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Abstract
The existence of positive solutions, vanishing at infinity, for the semilinear eigenvalue problem

Lu=A4-f(x,y) in RY is obtained, where L is a strictly elliptic operator. The function f is
assumed to be of subcritical growth with respect to the variable .
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1. Introduction

In a recent paper, Noussair and Swanson [3] study the semilinear problem

(1) Lu=4-f(x,u) inR" (N2>3),
where Lu = — Zf’ me1 O (@, (X)-0,u) is a strictly elliptic operator, meaning
that there exists a positive constant g, such that
il 2
Z alm(x)flfm > ay¢|
I, m=1

holds for all £ € RV and almost all x € R" .
The function f is supposed to satisfy

I
(2) 0< fx, )<Y fix)- 1"
i=1
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forall x ¢ RY and ¢ > 0, where the constants y,

. . N+2
3) (1—1,...,I)sat1sfyl<yi<m.

Furthermore, the authors of [3] assume

(A1) that the function f is locally Holder continuous on RY x [0, oo[, and
that the functions g, satisfy q,, € CI:;:"(]RN) and "alm“co’“(k_”) <
oo foraconstant 0 < a < 1;

(A2) that there exists an open subset Q # @ of R" such that f (x,)>0
holds on Qx]0, oo[;

(A3) that the functions f, (i=1,...,I) are nonnegative, bounded and
continuous such that f; € L""(]RN) holds for a constant 1 < ¢; <
W2y

(A4) and that t- f(x,t) > C-F(x,t) holds for all x € RY and ¢ >0,
where C is a positive constant and F(x, t) = fot f(x,s)ds.

Then, it is shown (see [3, Theorem 1]) that there is a positive solution pair
(1, u) of equation (1) such that u € L2(R") holds for all 2N/(N —2) <
Q < o0, and |Vu(x)| as well u(x) has uniform limit zero as |x| — co. It
should be mentioned that the authors of [3] do not require explicitly that
the functions q,,, are uniformly Hélder continuous on RY . But, when they
show that |Vu(x)| vanishes uniformly at infinity (see [3, p. 58]), they use the
estimate (8.86) in [2] which depends on maxl||a,, || -0.. ; so the proof only
works if ||a,mllco,,.(ﬁ) < o00.

The aim of this paper is to show that assumption (A4) is superfluous and
that the assumptions (A2) and (A3) can be weakened considerably (see Corol-
lary 1). Furthermore, we will prove the existence of a 4 > 0 and a weak so-
lution u > 0 of equation (1) if (Al) is replaced by the following condition:

(B1) The function f: R" x [0, oco[— R . 1s measurable and, for x € RY,
the function ¢ — f(x, t) is continuous on [0, +oo[. Furthermore,
the functions q,,, satisfy a,, € L=®RYy.

Instead of (A2), we will assume:

(B2) There exist an open subset Q # @ of R" and constants 0 < d, <
4, < oo such that f(x, t) > 0 holds on Qx]4,, J,[.

Assumption (A3) will be replaced by
(B3) The functions f, are nonnegative and for each i =1,..., ] there
exists a constant 0 < g, < oo such that f; € Lq(RN) holds for all
— 2N
g € [p;, p; + ¢, where p; = sg—F vy -
Then, we will prove the following
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THEOREM 1. Suppose the operator L is strictly elliptic and the assumption
(2), (3) and (B1)-(B3) are fulfilled. Then there exists a constant A > 0
and a positive function u such that equation (1) holds in the weak sense.
Moreover, the function u is locally Holder continuous, satisfies u € LQ(]RN)
for all 2N/(N - 2) < Q < 00, and vanishes uniformly at infinity.

COROLLARY 1. Suppose that the assumptions of Theorem 1 are satisfied,
that (A1) is fulfilled and ¢, > N — p, holds for i =1, ... ,1. Then, the
Junction u satisfies u € C2(RN )}, and the pair (A, u) solves equation (1) in
the classical sense. Moreover, |Vu(x)| — 0 uniformly as |x| — .

Our method of proof is different from that used by Noussair and Swanson.
The authors of [3] minimize the functional

1 ad 1
Ik(u)=§'/R~ (lzla,m-alu-amu+z-u2)dx (k €N)
ym=

subject to the constraints u € H l(]RlN ) and [pv F(x, u(x))dx = 1, and show
that the infimum is attained by a function u, € H 1(]RN) satisfying

N
/(Z a,m-aluk-amv+%-uk-v) dx=1k-/f(x,uk(x))-v(x)dx

I, m=1

forall v € HI(RN) and a constant 4, > 0.
Then, making essential use of (A4), the authors show that a subsequence
of (A, u,) converges to a solution (4, u) (A >0, u>0) of equation (1).
In contrast to this method, we will maximize the functional

