Maternal fatty acid intake and fetal growth: evidence for an association in overweight women. The ‘EDEN mother–child’ cohort (study of pre- and early postnatal determinants of the child’s development and health)

Peggy Drouillet¹,²,³, Anne Forhan¹,²,³, Blandine De Lauzon-Guillain¹,²,³, Olivier Thiébaugeorges⁴, Valérie Goua⁵, Guillaume Magnin⁵, Michel Schweitzer⁴, Monique Kaminski²,⁶,⁷, Pierre Ducimetière¹,²,³ and Marie-Aline Charles¹,²,³

¹INSERM, Unit 780, 16 Avenue Paul Vaillant Couturier, Villejuif, France
²IFR69, Villejuif, France
³Université Paris Sud, Orsay, France
⁴Regional Maternity University Hospital of Nancy, Nancy, France
⁵Gynaecology and Obstetric Department, University Hospital of Poitiers, Poitiers, France
⁶INSERM, Unit 149, Villejuif, France
⁷Université Paris-VI, Paris, France

(Received 10 January 2008 – Revised 2 June 2008 – Accepted 3 June 2008 – First published online 17 July 2008)

Recent studies suggest a benefit of seafood and n-3 fatty acid intake on fetal growth and infant development. The objective was to study the association between fatty acid intake and fetal growth in pregnant French women. Pregnant women included in the EDEN mother–child cohort study completed FFQ on their usual diet: (1) in the year before pregnancy and (2) during the last 3 months of pregnancy (n 1439). Conversion into nutrient intakes was performed using data on portion size and a French food composition table. Associations between maternal fatty acid intakes and several neonatal anthropometric measurements were studied using linear regressions adjusted for centre, mother’s age, smoking habits, height, parity, gestational age and newborn’s sex. Due to significant interaction, analyses were stratified according to maternal pre-pregnancy overweight status. Neither total lipid nor SFA, MUFA or PUFA intake was significantly associated with newborn size. In overweight women only (n 366), a high pre-pregnancy n-3 fatty acid intake (% PUFA) was positively associated with the newborn’s birth weight (P=0·01), head, arm and wrist circumferences and sum of skinfolds (P<0·04). A substitution of 1 % of n-3 fatty acids per d before pregnancy by other PUFA was related to an average decrease in birth weight of 60 g (P=0·01). Relationships with n-3 fatty acid intake at the end of pregnancy were weaker and not significant. We concluded that a high pre-pregnancy n-3 fatty acid:PUFA ratio may sustain fetal growth in overweight women. Follow-up of the children may help determine whether this has beneficial consequences for the child’s health and development.

Epidemiology: Pregnancy: n-3 Fatty acids: Birth weight: Overweight

An adequate amount of dietary fat is essential for health, particularly for pregnancy and lactation. Essential fatty acids play a major role during pregnancy. They provide the precursors for prostaglandins and leucotrienes and are present mainly in highly specialised membranes (retina and synapses). The consumption of essential fatty acids is deemed important for normal growth and development in infants. The interest in essential fatty acids in relation to pregnancy stems from both epidemiological observations¹⁻⁷ and intervention studies⁸⁻⁹. They showed longer gestation, larger babies and, in some cases, reduced numbers of pregnancy complications such as intra-uterine growth retardation, pregnancy-induced hypertension and pre-delivery in association with higher marine fatty acid (long-chain PUFA or n-3 fatty acids), fish or fish oil intake.

Several mechanisms have been suggested for explaining these associations. The first one is a delayed spontaneous delivery, resulting from altered balance between the prostaglandins involved in the initiation of the labour¹⁰,¹¹. The second one is an increased fetal growth rate, resulting from improved placental blood flow due to a lowered thromboxane: prostacyclin ratio¹² and blood viscosity¹³. Moreover, marine fat could reduce the risk of preterm delivery¹³,¹⁴ and of intra-uterine growth retardation¹⁵.

However, results in the literature are not consistent. Indeed, in one study, Olsen et al.¹⁶ could not detect any association between on the one hand the length of gestation, birth weight and length and on the other hand the intake of n-3 fatty acids in the second trimester of pregnancy, whether intake was quantified by a validated questionnaire or biochemical measurements. More importantly, another randomised controlled trial in pregnant women failed to detect effects of n-3 and n-6 fatty acid supplementation on gestational length, birth weight and length, head circumference or

* Corresponding author: Dr Peggy Drouillet, fax +33 1 47 26 94 54, email drouillet@vjf.inserm.fr
placental weight(17). Nevertheless, several studies in both animals and human subjects have shown that deficiency of dietary \(n-3\) PUFA is associated with biochemical changes in the brain and with disturbances in vision and other neurological parameters(18). The most vulnerable period of neural development is during embryonic and fetal growth. Essential fatty acids, especially DHA, are required for fetal brain, nervous system and retinal growth in late pregnancy. The maternal plasma concentration of individual fatty acids, and hence the composition of the maternal diet, may have large effects on long-chain PUFA delivery to the fetus.

