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Abstract

This is a tutorial on using type-indexed embedding/projection pairs when writing interpreters

in statically-typed functional languages. The method allows (higher-order) values in the

interpreting language to be embedded in the interpreted language and values from the

interpreted language may be projected back into the interpreting one. This is particularly

useful when adding command-line interfaces or scripting languages to applications written in

functional languages. We first describe the basic idea and show how it may be extended to

languages with recursive types and applied to elementary meta-programming. We then show

how the method combines with Filinski’s continuation-based monadic reflection operations

to define an ‘extensional’ version of the call-by-value monadic translation and hence to allow

values to be mapped bidirectionally between the levels of an interpreter for a functional

language parameterized by an arbitrary monad. Finally, we show how SML functions may

be embedded into, and projected from, an interpreter for an asynchronous π-calculus via an

‘extensional’ variant of a standard translation from λ into π.

1 Introduction

1.1 Embedding Little Languages

Many applications need to incorporate one or more ‘little languages’ (Bentley,

1986), typically to provide a top-level interactive loop or a scripting interface. These

languages may be domain-specific (van Deursen et al., 2000) or general-purpose.

If the application is written in C, a common approach is to use one of several

popular embeddable interpreters for general-purpose scripting languages, such as

Tcl (Ousterhout, 1990) or Python (van Rossum, 2003). The code for the interpreter

is linked with that of the application and calls made at runtime to initialize the

environment of instances of the interpreter with bindings for (wrapped versions of)

functions defined by the application.

If the application is written in a language like Java or C�, there are also numerous

embeddable interpreters available, such as Jython (Hugunin, 1997), Rhino (Mozilla

Organisation, 1998) or JScript.NET (Clinick, 2000). In these cases, the glue between

the two languages is provided by the underlying execution engines support for

dynamic types and reflection.

In the functional programming community, many language implementations have

an interactive read-eval-print loop; it is then common for applications to rely

on this host programming environment to provide a user interface and ‘scripting’
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language. An application simply comprises a collection of top-level definitions that

are used, scripted and extended by writing more code in the same language. This

approach has much to recommend it; higher-order functions, and powerful macro

facilities like those of Scheme, allow one to blur the distinction between application,

API, domain-specific language and combinator library and the application gets

a powerful, efficient, general purpose command language at very low cost. The

advantages of these ‘shallow embeddings’ of domain specific languages in general

purpose higher-order languages are argued in more detail by, for example, Shivers

(1996) and Hudak (1998).

Powerful though the shallow embedding technique is, especially when writing

programs for use by computer scientists, it does have its drawbacks:

1. Applications have to be shipped with, or rely upon, a complete implementation

of the programming language in which they are implemented, including

standard libraries. This may be impractical for reasons of code size or licensing.

2. One can only get an interactive user interface this way if the language

implementation has an interactive top-level loop (or supports eval).

3. The syntax of the application-specific language is, even with the use of macros,

restricted to be essentially the same as that of the host language.

4. The same is true of semantics. Embedding a DSL with dynamic binding is

hard in a host language that supports only static binding, for example.

5. It is very hard indeed to produce application-specific error messages.

6. It is very hard to restrict what users can do.

7. The mechanics and plumbing of top-level loops are usually primitive and/or

inflexible. Integrating textual commands within an application-specific GUI

(rather than a language-specific IDE), for example, is likely to be tricky.

Thus, even when an application is written in a higher-order functional language, it

is frequently necessary to augment it with a separate parser and interpreter. This

appears to present few problems: writing parsers and interpreters in functional

languages is straightforward and well-studied. However, most interpreters in the

literature keep values (and types) from the interpreting and interpreted languages

quite separate. Typically, a few hardwired, first-order primitives for arithmetic or IO

are implemented in terms of their counterparts in the interpreting (meta)language,

but the assumption is that interpreted programs will essentially be entirely written

in the interpreted (object) language. When the interpreter is for a domain-specific

language, however, one usually has a rich collection of application-specific datatypes

and values, possibly of higher-order function types, written in the interpreting

language; the purpose of the little language being to allow the user to glue these

complex things together flexibly at runtime. Then one needs a way to wrap (or

lift) these values from the metalanguage in which the application is written into

the domain-specific object language. It is also often useful to map values in the

opposite direction, unwrapping the results of object language computations so they

may be passed back into the application. How to perform this kind of wrapping

and unwrapping is the problem we will address here.
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We should remark that the lifting problem also arises when embedding interpreters

for scripting languages in C programs. In that context, the application programmer

typically writes (or uses a separate tool to generate) an explicit wrapper function for

each application function that is to be be exposed in the interpreter. These wrappers

comprise tedious boilerplate for converting between C and Python (or whatever)

representations of values, and typically also have to deal with complexities of

interlanguage memory management. The essence of our technique is an elegant,

concise and uniform way of generating this kind of boilerplate in a functional

language.

The basic issue can be seen as one of interlanguage interoperability: we wish to

make values defined in one language available for use in another. In this paper, we

are mainly concerned with the special, asymmetric situation in which the second

language is implemented by an interpreter written entirely in the first language.

Ramsey (2003) has applied similar techniques to embed an interpreter for the

scripting language Lua into a compiler written in OCaml. We will further assume

that our metalanguage is statically typed (we will use Standard ML, but OCaml or

Haskell would do just as well, at least for the first half of the paper). This makes the

problem harder than would be the case in a dynamically-typed language, since to

make the embedding operations statically type-correct we will have to do something

different for different metalanguage types, and each of those types is distinct from

the static type(s) of values manipulated at runtime by the interpreter. In an untyped

language such as Scheme, by contrast, (even without eval or the reflective operations

used in script interpreters for the JVM or CLR) it is easier to arrange that values

manipulated by the interpreter are compatible at runtime with values defined in the

application. (This still requires care, as the replacement of Exercise 4.8 in Abelson

et al. (1985) with Exercise 4.14 in Abelson et al. (1996) indicates.)

Although we work with a statically typed metalanguage, our object languages will

be untyped. This should not be taken as an endorsement of the view that scripting

languages should be untyped (Ousterhout, 1998), but simply a reflection of the

fact that if object language programs are parsed from strings at runtime then any

typing restrictions can only be enforced by running an explicit type checker, which

is independent of the static type system of the metalanguage. Typechecking object

programs can thus be regarded as an orthogonal problem, solved by entirely standard

methods. (In cases where object programs are less dynamic and the embedding

is shallower, techniques such as phantom types (Rhiger, 2003) can leverage the

metalanguage type system to reject ill-typed object programs at compile-time.)

1.2 A motivating example: the Hal applet

The basic ideas presented here were originally developed to solve a ‘real’ problem.

As one of the examples for MLj (Benton et al., 1998), we compiled Paulson’s (1991)

tactical theorem prover Hal as an applet, which runs in any Java-enabled web

browser. Admittedly, the number of people who want to do interactive theorem

proving in their web-browser is probably quite small, but we still thought it made a

nice demo.
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Like many ML programs, Hal is intended to be used from within the top-level

read-eval-print loop of an interactive ML system, but we wanted to compile it as

a compact, stand-alone applet with its own user-interface. To give a flavour of the

problem, here is a trivial interactive session with Hal:

- goal "P --> P & P & P & P & P"; (* initial goal *)

1. empty |- P --> P & (P & (P & (P & P)))

- by (impR 1); (* implication right

1. P |- P & (P & (P & (P & P))) on 1st subgoal *)

- by (conjR 1); (* conjunction right

1. P |- P to 1st subgoal

2. P |- P & (P & (P & P)) gives 2 subgoals *)

- by (repeat ((conjR 1) || (basic 1))); (* repeat conj-right

P --> P & (P & (P & (P & P))) or axiom finishes

No subgoals left! the proof *)

The Hal code already pretty-prints its output imperatively, so we just had to deal

with processing user input. This meant writing an interpreter for a simple functional

language and embedding within it as primitives the thirty or so SML values, like

repeat, conjR and ||, that make up the application. Doing this in an ad-hoc

manner would have been rather tedious, especially as many of the primitives have

higher-order types.

1.3 Outline

The rest of the paper is organised as follows:

• Section 2 explains the basic technique for type-directed embeddings into a

lambda-calculus interpreter. This is all we required in the case of the Hal

applet.