7wy = [ Fee,uGends/(ul + ul)
on A' = H'RY) = {ue L¥ R")|Vu e (L} RY))"}, where

N
2" =2N/(N-2) and ||u||i = Z /a,m ~Ou-0,udx;
I, m=1
so, we need not assume (A4).
To prove that the function u is in Theorem 1 satisfies u € L2 for all
2" < Q < oo, we will use a method of Stampacchia [4] and not the device
of Brézis and Kato [1]; so we need not assume that the functions f; satisfy

fi € LYR") for some ¢ <p,.
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2. Preliminaries

By I? = F (]RN) (1 £ p € ), we denote the usual Lebesgue space and
I-1|, is the norm on L”. For u,v € H', we define

N
= /a,,,,(X)-BIu(x)-amv(x)dx

1,m=1

1/2
and |lu|l, = (u, u), 2,
Since L is strictly elliptic, we conclude from the Sobolev inequality that

there is a constant C, > 0 such that
(4) [l < Cy-llull, holds forall ueH'.

Hence, H' is a Hilbert space with scalar product (-, +), . The function u €
H' is called a weak solution of equation (1), if (u,v), =4- [ f(x, u(x))-
v(x)dx holds forall ve H'.

For x € RY and 7 < 0 , we define f(x,?) = 0. Moreover, we set
F(x,t)= fot f(x, s)ds for t € R and x € R" . Then, it follows that

1
(5) 0<F(x,t)< Z(l + yi)—l (%) - tSHi)

i=1

holds on RY x R , where ¢ = max(z, 0).
From assumption (B2), we conclude that

(6) F(x,t)>0 holds on Qx}d,, ool.
Further, from (4), (5) and Holder’s inequality, we obtain the following

LeMMA 1. For i = 1,... ,1, the constant p, may be chosen as in (B3).
Then, for 0< R < oo and u e H', we have

1

1/p;
Pi . . 1+y;
[ PO oD < 300+ ( L dx) (Co lull)"™"

Lemma 1 shows that J(u) is well defined for all 0 # u € H'. Further-
more, since 2 < 1+, < 2", Lemma 1 implies the existence of a constant
S, < oo such that

(7 J(u)< S, holdsforall 0#ucH'

Thus, ¥ = SUP it J(u) is a well defined real number,
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The function ¢, € C;° may be chosen such that suppg, C Q and
sup, ¢4(x) > d,, where 4, is the constant from (B2). Then, according to
(6), we see that

(8) S0=%-J(¢0)>O and & >,

3. Proof of the results

In the following, we always suppose that the assumptions of Theorem 1
are fulfilled.

PROOF OF THEOREM 1. Let (u,), C H' be a sequence such that u, #0
and J(u,) - as n— 0.

According to (8), we may assume without restriction that

9 J(u,) > S, holds for all n.

Since J((u,),) > J(u,), we may assume further that u, > 0. Then, Lemma
1 implies

I
2 2° I+,
So -+ (uglly + Nyl ) S C >0 Nyl
i=1
for all n and a constant C.
Hence, there exist constants 0 < U, < U, < oo such that

(10) U, < llu,ll, < U, holds for all n.

So, we can find a subsequence of (u,),, still denoted by («,),, and u,
0<ue )ig , such that u_ ou in H'. According to Lemma 1 and (10), for

each ¢ > 0, there exists a constant R, > 0 such that ftxlz R, F(x, u(x))dx <
g, and

(11) / F(x,u (x))dx<e¢
|xI2R, "

holds for all n.
Using the Rellich-Kondrachov theorem and the fact that f, € L%*% it
can be shown that

(12) /I < F(x, u,(x))dx — F(x, u(x))dx

[x|<R,

as n — oo. But (11) and (12) then imply

(13) /F(x, u,(x))dx — /F(x, u(x))dx.
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From (9), (10) and (13) it follows that
/F(x, u(x))dx > Sy (U2 +UZ) >0

and therefore, that u #0.
From the uniform boundedness principle, we obtain

2 2 _ .. 2 2
(14) Nuelly + Nully, < lminf(fju,fl7 + ), )-

Now, (13) and (14) imply J(u) > limsupJ(u,) = & and, consequently,
that J(u) =%.

For any v € HA', we can find an gy = &(v), such that jlu+ée-v|, >0
holds for all |¢] < ¢&,. For & €] ~¢,, &l, we define n(e) = J(u+ée-v). But
7n'(0) = 0 then implies

(15) (u,v)L=).-/f(x,u(x))-v(x)dx, where

A= ( + ol ) - (/ F(x, u(x))dx- (242" - ||u||i"2))_1 >0,

Foreach i =1, ..., I, there exists a constant af , satisfying 0 < s;' <

1271;,. — (N —2), such that

p;+&=2N/2N—(N-2+¢)-(1+)).