In the ‘EDEN mother–child’ cohort study, we previously reported that a difference in pre-pregnancy seafood consumption from less than five to more than nine times per month was associated with a difference in birth weight of 5·0 % (from 3248 to 3412 g; \(P=0\cdot0006\)), in overweight women only(19). The mother’s fat store is relevant to the maternal hormonal responses and to the nourishment of the embryo and fetus during pregnancy, and provides the basis for subsequent fat storage and utilisation during pregnancy(20,21). We hypothesised that the association between seafood intake and fetal growth may be related to differences in the fatty acid contents of fat stored and was enhanced in overweight women because of a greater availability from fat stored.

The aim of the present analysis was, therefore, to study the relationship between fatty acid intake before and during preg-
nancy and fetal growth in the same French population and to evaluate whether it is a possible mediator of the observed association with seafood intake in overweight women(19).

Material and methods

Population and study design

Pregnant women seen for a prenatal visit at the departments of Obstetrics and Gynaecology of the University Hospitals of Nancy and Poitiers before 24 weeks of amenorrhoea were invited to participate. Enrolment started in February 2003 in Poitiers and September 2003 in Nancy; it lasted 27 months in each centre and ended up with the inclusion of 2002 women. Exclusion criteria were twin pregnancies, known dia-
betes before pregnancy, not being able to speak and read French, and planned moving away from the region. Among women who fulfilled these inclusion criteria, 55 % agreed to participate. The study was approved by the Ethics Committee of the Bicêtre Hospital. Written consents were obtained from the mother for herself at inclusion and for her newborn child after delivery.

At a visit performed between 24 and 28 weeks of amenor-
rhoea by midwife research assistants, maternal height was measured with a wall Seca 206 stadiometer (Hamburg, Germany) to the nearest 0·2 cm and maternal weight was measured using electronic Terraillon SL 351 scales (Hanson (UK) Ltd, Hemel Hempstead, Herts, UK) to the nearest 0·1 kg. Skinfolds were measured using a commercial Harpen-
den caliper (Chasmor Ltd, London, UK) three times in the following order: tricipital (posterior aspect of the arm, at mid-
point between the acromion and the olecranon), bicipital (anterior aspect of the arm, at midpoint between the acromion and the olecranon), subscapular (1 cm below the lower angle at the scapula) and supra-iliac (1 cm over the iliac crest, at

...
cheese, etc) on a three-level scale or were standard portions for the French adult population\(^{(24)}\). We then summed contributions across all foods to obtain average daily total intake of energy and intake of various macro- and micronutrients. Food composition was obtained from the ‘SUPplementation en Vitamines et Minéraux Antioxydants’ (SU.VI.MAX) nutrient composition database\(^{(25)}\), which is based on a French nutrient composition database\(^{(26)}\) and US Department of Agriculture publications and is continually incremented by other published sources and personal communications from laboratories and manufacturers\(^{(27}–29)\). Energy and nutrient intakes were not estimated when more than three items of the FFQ were missing. Moreover, women with estimated total energy intake under 4186.8 kJ/d (1000 kcal/d) or over 20934 kJ/d (5000 kcal/d) were not included in the analyses. n-3 Fatty acids included linolenic acid, DHA, docosapentaenoic acid and EPA. The FFQ also gave information on the type of oil used for cooking or seasoning.

Variable description and statistical analyses

Mean consumptions of total lipid and different fatty acids (SFA, MUFA and PUFA), as well as n-3 and n-6 fatty acids, in g/d, were compared between centres by the Student’s \(t\) test. Relationships with the sociodemographic characteristics of the women were studied by multiple linear regressions adjusted for centre and mother’s age (in years).

We studied relationships between lipid consumption and fetal growth using the nutrient density method, i.e. we used the relative percentage of contribution of lipid intake to total energy intake, the relative percentage of contribution of SFA, MUFA or PUFA to total lipid intake or the relative percentage of contribution of n-3 fatty acids to total PUFA intake. Multiple linear regressions adjusted for different sets of confounding variables (centre, mother’s age and height, smoking habits, parity, gestational age, newborn’s sex, BMI, and delay between birth and anthropometric measures) were performed to study these relationships.

As we had additional information on the type of fat used for cooking or seasoning, we used it to study whether this source of fatty acids was associated with our outcome variables. We defined a four-level variable from the answers to three questions asking for the type of oil used for cooking or seasoning. The first level corresponds to women who used with no preference any type of fat, the second level corresponds to women who used more often saturated fat (butter, hard margarine), the third level corresponds to women who used more often fat rich in n-6 fatty acids (sunflower-seed oil, maize oil) and the last level corresponds to women who used more often fat rich in n-9 fatty acids (olive oil, groundnut oil). Only three women consumed preferentially fat rich in n-3 fatty acids (colza oil), so they were classified in the four others groups according to the other type of fat they used.