• Section 3 discusses mapping values back from the object language to the

metalanguage and shows how this yields a simple form of metaprogramming.

• Section 4 discusses polymorphism, untypable object programs and type-based

dispatch.

• Section 5 shows how to extend the basic technique to treat recursive datatypes.

• Section 6 describes a continuation-based version of the embedding technique,

which allows the embedded interpreter to be parameterized by an arbitrary

monad.

• Section 7 uses continuations to embed functions into an interpreter for a

concurrent language based on the π-calculus.

The reader who is primarily interested in implementing a simple replacement for a

top-level loop in standalone functional programs may wish to read only sections 2

and 5. The material in sections 3 and 4 indicates how the embedding/projection
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technique relates to metaprogramming and dynamic types; this is not necessary

for understanding any of the rest of the paper. Sections 2 to 5 assume only basic

knowledge of functional programming and are mostly applicable in any statically-

typed higher-order language. Sections 6 and 7 are semantically more advanced,

assuming some knowledge of monads and process calculi, respectively, and the

programming techniques rely on first-class control operators and are therefore not

so widely applicable.

Most of the examples are artificial, in that they involve embedding and projecting

simple and familiar ‘theoretician’s’ functions, such as factorials and fixpoint combin-

ators. As this might otherwise obscure the distinction between techniques that are

likely to be useful in practice and those that are of more academic interest, I have

indicated into which category I believe each technique falls. Your mileage may, of

course, vary.

To improve readability of code, we use an italic typewriter font for object

language programs. We also take mild liberties with formatting, such as splitting

string constants across lines without including continuation characters.

2 The basic idea

Here is an SML datatype representing abstract syntax trees for a minimal functional

language:

datatype Exp = EId of string (* identifier *)

| EI of int (* integer const *)

| ES of string (* string const *)

| EApp of Exp*Exp (* application *)

| EP of Exp*Exp (* pairing *)

| ELet of string*Exp*Exp (* let binding *)

| EIf of Exp*Exp*Exp (* conditional *)

| ELam of string*Exp (* abstraction *)

| ELetfun of string*string*Exp*Exp (* recursive fn *)

We will further assume that we have implemented a parser

val read : string -> Exp

for an ML-like concrete syntax.

There are several ways of structuring an interpreter for such a language. The

‘syntactic’ approach – actually performing substitutions on elements of Exp (or some

extension thereof with a case for closures) – does not support the constructions we

will be making, as there is no sufficiently general way to map compiled code for

metalanguage values back into syntax trees (though we briefly discuss Normalization

By Evaluation in Section 8). Instead we take the ‘semantic’ approach, interpreting

expressions of type Exp in an ML datatype giving a model of an untyped CBV

lambda calculus with constants and pairing:

datatype U = UF of U->U | UP of U*U | UU | UI of int | US of string

Writing an interpreter in this style amounts to giving a denotational semantics.
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type staticenv = string list

type dynamicenv = U list

fun indexof (name::names, x) = if x=name then 0 else 1+(indexof(names, x))

(* val interpret : Exp*staticenv -> dynamicenv -> U *)

fun interpret (e,static) = case e of

EI n => (fn dynamic => (UI n))

| EId s => (let val n = indexof (static,s)

in fn dynamic => List.nth (dynamic,n)

end handle Match => let val lib = Builtins.lookup s

in fn dynamic => lib

end)

| EApp (e1,e2) => let val s1 = interpret (e1,static)

val s2 = interpret (e2,static)

in fn dynamic => let val UF(f) = s1 dynamic

val a = s2 dynamic

in f a

end

end

| ELetfun (f,x,e1,e2) =>

let val s1 = interpret (e1, x::f::static)

val s2 = interpret (e2,f::static)

in fn dynamic => let fun g v = s1 (v::UF(g)::dynamic)

in s2 (UF(g)::dynamic)

end

end

| ... other clauses elided ...

fun interpretclosed e = interpret (e,[]) []

Fig. 1. An Interpreter (extract).

We show an extract in Figure 1; this is fairly standard, though note the binding-

time separation: rather than a single environment of type (string*U) list, the

interpreter takes a static environment of type string list and produces a function

consuming a matching dynamic environment of type U list. The case for identifiers

calls Builtins.lookup, which we will define shortly.

The novel observation is that such a meta-circular interpreter (Reynolds, 1972),

which uses metalanguage functions to interpret object language functions, allows us

to link the interpreted language and the interpreting language in a particularly neat

way. The trick is to define a type-indexed family of pairs of functions that embed

ML values into the type U and project values of type U back into ML values. Here

is the relevant part of the signature:

signature EMBEDDINGS =

sig

type ’a EP

val embed : ’a EP -> (’a->U)

val project : ’a EP -> (U->’a)
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val unit : unit EP

val int : int EP

val string : string EP

val ** : (’a EP)*(’b EP) -> (’a*’b) EP

val --> : (’a EP)*(’b EP) -> (’a->’b) EP

end

and here is the matching part of the corresponding structure:

structure Embeddings :> EMBEDDINGS =

struct

type ’a EP = (’a->U)*(U->’a)

fun embed (e,p) = e

fun project (e,p) = p

fun cross (f,g) (x,y) = (f x,g y)

fun arrow (f,g) h = g o h o f

fun PF (UF(f))=f (* : U -> (U->U) *)

fun PP (UP(p))=p (* : U -> (U*U) *)

fun PI (UI(n))=n (* : U -> int *)

fun PS (US(s))=s (* : U -> string *)

fun PU (UU)=() (* : U -> unit *)

infixr --> infix **

val unit = (UU,PU)

val int = (UI,PI)

val string = (US,PS)

fun (e,p)**(e’,p’) = (UP o cross(e,e’), cross(p,p’) o PP)

fun (e,p)-->(e’,p’) = (UF o arrow (p,e’), arrow (e,p’) o PF)

end

For an ML type A, an (A EP)-value is a pair of an embedding of type A->U and a

projection of type U->A. The interesting part of the definitions of the combinators

on embedding/projection pairs is the case for function spaces: given a function from

A to B, we turn it into a function from U to U by precomposing with the projection

for A and postcomposing with the embedding for B (this is why embeddings and

projections are defined simultaneously). The resulting function can then be made into

an element of U by applying the UF constructor. Projecting an (appropriate) element

of U to a function type A->B does the reverse: first strip off the UF constructor and

then precompose with the embedding for A and postcompose with the projection

for B.

Note that the projection functions are partial – they will raise a Match exception

if given an argument in the wrong summand of the universal type U. Of course,

these exceptions should be caught and gracefully handled, but we will omit all error

handling for reasons of space and clarity.
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For any ML type A that is built from the chosen base types by products and

function spaces, the embedding for A followed by the projection for A will be

the identity. Going the other way, following the projection with the embedding,

generally yields a more undefined (raising more Match exceptions) value than the

one you started with. If one replaced the exception-throwing with divergence, then

embedA o projectA would be less than or equal to the identity in the conventional

domain-theoretic sense.

We can now use our embeddings to lift ML values into the object language. The

structure defining the built-in values looks like

structure Builtins :>

sig

val lookup : string -> Embeddings.U

end =

struct

(* An arbitrary example of a higher-order function *)

fun iter m f n = if n=0 then m else f n (iter m f (n-1))

val builtins =

[("* ", embed (int**int-->int) Int.*),

("true ", embed bool true),

("> ", embed (int**int-->bool) (op >)),

("print ", embed (string-->unit) print),

("toString ", embed (int-->string) Int.toString),

("iter ", embed (int-->(int-->int-->int)-->int-->int) iter),

...

]

fun find x ((y,v)::rest) = if x=y then v else find x rest

fun lookup s = find s builtins

end

and we can indeed access embedded values from the object language:

- interpretclosed (read "let val f = iter 1 (fn x => fn y => x*y)

in print (toString (f 5)) ");

120

val it = UU : U

Observe in particular how the higher-order ML function iter is called, passing an

object language function, which is itself defined in terms of ML’s *.