For k >0, let u, = (u—k), and A(k) = {x|u(x) > k}. Then, it is well
known that u, € H', that d,u;, = 0,u holds on A(k) and that g,u, =0 on
RY \A(k). Inserting v = u, in (15), we conclude from (B3) and (4):

22" k
2* 5
(/A(k)(u - k) dx) <Cy- Z A
i=1
. ((N—-2)+€])+(1+7,)/2N
(16) . (/ lu(x)IZN/((N—Z).H;i)dx)
A(k)

1
2 14+, To(14,)/2N
< Co - Do Mill e, + ludly" « (meas A(k))™

i=1

Furthermore, for 4 > k > 0, we obtain

22" .
(17) / -k dx| > (h—k) (measAh)¥* .
A(K)
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In the following, the constant k, > 0 may be chosen such that meas A(k,)
< 1, and the constant y, may be defined by y, = min{y,, ..., y,}. Further-
more, g, may satisfy 0 < e; <min {&], ... , &}, & <2-(N—=2)/(1+7,)
and

n-g,#2-(N-2)/(1+y,) forallneN.

Then, there exists a constant n, € N such that
ny+ey <2-(N-2)/(1+7%,) and (my+1)-g5>2+(N=2)/(1+7,).
Hence, for & > k > k,,, we conclude from (16) and (17):
meas A(h) < C - (h— k)% - (meas A(k))1+7)"%/2 (V=D

where the constant C is independent of 2 and k. By part (iii) of [4,
Lemma 4.1}, it follows that

(18) meas A(h) <K-h™*
holds for a constant K >0 and all 4 > k;,, where
p=4N/2-(N=2)=(147) &)

For p > 2", we have
/ (u(x)Ydx = / (wu(x) dx+ / “p. " meas({u > ky} N {u > 0})do
(usky} 0

-2 2*
< kg « [lull- +kg - meas {u > k;}

+/ p- o 'meas {u>ocldo
kO
(see {2, Lemma 9.7]).

Thus, (18) shows that u € L? for all 2* < p < . In particular, we see
that u € L”* for

P, =4N/(2- (N =2) - 2-¢5) = 2N/((N - 2) - &).
Moreover, by induction, it can be shown that
ue L’ holdsforalln=1,...,ng,

where p, = 2N/((N —2)—n-g;).
Using the fact that u € LP» and proceeding as above, we obtain

meas A(h) < C- (h—k)™> - (meas A(k))"o+? 7/ (V=2

for all A > k > k. But now, part (i) of [4, Lemma 4.1] implies u € L™,
so, we have u e L2 forall 2' < Q0 < .
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The function h: RY xR — [0, oo may be defined by A(x, t) = f(x, 1)/t
if x€RY and 7 > 0, and by h(x, ) = O otherwise. Then, by (2), we
obtain that

I
(19) 0<h(x, )<Y fix)- £

i=1
holds for all x € RY and r e R.

The constant «, may be chosen such that 1 < o, < y,, and p, may be
defined by p, = 2N/(2N — (N -2)-(1+ ;). Further, by r,(i=1, ... , I),
we denote the constant

r=2" (0~ D/~ o).

Since u € L', we obtain by Holder’s inequality:
" f; . u}"._

Hence, (19) implies A(., u(-)) € L? .
From (15), it follows that

1 —1 .
||0§||f;.||pi-||u||f: foralli=1,...,1I

(u, v), ~A- /h(x, u(x)) - u(x) - v(x)dx = 0

holds for all v € A'.

Then, because p, > N/2, we conclude from [4, Corollary 8.1] that u is
positive. Since u is bounded and f(x, u(x)) = A(x, u(x)) - u(x), we see
that f(-, u(-)) € L?. Then, using [2, Theorem 8.24] and proceeding as in
{3, p. 58], it can be shown that u is locally Holder continuous and u(x) — 0
uniformly as |x| — oco.

PrOOF OF COROLLARY 1. Now, we assume additionally that (A1) is sat-
isfied and p; +¢;, > N holds for i = 1,... , 1. The function u and the
constant 4 may be chosen as in Theorem 1. Then, the function g(x) =
A- f(x, u(x)) is locally Holder continuous on R" . In particular, we see that
gE L,ZOC . Hence, {2, Theorem 8.8) implies u € sz)c,z and

N
- (@), * Oyt + 0,4, -0u)=g ae.in R".

I, m=1

Now, we apply [2, Theorem 9.19] and conclude that u € Clic . Furthermore,
we see that (1, u) solves equation (1) in the classical sense.
The constant g, may be chosen such that

N < gy <min{p, +¢,...... , D+ ¢},
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and we let Bp(x) denote the ball in RV with centre x and radius p. Then,
using [2, Problem 4.8(b)] and the remark after (4.46) in [2, p. 70], and
proceeding as in the proof of [2, Theorem 8.32], it can be shown there exists
a constant C, independent of x, such that

(20) Il crorga, o < €+ (Il o, + 180, c0y) -
where 0 < v < min {a, (9,—N)/q,} . Since u vanishes uniformly at infinity
and

1
||g"L40(52(x)) <K- ZI: "fi”L""“"(Bz(X))
i=

holds for a constant K which is independent of x, we conclude from (20)
that |Vu(x)| has uniform limit zero as |x| — co.
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