We tested whether the ‘type of fat used for cooking or seasoning’ variable modified the relationships between fatty acid intakes and fetal growth.

Separate analyses were performed for intake before and during the last 3 months of pregnancy. Interaction terms between fatty acid consumption and centre, gestational length, BMI (continuous then categorical variable), average cigarettes per d smoked during pregnancy and educational level were tested. A significant interaction was found for BMI (\(P<0.05\)); therefore analyses were stratified according to overweight status (BMI < 25 v. \(\geq 25\) kg/m\(^2\)). Several additional adjustments for educational level and maternal health variables (systolic or diastolic arterial pressure, fasting plasma glucose) were also made.

All analyses were performed with SAS version 9.1 (SAS Institute, Inc., Cary, NC, USA).

Results

Subjects’ characteristics

Analyses included the 1446 women who completed the two FFQ and for whom nutrient intake could be evaluated (sixty-seven were not included because of at least one missing FFQ and 374 because nutrient intake could not be estimated: 285 because more than three items of the FFQ were missing, fifty because total energy intake was under 4186.8 kJ/d and thirty-nine because total energy intake was over 20934 kJ/d). Also, newborns for whom delay between birth and anthropometric measures was more than 7 d were not included (n 9). The main characteristics of included women (and their newborns), compared with the 450 excluded women, are shown in Table 1.

Excluded women had less often reached a university level and were more often single than included women. The percentage of newborns transferred to reanimation or a neonatal unit was higher for excluded women. Mean birth weight was significantly lower for the offspring of excluded women compared with the others (3224 v. 3295 g). Mean maternal age was 29 years in both groups (range 17–45 years). For included women, mean pre-pregnancy BMI was 23 kg/m\(^2\). 9.5 % of women had a pre-pregnancy BMI < 18.5 kg/m\(^2\). 17.5 % were overweight and 7.7 % were obese. Overweight women had less often reached a university level and were less often single than non-overweight women (Table 2). Mean birth weight and length were significantly lower for the offspring of non-overweight women compared with the others (3269 v. 3362 g and 49.4 v. 50.0 cm respectively).

Table 1. Maternal and neonatal characteristics of the cohort (n 1896)

<table>
<thead>
<tr>
<th></th>
<th>Included (n 1446)</th>
<th>Not included (n 450)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>29.2 4.8</td>
<td>28.7 5.2</td>
</tr>
<tr>
<td>Height (m)*</td>
<td>1.64 0.06</td>
<td>1.63 0.07</td>
</tr>
<tr>
<td>Pre-pregnant BMI (kg/m(^2))</td>
<td>23.1 4.4</td>
<td>23.5 5.0</td>
</tr>
<tr>
<td>University level (%)*</td>
<td>57</td>
<td>40</td>
</tr>
<tr>
<td>Parous (%)</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>Unmarried (%)*</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Smoking during pregnancy (%)</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>Gestational length (weeks)</td>
<td>39-3 1.7</td>
<td>39-1 2.0</td>
</tr>
<tr>
<td>Birth weight (g)*</td>
<td>3295 493</td>
<td>3224 569</td>
</tr>
<tr>
<td>Birth length (cm)</td>
<td>49.6 2.3</td>
<td>49.4 2.4</td>
</tr>
<tr>
<td>Ponderal index (kg/m(^3))</td>
<td>27.0 2.9</td>
<td>27.0 3.0</td>
</tr>
<tr>
<td>Transfer (%)†</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

\(^*P<0.05.\)

† Transfer to reanimation or neonatal unit.
Table 2. Maternal and neonatal characteristics of included women according to their BMI (Mean values and standard deviations or percentages)

<table>
<thead>
<tr>
<th></th>
<th>BMI < 25 kg/m²</th>
<th>BMI ≥ 25 kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (1055)</td>
<td>n (364)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>29±1.4</td>
<td>29±5</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1·6±0·6</td>
<td>1·6±3</td>
</tr>
<tr>
<td>Pre-pregnant BMI (kg/m²)</td>
<td>21·1±2·0</td>
<td>29±1±4.2</td>
</tr>
<tr>
<td>University level (%)‡</td>
<td>60±47</td>
<td>52±61</td>
</tr>
<tr>
<td>Parous (%)‡</td>
<td>8±5</td>
<td>8±5</td>
</tr>
<tr>
<td>Smoking during pregnancy (%)</td>
<td>26±23</td>
<td>26±23</td>
</tr>
<tr>
<td>Gestational length (weeks)</td>
<td>39±3±1·6</td>
<td>39±3±1·8</td>
</tr>
<tr>
<td>Birth weight (g)‡</td>
<td>3269±479</td>
<td>3362±528</td>
</tr>
<tr>
<td>Birth length (cm)‡</td>
<td>49·4±2·3</td>
<td>50·0±2·5</td>
</tr>
<tr>
<td>Ponderal index (kg/m³)‡</td>
<td>27±1±2·8</td>
<td>26±8±3·0</td>
</tr>
<tr>
<td>Transfer (%)‡</td>
<td>5·4±8·2</td>
<td>5·4±8·2</td>
</tr>
</tbody>
</table>

† Transfer to reanimation or neonatal unit.