The return value UU:U above is the object language interpretation of the unit

value returned by print. The code for the Hal theorem prover similarly updates

its state and prints its results imperatively, so this kind of simple unidirectional

embedding of ML functions into the command language was all that was needed to

solve our original problem.
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3 Projection and quoting

Embedding/projection pairs allow one to do considerably more than just run end-

user commands that manipulate values from the application as part of a top-level

loop. Being able to project as well as embed means that object level expressions may

be interpreted and then projected back down to ML values for use in subsequent

computation. At its simplest, this means that we can do something like

- let val eSucc = interpretclosed (read "fn x=>x+1 ")

val succ = project (int-->int) eSucc

in (succ 3) end;

val it = 4 : int

More interesting are the cases in which the object language expression is either

constructed or read in at run-time and the result of its evaluation is then used in

a non-trivial metalanguage context. For example, in the case of a simple embedded

query language one might process queries using a function

val query : string * (record list) -> record list

mapping a query string and a list of records to a list of records matching the query,

with an implementation like

fun query (qs, records) =

let val pred = project (record-->bool) (interpretclosed (read qs))

in filter pred records

end

Query strings are interpreted and then projected down as ML functions (predicates)

that can be passed to filter.

Projection can also be used to provide a simple form of metaprogramming or

run-time code generation. Since ML code that constructs object-level expressions by

directly manipulating either strings or elements of the Exp datatype is rather ugly, it

is convenient to use the quote/antiquote mechanism provided by SML/NJ (Slind,

1991) and Moscow ML. This allows one to write a parser (which we call %) for the

object language syntax into which ML values of type Exp may be spliced using the

antiquote operator, ‘^’.

The standard example of metaprogramming is a version of the power function pow

x y that computes yx by first building a specialised function pow x in which all the

recursion has been symbolically unrolled, so pow x is essentially fn y=>y*y*· · ·*y.
In the unlikely event that one ever wished to raise many different numbers to the

same exponent, reusing the specialised function can be more efficient than calling

the general version many times. Using quote/antiquote, we can write a staged power

function in a style that looks just like MetaML (Taha & Sheard, 2000) though, of

course, the most interesting aspect of MetaML is the multistage type system, which

in our case we have not got:

- local fun mult x 0 = %‘1 ‘

| mult x n = %‘^x * ^(mult x (n-1))‘

https://doi.org/10.1017/S0956796804005398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005398


512 N. Benton

in fun pow n = project (int-->int)

(interpretclosed (%‘fn y => ^(mult (%‘y ‘) n)‘))

end;

val pow = fn : int -> int -> int

- val p5 = pow 5;

val p5 = fn : int -> int

- p5 2;

val it = 32 : int

- p5 3;

val it = 243 : int

Unsurprisingly, although calls to partial applications of pow are significantly faster

than calls to an unspecialised interpreted function of two arguments, the overheads

of our interpreter are non-trivial and it is still much faster to call a directly compiled

ML version of the unspecialized function.

The function mult above has type Exp->int->Exp, so the ML values that we are

splicing into the parse are bits of abstract syntax. We can obtain something even

more useful by fusing the parser and interpreter to produce a new parser %% that

constructs semantic objects of type

staticenv -> dynamicenv -> U

without constructing any intermediate abstract syntax trees at all. The main

advantage of this (apart from eliminating a datatype and some calls to interpret)

is that we can now use antiquotation to splice ML values of type U, in particular ones

obtained by embed, directly into object-language expressions, rather than having to

give them names and add them to the environment:

- fun embedcl ty v = let val ev = embed ty v

in fn static => fn dynamic => ev

end;

- fun twice f n = f (f n);

- val h = %%‘fn x => ^(embedcl ((int-->int)-->int-->int)

twice) (fn n=>n+1) x ‘;

val h = fn : staticenv -> dynamicenv -> U

- val hp = project (int-->int) (h [] []);

val hp = fn : int->int

- hp 2;

val it = 4 : int

Readers with an interest in metaprogramming may wish to consider extending the

interpreter to extend the following cunning trick with a more sophisticated treatment

of free variables:

- fun run s = interpret (read s,["run "]) [embed (string-->any) run];

val run = fn : string -> U

- run "let val x= run \"3+4\" in x+2 ";

val it = UI 9 : U
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By embedding the interpreter itself, one can run object programs that manipulate

second, and higher, level object programs.

Utility Projecting the interpretation of object level expressions that are read in

dynamically is certainly useful in integrating script evaluation into a broader

application.

It is not so clear that one would really want to write ML programs that

dynamically construct object level syntax in complex ways (rather than reading

it from an input stream) before projecting its interpretation. The usual reason for

doing runtime code generation is performance, but in the absence of genuine runtime

compilation, careful staging of a program written in entirely in the metalanguage (as

demonstrated in our interpreter itself) is probably the best approach to achieving

that.

In cases where the object level syntax or semantics differ significantly from, or

extend, that of the metalanguage, projection of even statically constant object level

expressions can be convenient, however. There are many popular systems that allow

source code in multiple languages to be intermingled (for example, embedded SQL

or various (server- and client-side) frameworks for mixing HTML and code), and

our techniques allow similar things to be done in ML.

4 Polymorphism

It is straightforward to embed and use polymorphic ML functions in the interpreted

language. One only needs a single instantiation – the one where all type variables

are mapped to U itself:

fun I x = x

fun K x y = x

fun S x y z = x z (y z)

val any : (U EP) = (I,I)

val combinators =

[("I ", embed (any-->any) I),

("K ", embed (any-->any-->any) K),

("S ", embed ((any-->any-->any)-->(any-->any)-->any-->any) S)]

And then if combinators is appended to the top-level environment builtins,

evaluating, say

interpretclosed (read "(S K K 2, S K K \"two\") ")

yields UP (UI 2, US "two") : U just as one would hope. Mapping all type

variables to a universal type is like the use of the ‘top’ type Object when writing

polymorphic code in monomorphic object-oriented languages.

Values of type U that represent polymorphic functions cannot simply be projected

down to ML values with polymorphic (generalisable) ML types. However we
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can project the same U value at multiple monomorphic ML types, and thus

explicitly simulate type abstraction and application with ML’s value abstraction

and application:

let val eK = embed (any-->any-->any) K

val pK = fn a => fn b => project (a-->b-->a) eK

in (pK int string 3 "three", pK string unit "four" ())

end

Furthermore, it is possible to project object language expressions that would be

untypeable were they written in ML down to well-typed ML values. For example,

the following is a much more amusing way of calculating factorials:

- let val embY = interpretclosed (read

"fn f=>(fn g=> f (fn a=> (g g) a))

(fn g=> f (fn a=> (g g) a)) ")

val polyY = fn a => fn b=> project

(((a-->b)-->a-->b)-->a-->b) embY

val sillyfact = polyY int int

(fn f=>fn n=>if n=0 then 1 else n*(f (n-1)))

in (sillyfact 5) end;

val it = 120 : int

Here we have written an untyped CBV fixpoint combinator in the interpreted

language and then projected it down to a polymorphic ML type, where it can be

applied to values in the interpreting language. More interesting examples involve

projection of untyped object language functions that switch more dynamically on

the constructors of the universal datatype. If bindings such as

... ("ispair ", embed (any-->bool) (fn UP _ => true | _ => false)),

("isint ", embed (any-->bool) (fn UI _ => true | _ => false)), ...

are included in the environment, then one can implement some simple generic (or

polytypic (Jeuring & Jansson, 1996)) functions, such as the following comparison

function, which works for any type built from our base types and pairing:

- local val eleq = interpretclosed (read "

let fun leq p = let val x = fst p in

let val y = snd p in

if isint x then leqint (x,y)

else if isstring x then leqstring (x,y)

else if ispair x then

and (leq (fst x,fst y),leq (snd x,snd y))

else if isbool x then implies x y

else if isunit x then true

else false

in leq ")

in fun leq t p = project (t**t-->bool) eleq p

end;
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val leq = fn : ’a EP -> ’a * ’a -> bool

- leq int (3,4);

val it = true : bool

- leq string ("ho","hi");

val it = false : bool

- leq (int**string) ((3,"hi"),(4,"ho"));

val it = true : bool

With just a little more effort, we can switch on ML types (including function types),

rather than the constructors of the universal type; this yields a ‘poor man’s’ form of

runtime type analysis. We extend the abstract type ’a EP with a third component

holding a syntax tree for the type ’a in the obvious way so we can define an equality

function

val tyeq : ’a EP * ’b EP -> bool

Then we can, for example, define

(* join : ’a EP * ’a -> ’b EP * ’b -> ’c EP -> ’c *)

fun join (t1,v1) (t2,v2) =

fn t => if tyeq(t,t1) then project t (embed t1 v1)

else if tyeq(t,t2) then project t (embed t2 v2)

else raise Match

The join function allows one to simulate type-based dispatch:

- val plus = fn p => join (int**int-->int,Int.+)

(string**string-->string, String.^) p;

val plus = fn : ’a EP -> ’a

- plus (int**int-->int) (3,4);

val it = 7 : int

- plus (string**string-->string) ("one","two");

val it = "onetwo" : string

Utility Embedding and using polymorphic ML values is certainly useful.

