have a mother in the nth position. For the former, note that the last cell

in the sequence is present if and only if the sum of the division times of (a) the ancestor, (b) the
d − 1 daughters, and (c) the n − d mothers is less than t , and the sum when the division time
of the last cell (which is a daughter) has been added exceeds t . For the latter, the reasoning is
similar, noting that the last cell is now instead a mother. Recall Fn,d(t) from (2.3) and add the
division time A of the ancestor to obtain the CDF FA ∗ Fn−1,d of the time of birth of an nth
generation cell that has d daughters in its ancestry. We obtain the probabilities of a cell being
present at time t as

pM
nd(t) = FA ∗ Fn−1,d−1(t) − FA ∗ Fn,d(t)

and
pD

nd(t) = FA ∗ Fn−1,d (t) − FA ∗ Fn,d(t)

which proves the proposition.
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A.3. Proof of Proposition 2.3

There is a general procedure to find asymptotic probabilities of which we present the special
case needed for our application. To that end, consider some individual property of interest, call
it B. We want to find the asymptotic probability P(B) in an exponentially growing population.
Let P(B, s) denote the probability that an individual of age s has property B; then

P(B) = α

∫ ∞

0
e−αs

P(B, s) ds. (A.2)

In our case, we denote the remaining division time of an individual by Y , fix t , and let B be
the property that Y > t (easier to work with than Y ≤ t). Thus, we need to determine the
probability that an individual of age s has Y > t . For that purpose, denote the time of birth of
the kth daughter by Tk , where

Tk = D +
k−1∑
j=1

Mj (A.3)

for k ≥ 1, and we let T0 ≡ 0. For an individual of age s, the event Y > t occurs if and only if
there is a k such that Tk ≤ s and Tk+1 > s + t which gives

P(Y > t, s) =
∞∑

k=0

P(Tk ≤ s, Tk+1 > s + t)

(there can be at most one such k, that is, the events in the sum are mutually exclusive). Thus,
we obtain

P(Y > t) =
∞∑

k=0

∫ ∞

0
αe−αs

P(Tk ≤ s, Tk+1 > s + t) ds.

Let us first consider the case k = 0. We obtain

P(T0 ≤ s, T1 > s + t) = 1 − FD(s + t)

since T0 ≡ 0 and T1 = D. For k ≥ 1, let fk denote the PDF of Tk and note that Tk+1 = Tk+Mk .
Condition on Tk to obtain

P(Tk ≤ s, Tk+1 > s + t) =
∫ s

0
P(Tk ≤ s, Tk+1 > s + t | Tk = v)fk(v) dv

=
∫ s

0
P(Tk + Mk > s + t | Tk = v)fk(v) dv

=
∫ s

0
(1 − FM(s + t − v))fk(v) dv.

We now obtain ∫ ∞

0

∫ s

0
e−αs(1 − FM(s + t − v))fk(v) dv ds

=
∫ ∞

0
e−αvfk(v) dv

∫ ∞

0
e−αs(1 − FM(s + t)) ds

= F̂D(α)F̂M(α)k−1
∫ ∞

0
e−αs(1 − FM(s + t)) ds
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by (A.3) and the product property of Laplace transforms of independent random variables. Now
sum over k to obtain

∞∑
k=1

F̂D(α)F̂M(α)k−1
∫ ∞

0
e−αs(1 − FM(s + t)) ds

= F̂D(α)
1

1 − F̂M(α)

∫ ∞

0
e−αs(1 − FM(s + t)) ds

=
∫ ∞

0
e−αs(1 − FM(s + t)) ds

by (A.1). Finally, add the term for k = 0 and we obtain, by (A.2),

P(Y > t) = α

∫ ∞

0
e−αs(2 − FD(s + t) − FM(s + t)) ds.

The final result follows since the PDF of Y is the derivative of −P(Y > t). Technical conditions
needed to differentiate under the integral sign (such as the Leibniz integral rule or dominated
convergence) are satisfied for the gamma distribution, as well as for a range of other commonly
used distributions.
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