‡ P < 0.05.

The average intakes of energy, proteins, carbohydrates, lipids and different families of fatty acids (SFA, MUFA and PUFA) before and in the last 3 months of pregnancy are given in Table 3. Intakes were normally distributed except for alcohol consumption. Significantly higher total energy intake and percentage of fat in total energy intake (with and without taking into account alcohol in total energy intake) were observed at the end of pregnancy compared with before pregnancy (9948 v. 9596 kJ/d, 39 v. 38 % and 39·2 v. 38·7 %, respectively; P < 0·001). Nevertheless, the proportion of PUFA in total lipid intake increased by 0·4 % during pregnancy (P < 0·0001), as well as the proportion of n-3 fatty acids in total PUFA intake, which decreased by 0·1 % (P = 0·08). The same trends were observed in both non-overweight and overweight women, except for the proportion of n-3 fatty acids in total PUFA, which decreased in overweight women. There was no significant difference in estimated total fat and fatty acid intake according to maternal overweight status.

Relationships between maternal fat and fatty acid intakes before pregnancy and sociodemographic characteristics of women

Differences in consumption were observed between centres for MUFA, PUFA and n-3 fatty acids, as well as the proportion of PUFA in total lipid intake with higher intakes in Nancy, but there was no difference for the proportion of n-3 fatty acids in total PUFA intake. Total fat and fatty acid intake (SFA, MUFA, PUFA) did not change significantly with age but n-3 fatty acid consumption increased by 0·1 g

Table 3. Maternal lipid and fatty acids intakes before and in the last 3 months of pregnancy (Mean values and standard deviations)

<table>
<thead>
<tr>
<th></th>
<th>Before pregnancy</th>
<th>Last 3 months of pregnancy</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (1046)</td>
<td>n (1055)</td>
<td></td>
</tr>
<tr>
<td>Total energy (kJ/d)</td>
<td>9596±3144</td>
<td>9948±3186</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>Protein (% energy intake)</td>
<td>17±2±3·1</td>
<td>17±2±3·2</td>
<td>0·40</td>
</tr>
<tr>
<td>Carbohydrate (% energy intake)</td>
<td>42±7±3·4</td>
<td>43±5±7·3</td>
<td>< 0·0003</td>
</tr>
<tr>
<td>Lipid (% energy intake)</td>
<td>37±6±4·1</td>
<td>39±1±6·2</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>Alcohol (% energy intake)</td>
<td>2±3±4·1</td>
<td>0±4±1·3</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>SFA (% lipid intake)</td>
<td>43±4±18·7</td>
<td>47±8±19·8</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>MUFA (% lipid intake)</td>
<td>35±8±14·5</td>
<td>37±6±14·7</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>PUFA (% lipid intake)</td>
<td>11±6±4·8</td>
<td>12±0±5·0</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>n-3 fatty acids (% PUFA intake)</td>
<td>10±8±2·4</td>
<td>10±7±2·6</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>n-6 fatty acids (% PUFA intake)</td>
<td>84±4±3·1</td>
<td>84±4±3·5</td>
<td>0·98</td>
</tr>
<tr>
<td>BMI < 25 kg/m²</td>
<td>9584±3073</td>
<td>10044±3165</td>
<td>0·73</td>
</tr>
<tr>
<td>Total energy (kJ/d)</td>
<td>9596±3144</td>
<td>9948±3186</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>Protein (% energy intake)</td>
<td>17±1±3·0</td>
<td>17±0±3·1</td>
<td>0·02</td>
</tr>
<tr>
<td>Carbohydrate (% energy intake)</td>
<td>42±7±2·4</td>
<td>43±5±7·3</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>Lipid (% energy intake)</td>
<td>37±7±6·4</td>
<td>39±1±6·2</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>Alcohol (% energy intake)</td>
<td>2±4±4·1</td>
<td>0±4±1·3</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>SFA (% lipid intake)</td>
<td>44±4±4·2</td>
<td>45±7±4·4</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>MUFA (% lipid intake)</td>
<td>36±8±2·2</td>
<td>36±2±2·3</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>PUFA (% lipid intake)</td>
<td>12±2±2·4</td>
<td>11±7±2·5</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>n-3 fatty acids (% PUFA intake)</td>
<td>10±8±2·4</td>
<td>10±6±2·6</td>
<td>0·01</td>
</tr>
<tr>
<td>n-6 fatty acids (% PUFA intake)</td>
<td>84±4±3·2</td>
<td>84±5±3·5</td>
<td>0·37</td>
</tr>
<tr>
<td>BMI ≥ 25 kg/m²</td>
<td>9609±3316</td>
<td>9651±3266</td>
<td>0·81</td>
</tr>
<tr>
<td>Total energy (kJ/d)</td>
<td>9609±3316</td>
<td>9651±3266</td>
<td>0·81</td>
</tr>
<tr>
<td>Protein (% energy intake)</td>
<td>17±8±3·2</td>
<td>17±6±3·5</td>
<td>0·21</td>
</tr>
<tr>
<td>Carbohydrate (% energy intake)</td>
<td>41±7±5·5</td>
<td>43±0±7·4</td>
<td>0·002</td>
</tr>
<tr>
<td>Lipid (% energy intake)</td>
<td>38±2±6·2</td>
<td>39±0±6·2</td>
<td>0·01</td>
</tr>
<tr>
<td>Alcohol (% energy intake)</td>
<td>2±3±4·0</td>
<td>0±4±1·1</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>SFA (% lipid intake)</td>
<td>44±4±4·3</td>
<td>45±8±4·3</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>MUFA (% lipid intake)</td>
<td>37±0±2·3</td>
<td>36±2±2·4</td>
<td>< 0·0001</td>
</tr>
<tr>
<td>PUFA (% lipid intake)</td>
<td>12±0±2·4</td>
<td>11±5±2·4</td>
<td>0·0002</td>
</tr>
<tr>
<td>n-3 fatty acids (% PUFA intake)</td>
<td>10±7±2·4</td>
<td>10±9±2·7</td>
<td>0·28</td>
</tr>
<tr>
<td>n-6 fatty acids (% PUFA intake)</td>
<td>84±4±3·1</td>
<td>84±1±3·6</td>
<td>0·08</td>
</tr>
</tbody>
</table>
adjusted for centre, mother’s age and height, smoking habits, parity, gestational age, newborn’s sex and delay between birth and anthropometric measures (Table 6). A substitution of 0.3% (1 SD) of the proportion of n-3 fatty acids in total lipid intake to other macronutrients before pregnancy was related to an average increase in birth weight of 87 g (P=0.002), length of 2.8 cm (P=0.02), arm and wrist circumferences of 18 and 13 mm respectively (P<0.007) and sum of skinfolds of 0.3 mm (P=0.01) (model 1). Further adjustment on total lipid intake shows that fetal growth was strongly associated with a greater contribution of n-3 fatty acids to total lipid intake (model 2).