It is hard to think of convincing uses of the ability to project untypable funtions

as demonstrated in the fixpoint combinator example.

Dynamic types, runtime type analysis and generic functions are certainly useful in

their own right, and their addition to statically typed languages such as ML has been

(and continues to be) well-studied. Using a universal type and embedding/projection

pairs is simple and neat, but limited and inefficient by comparison with directly

extending the language or using other techniques (e.g. ones using on type classes in

Haskell, or the exception-based trick in ML that we will describe in the next section).

Further discussion may be found in other work on dynamic typing, including (Abadi

et al., 1991; Henglein, 1992; Weirich, 2000; Weirich, 2001).

From the perspective of this paper, the main utility of type-passing using em-

bedding/projection pairs is in impedance matching between ML and more dynamic
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object languages. Scripting languages often have late-binding, runtime types, or

reflective operations, which one might expect to be difficult to project back to

a statically-typed metalanguage. However, the combination of static polymorphism

and dynamic type representations does allow many of these features to be interpreted

in ML-like languages.

5 Embedding Datatypes

There is a natural, but inefficient, way to embed arbitrary metalanguage datatypes,

such as lists and trees, into the object language. If we ignore the straightforward but

messy plumbing involved in trying to add pattern-matching syntax too, we can just

extend U with one more constructor for tagging sum types1

datatype U = ... | UT of int*U

and then define combinators for sums and recursive types

val wrap : (’a -> ’b) * (’b -> ’a) -> ’b EP -> ’a EP

val sum : ’a EP list -> ’a EP

val mu : (’a EP -> ’a EP) -> ’a EP

The wrap combinator is used to strip off and replace the actual datatype constructors,

whilst the mu combinator is used to construct fixpoints of embedding/projection pairs

for recursive types. Thus given a datatype definition of the form

datatype d = C1 of τ1 | . . . | Cn of τn

the associated embedding/projection pair will be given by

val d = mu (fn z => sum [wrap (fn (C1 x) => x, C1) τ1,

. . .

wrap (fn (Cn x) => x, Cn) τn])

where τi is the embedding/projection pair associated with the type τi, with z used as

the embedding/projection pair for recursive occurences of the datatype d. Nullary

constructors are treated as if they had type unit.

Here are the actual definitions for wrap, sum and mu:

fun wrap (decon,con) ep = ((embed ep) o decon, con o (project ep))

fun sum ss = let fun cases brs n x =

UT(n, embed (hd brs) x)

handle Match => cases (tl brs) (n+1) x

in (fn x=> cases ss 0 x,

fn (UT(n,u)) => project (List.nth(ss,n)) u)

end

fun mu f = (fn x => embed (f (mu f)) x, fn u => project (f (mu f)) u)

1 UT is not strictly necessary, as we could reuse the existing constructors for pairing and integers.
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The idea is that sum is given a list of partial embedding/projection pairs, each of

which is specific to one constructor of the datatype. When embedding a datatype

value, each of the embeddings is tried in turn until the appropriate one (i.e. the one

that does not raise Match) is found. This yields both the appropriate embedding

function and an integer tag. When projecting, the integer tag is used to select the

appropriate projection function from the list.

For example, this is how we embed ML’s (polymorphic) lists:

- fun list elem = mu ( fn l => (sum

[wrap (fn []=>(),fn()=>[]) unit,

wrap (fn (x::xs)=>(x,xs), fn (x,xs)=>(x::xs)) (elem ** l)]));

val list : ’a EP -> ’a list EP

If appropriate bindings are added to builtins:

[... ("cons ", embed (any**(list any)-->(list any)) (op ::)),

("nil ", embed (list any) []),

("null ", embed ((list any)-->bool) null), ... ]

then we can embed and project lists and list manipulating functions:

- interpretclosed (read "let fun map f l = if null l then nil

else cons(f (hd l),map f (tl l)) in map ");

val it = UF fn : U

- project ((int-->int)-->(list int)-->(list int)) it;

val it = fn : (int -> int) -> int list -> int list

- it (fn x=>x*x) [1,2,3];

val it = [1,4,9] : int list

We could, of course, have written the embedding and projection functionals for

list directly as recursive functions. The main advantage of using wrap, sum and

mu is that they allow one to keep the universal type and the representation of

embedding/projection pairs abstract.

Whilst our embedding of datatypes is semantically elegant, it is extremely

inefficient. The problem is that there are multiple representations for datatype

values, and each time one crosses the boundary between the two languages, it is

converted in its entirety from one representation to the other. Each use of an

embedded primitive operation involves at least two representation changes, which,

for example, makes the above version of map have quadratic, instead of linear, time

complexity.2

An alternative approach is to keep values of recursive types in their metalanguage

representation, by adding extra constructors to the universal datatype U. Adding

cases can be done in an ad hoc manner, modifying the interpreter for the types

relevant to a particular application, or in a slightly more modular way by making

2 And with a pretty shocking constant factor too. It’s been suggested to me that lazy evaluation might
help here, but it doesn’t really: although an embedded version of hd, for example, could avoid
converting the entire tail of the list too, the back-and-forth coercions still build up in such a way that
the map function remains quadratic.
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the initial definition of U be parametric, rather than immediately recursive, and then

tying the recursive knot later; this technique is sometimes called two-level types and

is described in more detail by Steele (1994), Sheard and Pasalic (2004) and Ramsey

(2004). In ML it is also possible to use a well-known folklore3 trick to extend U with

new types more dynamically:

signature DYNAMIC =

sig

type dyn

val newdyn : unit -> (’a->dyn)*(dyn->’a)

end

structure Dynamic :> DYNAMIC =

struct

exception Dynamic

type dyn = exn

fun newdyn () =

let exception E of ’a

in (fn a => (E a),fn (E a)=>a | _=> raise Dynamic)

end

end

If one then extends the type U with a constructor UD of Dynamic.dyn then one can

write, for example

fun newtype () = let val (tod,fromd) = Dynamic.newdyn()

in (UD o tod, fromd o PD)

end

val intlist = newtype () : (int list) EP

and then embed and project values whose types involve int list. This gains

efficiency at the considerable cost of losing the ability to treat datatypes polymorph-

ically: the embedded versions of different types of lists, and all of their operations,

are unrelated to one another. Embedding at the any (that is, U) instantiation is

no help, as the whole point was to keep datatypes values in their metalanguage

representations. One also has to be careful not to apply newtype twice to the same

ML type, since the resulting embeddings will be type incompatible.

Utility As we have said, the major disadvantage of our first solution to the problem

of embedding datatypes is its poor performance. This is a shame, since it is

simple, uniform, works in Haskell as well as ML and supports polymorphism. For

prototyping, academic experimentation or in situations where the values of recursive

datatypes are guaranteed to be small (lists of configuration options, perhaps) it is

still viable, but in most real situations one would probably be forced to use one of

the other techniques.

3 I have been unable to discover who first observed that ML exceptions can be (ab)used in this way.
The specific code given here is adapted from Filinski’s (1996) thesis.
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6 Monads

Since Moggi’s (1991) work on using monads to structure denotational semantics,

using monads (or monad transformers) to build interpreters in a modular way

has become a popular functional programming technique. The basic idea is that by

writing an interpreter parameterized by a monad one can then obtain interpreters for

languages with a wide range of (combinations of) features (‘notions of computation’),

such as exceptions, state or control operators, simply by instantiating the monad

appropriately and adding a small number of monad-specific operations.

For example, in a non-deterministic language, an expression of type int might be

interpreted in �(�) (i.e. as a set of integers) and one of type int->int as an element

of �(� → �(�)) (equivalently, a set of relations). In a language with exceptions, an

expression of type int could be interpreted as an element of E + � and one of type

int->int as an element of E + (� → E + �). Moggi’s observation was that many

of the operations on types accounting for the effectful behaviour of computations

(such as �(−) and E + (−)) occur in the same places in the semantics, and have

the structure of a monad (an operator on types equipped with two operations and

satisfying some equations). More details concerning monadic interpreters may be

found in, for example, (Wadler, 1992; Liang et al., 1995; Liang & Hudak, 1996).

6.1 Monadic translations, extensionally

Given the usefulness of monadic interpreters, it is a natural question whether our

embedding technique can be extended to interpreters for languages with arbitrary

monadic notions of computation. At first sight, however, it seems unlikely that it

can, unless the values that we embed are all first-order. The problem is that we seem

to need an ‘extensional’ version of a monadic translation, which is normally defined

intensionally by induction on types and terms.

Recall (Moggi, 1991; Benton et al., 2002) that the monadic approach factors the

semantics of a simply-typed lambda calculus as a syntactic translation into the

computational metalanguage followed by the interpretation of the metalanguage

in an appropriate category. There are actually three different translations (called

direct, lifted and call-by-value by Benton and Wadler (1996)), we will only discuss

the call-by-value (CBV) one here, as that is the only one we can embed with any

generality in ML.

The CBV monadic translation (·)∗ on simple types for a monad (T , val(·), let · =

· in ·) is defined as follows:

int∗ = int (similarly for other base types)

(A → B)∗ = A∗ → T (B∗)

(A × B)∗ = A∗ × B∗

with an associated translation on typing judgements

(Γ � M : A)∗ = Γ∗ � M∗ : T (A∗)
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where the translation on terms is defined by

Value translation | · |:
|x| = x

|n| = n

|λx : A.M| = λx : A∗.M∗

|(V1, V2)| = (|V1|, |V2|)
Expression translation (·)∗:

V ∗ = val|V |
(MN)∗ = let f = M∗ in (let x = N∗ in f x)

(M, N)∗ = let x = M∗ in (let y = N∗ in val(x, y))

(πiM)∗ = let p = M∗ in val(πip)

Factoring the interpretation of elements of our AST datatype Exp through the

monadic translation is straightforward, but embedding ML values, which will have

to have the monadic translation applied to them too, seems problematic. The

translation is defined by induction over syntax, but we do not have access to the

syntax of compiled metalanguage values: the only way of examining a function is

to call it.

One then wonders if there is a family of functions tranA of type A → A∗ for each

metalanguage type A such that for all V : A, tranA V = |V | : A∗. But such functions

cannot be defined in the ‘pure’ part of Standard ML (or in Haskell). To understand

intuitively why, consider the instance at type A = (int → int) → int, which would

produce results of type (int → T (int)) → T (int). There are two ways to argue:

• The semanticist’s argument. There are λ-calculus values V1, V2 and instances

of T such that V1 = V2 : A but for which |V1| �= |V2| : A∗. An example would

be

V1 = λf : int → int.f1

V2 = λf : int → int.(λz : int.f1)(f1)

with T being the state monad.

• The programmer’s argument. Just try to write tranA. One quickly realizes that

there are no very interesting functions of this type that work for arbitrary T ,

essentially because T occurs in a negative position in A∗. We would have to

have

tranAF = λf : (int → T (int)). . . . (F something) . . .

but there is no sufficiently uniform way to produce a suitable something of

type (int → int) from the f : (int → T (int)) we have in our hand.

These arguments can be made quite precise in the context of the ‘pure’ CBV λ-

calculus, in which the only side-effect is divergence. But they are not so convincing

in the case of the real ML language, in which expressions can have a range

of side-effects. In particular, the two functions V1 and V2 are not actually equal
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(observationally equivalent) in ML. Furthermore, for some particular instances of T

we actually can write tranA by moving between explicit and implicit representations

of side-effects. For example, in the simple case of integer-valued state (with the

obvious monad structure):

type ’a t = int -> int * ’a

fun tranA (F: (int->int)->int) =

fn (f : int -> int t) => fn state =>

let val r = ref state

fun wrappedf n = let val (newstate,result) = f n (!r)

in (r := newstate; result)

end

val result = F wrappedf

in (!r, result)

end

Can we do this for every monad definable in ML? If so, can we do it parametrically

in the monad? If so, can we do it parametrically in the type A?

In SML with only the implicit side-effects required by the language definition

(references, exceptions, IO), the answer to the first question is ‘no’, because control

is not expressible in terms of the other effects. Amazingly, however, if the language

also has first-class control amongst its implicit effects (as SML/NJ and MLton do),

it is possible to define an extensional monadic translation and, moreover, to express

its type-dependency using ML values.

The key is to use Filinski’s deeply ingenious monadic reflection operations (Filinski,

1996, 1999). We will only sketch Filinski’s technique here for reasons of space, but

a full account, containing both proofs and all the SML/NJ code we reference

here, may be found in his thesis (Filinski, 1996). Filinski showed firstly that the

combination of control and state is a universal effect, which can simulate any other

monadic effect. (There is a monad retraction from any definable monad into the

continuations monad.) Secondly, he showed how one may define reification and

reflection operations allowing one to move between implicit (opaque) and explicit

(transparent) notion of control. Thirdly, he showed that this could all actually be

implemented within a typed CBV language with control effects and global store,

such as SML/NJ. Putting all the pieces together, one can define a functor that takes

an arbitrary monad structure M as input and returns a reflected monad structure R,

which adds two new operations to those of the original monad:

val reflect : ’a M.t -> ’a

val reify : (unit -> ’a) -> ’a M.t

These allow one to move between implicit and explicit representations of arbitrary

ML-definable monads.

We will define our extensional CBV monadic translation by combining Filinski’s

reflection and reification functions with our earlier technique of defining type-indexed

families of functions by representing each type as a pair of functions. Previously,
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we interpreted each type as a pair of an embedding into, and a projection from, the

universal type U. To define our translation, we will represent each type A by a pair

of a translation function t : A → A∗ and an untranslation function n : A∗ → A. The

type of this pair is not parametric in A so we cannot express it as an abstract type

with a single parameter as we did with ’a EP. However, we can parameterize

over two type variables as shown in the result signature for our translation

functor:

signature TRANSLATION =

sig

structure R : RMONAD (* Filinski’s reflected monad sig *)

type (’a,’astar) TR

val translate : (’a,’astar) TR -> ’a -> ’astar

val untranslate : (’a,’astar) TR -> ’astar -> ’a

type ’a BASE = (’a,’a) TR

val int : int BASE

val string : string BASE

val unit : unit BASE

val bool : bool BASE

val ** : (’a,’astar) TR * (’b,’bstar) TR ->

(’a*’b, ’astar*’bstar) TR

val --> : (’a,’astar) TR * (’b,’bstar) TR ->

(’a->’b, ’astar -> ’bstar R.M.t) TR

end

The matching functor looks like this (where we have elided some declarations that

are unchanged from code appearing earlier):

functor Translation (R : RMONAD) : TRANSLATION =

struct

structure R = R

type (’a,’astar) TR = (’a->’astar)*(’astar->’a)

fun translate (t,n) = t

fun untranslate (t,n) = n

val base = (I,I)

val int = base

val string = base

val unit = base

val bool = base

fun (t,n)**(t’,n’) = (cross(t,t’), cross(n,n’))
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fun (t,n)-->(t’,n’) =

(fn f=> fn x=> R.reify (fn ()=> t’ (f (n x))),

fn g=> fn x=> n’( R.reflect (g (t x))))

end

Writing [[·]] for the underlying monadic denotational semantics of ML, with monad

(T , µ, η), and using (·)∗ for the source-to-source CBV translation using the ML type

constructor ’a t, the following slightly informal diagram may help explain what is

going on semantically in the translation case for an ML function fn x=>M of type

A -> B:

T [[A]]
T [[M]]; µ� T [[B]]

T [[tB]]; µ � T [[B∗]]

[[unit -> B∗]]

∼=
�

[[A∗]]

[[nA]]

�

[[M∗]]
� T [[B∗t]]

[[reify]]

�

If, for example, we apply the reflection and translation functors to a structure

defining our monad for integer-valued state (’a t = int -> int * ’a) with extra

operations including

fun accum m n = (m+n,()) (* : int -> unit t *)

then we can see the extensional translation at work in the following transcript:

- fun apptwice f = (f 1; f 2; "done");

val apptwice : (int->unit)->string

- val tapptwice = translate ((int-->unit)-->string) apptwice;

val tapptwice : (int->unit t)->string t

- tapptwice accum 0;

val it = (3, "done") : int*string

tapptwice is indeed what one would get by applying the intensional CBV monadic

translation to the syntax of apptwice, but has been obtained extensionally from the

compiled code.