Similar results were found for the proportion of n-3 fatty acids in total PUFA intake. A substitution of 2.4% (1 SD) of this intake to other types of PUFA before pregnancy was related to an average increase in birth weight of 60 g (P=0.01), head circumference of 13 mm (P=0.04), arm and wrist circumferences of 14 and 9 mm respectively (P<0.006) and sum of skinfolds of 0.2 mm (P=0.03). Further adjustment on total PUFA intake shows that fetal growth was more strongly associated with a higher contribution of n-3 fatty acids to total PUFA intake (model 4). Results were unchanged when adjusted for educational level (model 5). Relationships with n-3 fatty acid intake during the last trimester of pregnancy were weaker and not significant (Table 6).

After further adjustment for systolic or diastolic arterial pressure, fasting glucose and TAG (at 6th month of pregnancy), these associations remained unchanged. Before pregnancy, a substitution of 2.4% of n-3 fatty acids to other PUFA was related to an increase in birth weight of 41–51 g, depending on the adjustments (0.03 ≤ P≤ 0.09). For n-3 fatty acid intake during pregnancy, the range of variation was 26–36 g and was not significant (data not shown).

The type of fat used for cooking or seasoning was not associated with newborn anthropometric measures (data not shown). Moreover, previous associations found between total n-3 fatty acid intake estimated by the FFQ and the newborn anthropometric measures were unchanged when we took into account the type of fat used for cooking or seasoning (data not shown).

Correlation coefficients between the number of seafood consumed per week and PUFA intake (% PUFA/energy intake) was 0.12 for intake before pregnancy and 0.06 for intake in the last 3 months of pregnancy (P<0.04).

| Table 4. Associations of lipid and fatty acid intake before pregnancy with newborn anthropometric measures in the EDEN mother–child cohort, in separate regression models* |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Lipids (% energy intake) | PUFA (% lipid intake) | n-3 fatty acids (% PUFA intake) |
| β† | P | β† | P | β† | P |
| Birth weight (g) | -5.20 | 0.62 | -0.23 | 0.98 | 6.40 | 0.54 |
| Birth length (cm) | 0.03 | 0.58 | 0.02 | 0.75 | -0.00 | 0.70 |
| Head circumference (cm) | -0.02 | 0.53 | -0.02 | 0.41 | 0.02 | 0.41 |
| Arm circumference (cm) | 0.02 | 0.41 | -0.01 | 0.79 | 0.01 | 0.56 |
| Wrist circumference (cm) | 0.00 | 0.93 | 0.01 | 0.47 | 0.01 | 0.40 |
| Sum of skinfolds (mm) | -0.05 | 0.25 | -0.00 | 0.96 | 0.00 | 0.97 |

*Models adjusted for centre, mother’s age and height, smoking habits, parity, gestational age, newborn’s sex, delay between birth and anthropometric measures, and BMI.
†Regression coefficient: consumption considered as a continuous variable. β Corresponds to the increase of the variable for an increase of 1 SD of the intake consumed per d (1 SD = 6.4, 2.4 and 2.4% for lipids, PUFA and n-3 fatty acids, respectively).
Correlation was very strong for n-3 fatty acids/PUFA (r 0·38 and r 0·35 for intakes before and during pregnancy, respectively; P < 0·0001). Moreover, seafood consumption explained more than 32% of the variability in n-3 fatty acid intake. When average monthly seafood consumption before pregnancy was added to the model, the relationship with n-3 fatty acids in total PUFA intake was reduced to a non-significant level. The relationship with seafood consumption remained significantly associated with fetal growth.

There were too few obese women to be studied separately, but excluding obese women from the analyses did not change the associations found in women with a BMI ≥ 25 kg/m².

No statistically significant associations were found with placental weight and length of gestation.

No statistically significant associations were found in non-overweight women, as shown in Fig. 1 for the association between birth weight and the proportion of n-3 fatty acids in total PUFA intake divided into tertiles.

Discussion

In this French cohort, an increased proportion of n-3 fatty acids in total PUFA intake before pregnancy, and to a lesser extent of intake during the last 3 months of pregnancy, was not associated with fetal growth in the total sample of women. However, in overweight women, it was associated with increased fetal growth, indicated by birth weight, head, arm and wrist circumferences and skinfolds. Several epidemiological studies conducted in Northern countries with usual high mean seafood intake as well as marine n-3 fatty acids by pregnant women found an association with an increased birth weight either due to an increase in length

<table>
<thead>
<tr>
<th>Lipids (% energy intake)</th>
<th>PUFA (% lipid intake)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before pregnancy</td>
<td>Last 3 months of pregnancy</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>β†</td>
</tr>
<tr>
<td>Birth length (cm)</td>
<td>0·28</td>
</tr>
<tr>
<td>Head circumference (cm)</td>
<td>0·18</td>
</tr>
<tr>
<td>Arm circumference (cm)</td>
<td>0·16</td>
</tr>
<tr>
<td>Wrist circumference (cm)</td>
<td>0·13</td>
</tr>
<tr>
<td>Sum of skinfolds (mm)</td>
<td>0·30</td>
</tr>
</tbody>
</table>

Birth weight (g)	86·82	0·002	97·44	0·0008	60·44	0·01	76·24	0·003	59·01	0·01
Birth length (cm)	0·28	0·02	0·29	0·02	0·11	0·34	0·16	0·23	0·01	0·41
Head circumference (cm)	0·20	0·01	0·21	0·008	0·15	0·14	0·19	0·08	0·15	0·15
Arm circumference (cm)	0·09	0·003	0·10	0·004	0·13	0·03	0·19	0·08	0·15	0·15
Wrist circumference (cm)	0·01	0·01	0·02	0·08	0·04	0·16	0·05	0·12	0·04	0·18
Sum of skinfolds (mm)	0·09	0·01	0·10	0·003	0·15	0·15	0·11	0·02		

* Models adjusted for centre, mother's age and height, smoking habits, parity, gestational age, newborn's sex and delay between birth and anthropometric measures.
† Regression coefficient: consumption considered as a continuous variable. β Corresponds to the increase of the variable for an increase of 1 SD of the intake per d (1 SD = 6·2 and 6·2 % for lipids and 2·4 and 2·4 % for PUFA, before and during pregnancy, respectively).

Table 6. Associations of percentage n-3 fatty acids in total lipid or PUFA intakes, before and during the last 3 months of pregnancy, with newborn anthropometric measures in overweight women in the EDEN mother–child cohort, in separate regression models*
of gestation or an increase in fetal growth rate but without considering the maternal BMI status\(^{(5,30–32)}\).

Although pre-pregnancy BMI may be affected by recall bias, we did not consider BMI estimated using measured weight during pregnancy as an accurate measure of maternal nutritional status. It is affected by plasma volume expansion related to pregnancy and fetal and placental weight. However, for 1042 women who had a first visit before 15 weeks of amenorrhoea, we found similar results when using measured BMI, i.e., significant interaction with maternal overweight and positive association with maternal n-3 fatty acids/PUFA intake and fetal growth.

In the present study, the women excluded from the dietary analysis were different from included women for some characteristics such as educational level. This may be related to a greater ability of educated women to average intake frequency and to concentrate on a long series of questions. Nevertheless, adjustment for educational level had no effect on the present results. Even if it is not possible to exclude possible recall bias in the report of consumption before pregnancy, a FFQ appears to be the only way to evaluate nutrient intakes before pregnancy in the present study.

The percentage of overweight and obese could appear low but was similar to the general population of French women. In France, although the prevalence is notably lower than in the USA, the frequency of obesity has nearly doubled between 1997 and 2006. In women aged 20–39 years, it increased from 5.2 % to 11 % during this period\(^{(33)}\).