6.2 Embedding Monadic Interpreters

We can now combine embedding/projection pairs with the extensional translation

to write interpreters that are parameterized by an arbitrary monad and support

embedding and projection of ML values.
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In fact, there are two approaches we can take. Firstly, we might explicitly

parameterize the universal datatype and the interpreter code by the monad. The

universal type would then look like

datatype U = UF of U -> U M.t | UP of U*U | ...

and ML values would then be lifted to the object language by first translating them

and then embedding them. However, as we have seen in the previous section, it is

possible to move quite smoothly between implicit and explicit representations of the

monad, allowing us to take a second, neater approach. We will keep the monad

implicit in the code for the interpreter, which allows us to leave the signatures and

structures for the interpreter and embedding/projection pairs completely unchanged.

We then write a new functor MEmbeddings that pairs each embedding/projection

pair with its corresponding monadic translation/untranslation pair, yielding type-

indexed quads. The signature is

signature MEMBEDDINGS =

sig

structure Tr : TRANSLATION

(* SML’97 datatype replication:

imports constructors (qua constructors, not just values) too *)

datatype U = datatype Embeddings.U

type (’a,’astar) QUAD

val embed : (’a,’astar) QUAD -> ’a -> U

val membed : (’a,’astar) QUAD -> ’astar -> U

val project : (’a,’astar) QUAD -> (’b->U) -> ’b -> ’astar Tr.R.M.t

type ’a BASE = (’a,’a) QUAD

val int : int BASE

val string : string BASE

val unit : unit BASE

val bool : bool BASE

val any : U BASE

val ** : (’a,’astar) QUAD * (’b,’bstar) QUAD ->

(’a*’b, ’astar*’bstar) QUAD

val --> : (’a,’astar) QUAD * (’b,’bstar) QUAD ->

(’a->’b, ’astar -> ’bstar Tr.R.M.t) QUAD

end

whilst the matching functor looks like this:

functor MEmbeddings (R : RMONAD) : MEMBEDDINGS =

struct

structure Tr = Translation(R)

structure E = Embeddings
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datatype U = datatype E.U

type (’a,’astar) QUAD = (’a E.EP) * (’a,’astar) Tr.TR

fun embed ((e,p),(t,n)) = e (* A -> U ordinary embedding *)

fun membed ((e,p),(t,n)) = e o n (* A* -> U monadic embedding *)

fun project ((e,p),(t,n)) f x = R.reify (fn ()=> t (p (f x)))

type ’a BASE = (’a,’a) QUAD

val int = (E.int, Tr.int)

val string = (E.string, Tr.string)

val unit = (E.unit, Tr.unit)

val bool =(E.bool, Tr.bool)

val any = (E.any,(I,I))

fun (ep,tn) ** (ep’,tn’) = (E.**(ep,ep’), Tr.**(tn,tn’))

fun (ep,tn) --> (ep’,tn’) = (E.-->(ep,ep’), Tr.-->(tn,tn’))

end

To embed an ordinary ML value, we still use the first component of the quad, so

embed ((e,p),(t,n)) is just e. The interesting thing is the way in which we embed

the monad-specific extra operations associated with whatever notion of computation

we have added. If these operations are given by embedding ML values as values in

the object language, then the ML types of those values will already be in the image

of the CBV translation: we embed them using a new embedding function membed

that first untranslates its argument and then embeds the result. For example, in

the case of the simple exception monad given by ML’s option datatype, the extra

operations might be

(* throw : unit -> ’a option *)

fun throw () = NONE

(* try : (unit -> ’a option)*(unit -> ’a option) -> ’a option *)

fun try (block, alt) = case block () of

NONE => alt ()

| SOME v => SOME v

Observe that the types of throw and try are are the translations of unit->’a and

(unit->’a)*(unit->’a)->’a, respectively, so those are the types their untranslated

and embedded versions will appear to have from the point of view of the object

language. The alternative approach, which often leads to more palatable object

language syntax, is to add the monad operations as new language constructs, rather

than value bindings. This involves adding cases to the parser and interpreter, either

in terms of membed or by manually calling reify and reflect.

The interpretation of an object language expression is a generally a computation;

when we project such things back to ML we have to get an ML value of a translated

type, i.e. with the effects represented explicitly. For example, when projecting a non-

deterministic integer computation back as an ML value, we need to get a list of
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integers, rather than an integer (not just because we do not want to lose multiple

results, but also because there is no integer to return in the case the list is empty).

Thus our project function needs to use reification, projection and translation to

return a value of type ’astar Tr.R.M.t. The choice of argument types also requires

explanation. The reader might have expected to see

val project : (’a,’astar) QUAD -> U -> ’astar Tr.R.M.t

but this would be no good: by the time we have a value of type U, the implicitly rep-

resented effects of the computation have already happened and cannot subsequently

be reified by project. The obvious solution is to pass a thunk instead:

val project : (’a,’astar) QUAD -> (unit -> U) -> ’astar Tr.R.M.t

and this is essentially what we do, except that as most of the computations we wish

to project are already applications of the curried function interpret, re-abstracting

seems gratuitous. Instead we generalize, allowing an arbitrary U-returning function,

f, and an argument, x, to be passed to project; the effectful function (e.g. a partial

application of interpret) is applied to the argument (e.g. a dynamic environment)

within the scope of the thunk passed to reify.

To see how all this works in practice, we consider the case of the list monad,

which gives a kind of finite non-determinism to our interpreter. The two special

operators we add are one that makes a choice between two values, and a failing

computation, which returns no result. The ML definitions of these functions are

fun choose (x,y) = [x,y] (* choose : ’a*’a->’a M.t *)

fun fail () = [] (* fail : unit->’a M.t *)

Again, note that the types of these functions are the CBV translations of ’a*’a->’a

and unit->’a respectively, and it is those underlying types that they will appear to

have from the point of view of the object language when we add them to builtins:

val builtins = [("choose ", membed (any**any-->any) choose),

("fail ", membed (unit-->any) fail),

("+ ", embed (int**int-->int) Int.+), ... ]

We can then interpret non-deterministic programs and project their results back

down to ML:

- project int (interpret (read

"let val n = (choose(3,4))+(choose(7,9))

in if n>12 then fail() else 2*n ",[])) [];

val it = [20,24,22] : int ListMonad.t

Utility The extensional monadic translation is potentially useful in its own right.

Common criticisms of the monadic approach to programming are that the monads

‘infect’ one’s entire program and that one must write everything monadically from

the start to be able to benefit from the ability to change the monad later. The

fact that Filinski’s techniques allow one to have one’s monadic cake and eat it –

switching at will between implicit and explicit representations of the monad – is
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somwhat underappreciated. Nevertheless, in the presence of higher-order functions,

making appropriately nested calls to the raw reification and reflection functions is

potentially error-prone. Our type-indexed translation and untranslation technique

wraps up Filinski’s operations in a much more convenient form.

The ability to parameterize embedded interpreters by any monad significantly

increases the usefulness of our basic idea. Convenient domain-specific languages

often have an implicit monadic effect, such as state (most command languages)

or non-determinism (e.g. query languages, such as that of Fernandez, Siméon and

Wadler (2001)). Using the embeddings presented here one can write the application

in a straighforward explicit style and then push the monads under the hood in the

interpreter, whilst still smoothly combining effectful operations with non-monadic

ones lifted from the metalanguage. A related situation in which the monadic

embeddings seem useful is in interfacing ML with external language implementations

with their own notion of computation. A simple example is an interpreter with its

own state, such as that used by Ramsey (2003); a more exotic one might be a logic

programming language.

It is worth reiterating that for particular concrete monads one may well be able to

define a monadic translation by hand, without using Filinski’s reflection operations.

The great advantage of the continuation-based technique is its genericity.

7 Processes

So far, we have only considered embedding interpreters for object languages that

are essentially CBV λ-calculi. There is another tractable foundational language that

is quite different from, yet admits an interpretation of, the λ-calculus: the π-calculus

(Milner et al., 1992; Milner, 1999; Sangiorgi & Walker, 2001). In this section we

will show how our techniques allow one to connect ML and an interpreter for the

π-calculus such that the embedding of an ML value is the process that would be

obtained by applying a well-known CBV translation of the λ-calculus, and suitably

well-behaved processes may be projected back down as ordinary ML values.

We will use the choice-free, asynchronous, polyadic π-calculus (Honda & Tokoro,

1991; Boudol, 1992), which is also the calculus on which the Pict language (Pierce

& Turner, 2000) is built. (Choice or synchronous primitives are easily added if

required, but would not materially affect our embeddings.) Note that this is a first-

order calculus – the only values that may be transmitted are names or of primitive

types – and that this makes the translation of functions more interesting than it

might be in a higher-order calculus in which processes may be transmitted along

channels.

Like the monadic translation, the interpretation of functions as processes is usually

presented by induction on terms, and target contexts can make distinctions between

λ-terms that are extensionally equivalent in a more standard theory. The presence of

first-class control in the metalanguage allows those distinctions between ML values

to be made and is also the key to our interpretation of processes.
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7.1 An interpreter for the π-calculus

Writing a näıve interpreter for the π-calculus in ML is easy, though the degree

to which processes, configurations and behaviours are treated as explicit, first-class

“functional” values can vary widely. It is possible, but not entirely trivial, to use our

earlier monadic translation techniques to embed and project ML values into and out

of an interpreter for the π-calculus that is structured as a denotational semantics. The

denotational approach appears ‘purer’ and allows ML code to manipulate multiple

process configurations explicitly as ordinary functional values. On the other hand,

that manipulation is tricky and has to be done whenever one uses projected values,

since they end up having complex ML types. Furthermore, the monad for processes

ends up being a form of continuations, and it seems slightly perverse to use all

the general machinery of continuation-based monadic reflection just to recover the

continuation monad one started with. We will therefore take a more imperative

approach to concurrency in this section, implementing a single, implicitly referenced,

imperatively mutated, pool of processes directly in terms of references and control

operations. Choosing imperative concurrency leads to a concise implementation and

straightforward embeddings and projections.

The signature for our π-calculus interpreter is as follows:

signature PROCESS =

sig

type Name

datatype BaseValue = VI of int | VS of string | VB of bool |

VU | VN of Name

type Value = BaseValue list

val new : unit -> Name

val fork : (unit->unit)->unit

val send : Name * Value -> unit

val receive : Name -> Value

type Process

val Nil : Process

val Nu : (BaseValue->Process)->Process

val Par : Process*Process -> Process

val Send : BaseValue*Value -> Process

val Receive : BaseValue*(Value->Process)->Process

val BangReceive : BaseValue*(Value->Process)->Process

(* external interface to processes *)

val schedule : Process -> unit

val sync : unit -> unit

val newname : unit -> BaseValue

end
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Since we are implementing a polyadic calculus, a transmissible Value is a list of

BaseValues, which can be Names, integers, strings, booleans or the unit value. The

combinators Nil, Nu, Par, Receive, BangReceive and Send correspond to the nil

process 0, restriction νn.P , parallel composition P | Q, input x(y).P , replicated input

!x(y).P and asynchronous output x̄〈y〉 respectively.

There is a single, global queue of runnable tasks, to which Processes are added

using schedule. The sync command transfers control to the process scheduler,

returning when/if no process is runnable. Finally, we have chosen to implement

name generation using a global, sideeffecting name supply, which is accessed through

newname.

One possible implementation of this signature is shown in Figure 2. The first part

of this structure is a fairly standard implementation of coroutines and asynchronous

channels using callcc and throw (Wand, 1980; Reppy, 1999). A name (channel) is

represented as a pair of mutable queues, one of which holds unconsumed values sent

on that channel and the other of which holds continuations for processes blocked

on reading that channel (at most one of the queues can be non-empty). New

names are generated with new. Runnable threads are represented by unit-accepting

continuations held in the mutable queue readyQ. Values are sent asynchronously

using send; this either adds the value to the message queue for that channel or, if

there is a thread blocked on reading, it enqueues its own continuation and transfers

control to the blocked thread, passing the sent value. Calls to receive either remove

and return a value from the appropriate queue or, if no value is yet available, add

their own continuation to the blocked queue and call the scheduler. New threads

are created and scheduled using fork, which performs a small bit of gymnastics

to create a continuation for its argument, place it on readyQ and return to its

caller. (A fork that immediately transfers control to its argument is simpler, but the

version given is a little more friendly to use from the top level, as one can schedule

several processes before calling sync().) Control is transferred to the scheduler

with sync, which busy-waits for the readyQ to become empty before returning. Our

slightly more π-calculus-style combinators are then thin wrappers over the coroutine

implementation.

Now we can construct and run processes using the combinators directly, but it is

more convenient to write a parser and interpreter for a more palatable syntax. We’ll

assume a structure Interpret which matches the following signature:

signature INTERPRET =

sig

type Exp

val read : string -> Exp (* simple parser *)

type staticenv = string list

type dynamicenv = Process.BaseValue list

val interpret : Exp*staticenv -> dynamicenv -> Process.Process

end
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structure Process :> PROCESS =

struct

structure Q=Queue

structure C=SMLofNJ.Cont

type ’a chan = (’a Q.queue) * (’a C.cont Q.queue)

datatype BaseValue = VI of int | VS of string | VB of bool

| VU | VN of Name

and Name = Name of (BaseValue list) chan

type Value = BaseValue list

val readyQ = Q.mkQueue() : unit C.cont Q.queue

fun new() = Name (Q.mkQueue(),Q.mkQueue())

fun scheduler () = C.throw (Q.dequeue readyQ) ()

fun send (Name (sent,blocked),value) =

if Q.isEmpty blocked then Q.enqueue (sent,value)

else C.callcc (fn k => (Q.enqueue(readyQ,k);

C.throw (Q.dequeue blocked) value))

fun receive (Name (sent,blocked)) =

if Q.isEmpty sent then

C.callcc (fn k => (Q.enqueue (blocked,k); scheduler ()))

else Q.dequeue sent

fun fork p =

let val newThread =

C.callcc (fn k1 => (C.callcc (fn k2 => (C.throw k1 k2));

(p ()) handle _ => (); scheduler ()))

in Q.enqueue(readyQ,newThread)

end

fun sync () =

if Q.length readyQ = 0 then ()

else (C.callcc (fn k=> (Q.enqueue(readyQ, k); scheduler())); sync())

type Process = unit -> unit

fun newname () = VN (new())

val schedule = fork

fun Nil () = ()

fun Send(VN ch,v) () = send(ch,v)

fun Receive(VN ch,f) () = (f (receive ch) ())

fun Par(p1,p2) () = (fork p1; p2())

fun BangReceive(VN ch,f) =

Receive(VN ch,fn v=>Par(BangReceive(VN ch,f), f v))

fun Nu f () = f (newname()) ()

end

Fig. 2. Implementation of continuation-based coroutines.
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and which allows object programs to be written in a syntax like that of Pict:

- val pp = read "new ping new pong

(ping?*[] = echo!\"ping\" | pong![]) |

(pong?*[] = echo!\"pong\" | ping![]) |

ping![] ";

val pp = - : Exp

- schedule (interpret (pp, Builtins.static) Builtins.dynamic);

val it = () : unit

- sync ();

pingpongpingpongpingpongpingpongpingpongpingpong...

The pp process comprises three parallel (| ) subprocesses in the scope of two new

channel names, ping and pong . The first process repeatedly waits for (?* ) an empty

message ([] ) on channel ping ; when one arrives (= ), it sends (! ) the string "ping "

along the channel echo and (| ) sends a signal along pong . The second process does

the same, but with the roles of ping and pong reversed, whilst the third process

starts things off by sending an initial signal to ping . The result is that the two

processes alternately signal one another endlessly, sending a stream of "ping " and

"pong " messages along the channel echo . The identifier echo is bound to a name

by an environment in the structure Builtins, which also defines a process listening

on that name and printing the strings it receives. We will give the definition of

Builtins once we have explained the embedding of ML functions as processes. We

note in passing that, although there is no preemption, the round-robin behaviour

of the scheduler and the implementation of replicated input make pure π-calculus

processes rather fair. If, for example, one adds another parallel copy of the pong

process, printing a different string, then the two copies will alternate strictly.