Furthermore, the evaluation of nutrient intakes with a FFQ has some limits. This may have altered our observed differences in food intake and therefore our ability to detect differences between groups. For instance, the estimation of PUFA intake with the FFQ did not include the type of fat and oils used for cooking or seasoning. In order to take into account differences in the type of fat used for cooking or seasoning, we studied whether using predominantly (or not) SFA or fat rich in n-6 or n-9 fatty acids was associated with fetal growth and found no specific association.

Several previously published studies have demonstrated a heavier placenta and a longer gestation among women who consumed more n-3 fatty acids\(^{(34)}\) but we did not observe these associations in the present study. Because of the imprecision in the gestational age assessment, however, the effect of fatty acid consumption on the prolongation of the intra-uterine growth period may be difficult to detect. Another explanation would be that this effect requires higher n-3 fatty acid intake than that observed in the present study. In an intervention study by Olsen et al.\(^{(4,13)}\), the level of n-3 fatty acid intake was higher than in the present study (6.1 g/d for the intervention group v. 2.7 g/d in the control group, whereas in the present study the estimated mean intake was 1.2 g/d).

There was no significant association between birth anthropometry and fatty acid intakes in non-overweight women. Associations found in subgroups need to be considered with caution because of likely more false-positive results. However, there may be some rationale for such a selective effect in overweight women.

Overweight women have a higher fat mass. Differences in fatty acid intake are associated with variations in the composition of fatty acids stored in the adipose tissue. In fact, several studies showed that the fatty acid composition of the diet could influence the fatty acid composition of the adipose tissue. Arterburn et al.\(^{(35)}\) showed that tissue contents of EPA and DHA increase in response to supplementation with these fatty acids, which means n-3 fatty acids in tissue increase with their presence in the diet. Katan et al.\(^{(36)}\) estimated that EPA levels in adipose tissue reflected intake over a period of months and even years for DHA. Correlations between percentage n-3 fatty acids in total fat intake estimated by FFQ and percentage n-3 fatty acids in total fat measured in adipose tissue ranked from 0.38 to 0.42 in another study\(^{(37)}\). Therefore, overweight women may have an enhanced ability to release fatty acids from adipose tissue to sustain fetal growth. We previously suggested that the specific relationship between seafood or n-3 fatty acid intake and fetal growth in overweight women illustrates a special role of stored fatty acids in the adipose tissue. This is reinforced by the fact that seafood as well as n-3 fatty acid consumption before pregnancy is more strongly associated with fetal growth than consumption during the last 3 months of pregnancy, as also observed by Olsen et al.\(^{(16)}\). The storage of long-chain PUFA and the balance of the n-3 and n-6 families in maternal adipose tissue are of great importance, since they represent a pool of fatty acids that can be used via placental transfer to supply the developing fetuses\(^{(38,39)}\). There is evidence that the placenta itself may play a role in initiating the mobilisation of fatty acids from the maternal adipose tissue in response to fetal needs\(^{(40)}\).

In the present study, significant relationships were observed between n-3 fatty acid intake and fetal growth when adjusted for PUFA intake. This result shows the importance of the n-3 : n-6 balance which seems more essential than the absolute intake of n-3 fatty acids. There is a competition between the two fatty acid families for entry and release from cellular phospholipids, as well as for the enzymes that catalyse their conversion to produce, for instance, arachidonic acid- and eicosapentaenoic acid-derived eicosanoids, such as the prostaglandins (PGE\(_{2a}\) and PGE\(_{2}\))\(^{(10,41)}\). This balance plays a major role in the availability of n-3 fatty acids for the developing fetus. The concomitant
intake of n-6 fatty acids may explain part of the discrepancies in
the literature about fish or n-3 fatty acid consumption and fetal
growth. All of the n-6 and n-3 fatty acids accumulated by the
fetus are derived by transfer across the placenta, which is pro-
vided with a specific system to ensure this function. The sub-
strate of the placenta is provided by the maternal diet and the
high rate of mobilisation from maternal adipose stores and the
mother adapts her metabolism to support the continuous
draining of substrates by the fetus(42–44).

Seafood intake removed the association between the contribu-
tions of n-3 fatty acids/PUFA on fetal growth in the present
study whereas the type of fat used for cooking or seasoning
which is another major source of PUFA was not associated
with fetal growth and did not remove this association. Seafood
are indeed the main source of the variation of n-3 fatty
acids/PUFA in our sample of French women(19). These results
consolidate the hypothesis of an effect of the n-3 fatty
acids from seafood, in particular EPA and DHA, which are
mainly present in seafood.

In conclusion, the present study finds a relationship between
the ratio of maternal n-3 fatty acids:PUFA intake and fetal
growth in the French population, which is specific to over-
weight women. We suggest that the enrichment in long-
chain n-3 fatty acids in the maternal adipose tissue stored
before conception is a possible mediator of this relationship.
The fact that the n-3:n-6 ratio appears more strongly related
to fetal growth than the absolute intake of n-3 fatty acids
may explain some of the discrepancies in the literature con-
cerning the association of seafood intake with fetal growth.
However, because the present results stem from a subgroup
analysis, replication is needed before firm conclusions can
be made.

Acknowledgements

We are indebted to the participating families, to the midwife
research assistants (L. Douhaud, S. Bedel, B. Lortholary,
S. Gabriel, M. Rogeon, M. Malinbaum) for data collection
and to P. Lavoine for checking, coding and data entry. We
acknowledge all the funding sources for the EDEN study:
Fondation pour la Recherche Médicale (FRM), French Minis-
try of Research: IFR program, INSERM Nutrition Research
Program, French Ministry of Health Perinatality Program,
French Agency for Environment Security (AFFSET), French
National Institute for Population Health Surveillance
(INVS), Paris–Sud University, French National Institute for
Health Education (INPES), Nestlé, Mutuelle Générale de
l’Éducation Nationale (MGEN), French Speaking Association
for the Study of Diabetes and Metabolism (Alfediam) and
National Agency for Research (ANR).

There is no conflict of interest. P. D. performed the study’s
analysis and wrote the paper. A. F. was in charge of the
coordination of the data file and analysis. B. De L.-G.
participated in the setting of the dietary data files. M.-A. C.
coordinates the EDEN study, supervised the analysis and par-
ticipated in the design of the EDEN study, with M. K., P. D.,
M. S. and G. M. also. V. G. and O. T. coordinate the EDEN
study in Poitiers and Nancy. All co-authors reviewed the
paper.

References

1. Olsen SF, Hansen HS, Sommer S, Jensen B, Sørensen TI,
to marine n-3 fatty acids in maternal erythrocytes: a study of
women in the Faroe Islands and Denmark. *Am J Obstet Gynecol*
164, 1203–1209.

birth weight in northerly islands: is fish consumption a red
herring? *BMJ* *303*, 166.

3. Olsen SF, Hansen HS, Jensen B & Sørensen TI (1989) Preg-
nancy duration and the ratio of long-chain n-3 fatty acids to ara-
chidonic acid in erythrocytes from Faroese women. *J Intern
Med Suppl* *73*, 185–189.

during pregnancy increase fetal growth? A study of the size of
the newborn, placental weight and gestational age in relation
to fish consumption during pregnancy. *Int J Epidemiol* *19*,
971–977.

5. Olsen SF (1993) Consumption of marine n-3 fatty acids during
pregnancy as a possible determinant of birth weight. A review
of the current epidemiologic evidence. *Epidemiol Rev* *15*,
399–413.

polyunsaturated fatty acids, pregnancy, and pregnancy outcome.
Am J Clin Nutr *71*, 285S–289S.

7. Olsen SF, Østenson ML, Salvig JD, Kesmodel U, Henriksen TB,
Hedegaard M & Secher NJ (2006) Duration of pregnancy in
relation to seafood intake during early and mid pregnancy: pros-

8. Olsen SF & Secher NJ (1990) A possible preventive effect of
low-dose fish oil on early delivery and pre-eclampsia: indica-
tions from a 50-year-old controlled trial. *Br J Nutr* *64*,
599–609.

9. Olsen SF, Sørensen JD, Secher NJ, Hedegaard M, Henriksen
TB, Hansen HS & Grant A (1992) Randomised controlled
trial of effect of fish-oil supplementation on pregnancy duration.
Lancet *339*, 1003–1007.

10. Hansen HS & Olsen SF (1988) Dietary (n-3)-fatty acids, prosta-
glandins, and prolonged gestation in humans. *Prog Clin Biol
Res* *282*, 305–317.

11. Olsen SF, Hansen HS, Sørensen TJ, Jensen B, Secher NJ,
Sommer S & Knudsen LB (1986) Intake of marine fat, rich in
(n-3)-polyunsaturated fatty acids, may increase birthweight by

12. Andersen HJ, Andersen LF & Fuchs AR (1989) Diet, pre-

(2000) Randomised clinical trials of fish oil supplementation in
high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP)
Team. *BJOG* *107*, 382–395.

early pregnancy as a risk factor for preterm delivery: prospec-
tive cohort study. *BMJ* *324*, 447.

intake in late pregnancy and the frequency of low birth weight
and intrauterine growth retardation in a cohort of British infants.
J Epidemiol Community Health *58*, 486–492.

16. Olsen SF, Hansen HS, Secher NJ, Jensen B & Sandström B
(1995) Gestation length and birth weight in relation to intake

17. Helland IB, Saugstad OD, Smith L, Saarem K, Solvoll K,
Ganes T & Drevon CA (2001) Similar effects on infants of
n-3 and n-6 fatty acids supplementation to pregnant and lactat-
ing women. *Pediatrics* *108*, E82.

long-chain polyunsaturated fatty acid, required for development