7.2 Functions as processes and back again

Translations of λ-calculi into π-calculi have been extensively studied since the start of

the 1990s (Milner, 1992; Sangiorgi, 1992). The CBV translation is typically presented

like this:

[[λx.M]]p = νc.p̄〈c〉 |!c(x, r).[[M]]r

[[x]]p = p̄〈x〉
[[MN]]p = νq.([[M]]q | q(v).νr.([[N]]r | r(w).v̄〈w, p〉))

The basic idea is that the translation of a computation is a process, parameterized

by a name p along which the the location of a process encoding a value should

be sent. A λ-abstraction is translated as a process located at a fresh name c. The

process repeatedly receives pairs of values on c, the first of which is the location

of an argument and the second of which is a name along which the location of

the result should be sent. Application is translated as the parallel composition of

three processes: the first evaluates the function and sends its location v along q, the

second receives that location and evaluates the argument, sending its value along

r. The third process wires the function and argument together by receiving the
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argument value location w along r and sending it, together with the name p where

the final result should be sent, to the function at v. As an example, here is the (value)

translation of the apply function λf.λx.fx as a process located at a channel c given

in terms of our Pict-like concrete syntax:

c?*[f r] = new d r!d |

d?*[x s] = new q q!f | (q?v = new t t!x | t?w = v![w s])

After some internal communications (administrative reductions) this becomes

c?*[f r] = new d r!d | d?*[x s] = f![x s]

As stressed by, for example, Boudol (1997) and Sangiorgi & Walker (2001), this

encoding is essentially a CPS translation. Our implementation of the encoding

combines our usual embedding/projection pairs technique with the continuation-

based coroutine operations. Here is the signature:

signature EMBEDDINGS =

sig

type ’a EP

val embed : (’a EP) -> ’a -> Process.BaseValue

val project : (’a EP) -> Process.BaseValue -> ’a

val int : int EP

val string : string EP

val bool : bool EP

val unit : unit EP

val ** : (’a EP)*(’b EP) -> (’a*’b) EP

val --> : (’a EP)*(’b EP) -> (’a->’b) EP

end

This signature is apparently simple – it is essentially the same as that we presented

back in section 2, with BaseValue instead of U – but some complexity is hidden in the

fact that embeddings are now side-effecting. Embedding an ML function will create

and schedule an appropriate process, returning a channel by which one may interact

with it. Similarly, projecting a function only takes a name as argument, but implicitly

refers to the global process pool. The implementation of the encoding is shown in

Figure 3. The embeddings for base values are straightforward: they just return

the the corresponding transmissible BaseValue. The embeddings and projections at

function and product types are defined in terms of the coroutine primitives.4

The embedding at a function type takes a value f, generates a new name c and

then forks a thread that repeatedly receives an argument and a result channel along

c. The argument is projected, f is applied and the result is embedded, yielding a

4 Using our π-calculus combinators might be more attractive, but I have not managed to make such a
definition behave correctly from the top-level loop of SML/NJ. In any case, one has to break their
abstraction to get names into and out of Processes.
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structure Embeddings :> EMBEDDINGS =

struct

structure P=Process

datatype BaseValue = datatype P.BaseValue

type ’a EP = (’a->BaseValue)*(BaseValue->’a)

fun embed (ea,pa) v = ea v

fun project (ea,pa) c = pa c

val int = (VI, fn (VI n)=>n)

val string = (VS, fn (VS s)=>s)

val bool = (VB, fn (VB b)=>b)

val unit = (fn ()=> VU, fn VU=>())

infix ** infixr -->

fun (ea,pa)-->(eb,pb) =

( fn f => let val c = P.new()

fun action () = let val [ac,VN rc] = P.receive c

val _ = P.fork action

val resc = eb (f (pa ac))

in P.send(rc,[resc])

end

in (P.fork action; VN c)

end,

fn (VN fc) => fn arg => let val ac = ea arg

val rc = P.new ()

val _ = P.send(fc,[ac,VN rc])

val [resloc] = P.receive(rc)

in pb resloc

end

)

fun (ea,pa)**(eb,pb) =

( fn (x,y) => let val pc = P.new()

val c1 = ea x

val c2 = eb y

fun action () = let val [VN r1,VN r2] = P.receive pc

in (P.fork action;

P.send(r1,[c1]); P.send(r2,[c2]))

end

in (P.fork action; VN pc)

end,

fn (VN pc) => let val r1 = P.new()

val r2 = P.new()

val _ = P.send(pc,[VN r1, VN r2])

val [c1] = P.receive r1

val [c2] = P.receive r2

in (pa c1, pb c2)

end

)

end

Fig. 3. Extensional π-calculus translation.
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BaseValue, resc, and possibly spawning a new thread. Then (the location of) the

result is sent along the result channel rc. The projection at function types takes

a channel fc for interacting with a functional process and yields a function that

embeds its argument (spawning a new thread in the case that the argument is a

function), generates a new name rc for the result of the application and sends that,

along with the location of the argument to fc. It then blocks until it receives a reply

along rc and returns the projection of that reply.

To embed a pair, we embed the two components and then return the address

of a new located process that repeatedly receives two channel names along which

it sends the addresses of the embedded values. Projection creates two new names,

sends them to the pair process, waits for the two replies and returns a pair of their

projections.

We can now give the definition of the Builtins structure:

signature BUILTINS =

sig

val static : Interpret.staticenv

val dynamic : Interpret.dynamicenv

end

structure Builtins :> BUILTINS =

struct

open Embeddings

infix ** infixr -->

structure I=Interpret

structure P=Process

fun e name typ value = let val bv = embed typ value

in (name,bv)

end

val embs =

[e "inc " (int-->int) (fn x=>x+1),

e "add " (int-->int-->int) (fn x=>fn y=>x+y),

e "print " (string-->unit) print,

e "itos " (int-->string) Int.toString,

e "twice " ((int-->int)-->(int-->int)) (fn f => fn x => f (f x)),

...]

val specials = [("devnull ", "devnull?*[x]=nil "),

("echo ", "echo?*[s] = print![s devnull] ")]

val static = (map (#1) embs) @ (map (#1) specials)

val dynamic = (map (#2) embs) @

(map (fn _ => P.newname()) specials)

val _ = map (fn (_,s) =>
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schedule (I.interpret (I.read s,static) dynamic)) specials

end

The evaluation of embs has a top-level side-effect, returning new channels for

interaction with the processes corresponding to the ML values. The string names

for those channels comprise the pervasive static environment, whilst the channel

values themselves make up the dynamic environment. There are some further top-

level effects associated with interpreting, naming and scheduling the processes in

specials, which are programmed explicitly in the object language rather than

being embedded from the metalanguage. Note that the definition of the echo process,

which we used earlier, is not entirely trivial: it is an asynchronous (one-way) wrapper

that sends a message to the process embedding the ML print function, but directs

responses to be sent to a process that simply discards them.

Here is a simple example of a process using embedded functions:

- fun test s = let val p = Interpreter.interpret (Exp.read s,

Builtins.static) Builtins.dynamic

in (schedule p; sync())

end;

val test = fn : string -> unit

- test "new r1 new r2 twice![inc r1] | r1?f = f![3 r2]

| r2?n = itos![n echo] ";

5

The process is essentially the translation of

print (Int.toString (twice inc 3))

and does indeed print the expected value. The reader will notice that we have applied

a tail-call optimization: itos is asked to send its result directly to echo. More

interesting examples involve processes that interact with embedded ML functions in

non-sequential, non-functional ways. For example, if we embed the function

fun appupto f n = if n < 0 then ()

else (appupto f (n-1); f n)

of type (int->unit)->int->unit, and printn which is print o itos, then we

can do

- test "new r1 new r2 new c appupto![printn r1] |

(r1?f = c?*[n r] = r![] | f![n devnull]) |

appupto![c r2] | r2?g = g![10 devnull] ";

0010011022013012012310234201343012454123552346634574565676787889910

We have applied appupto to printn yielding a process located at f that will

sequentially print the integers from 0 to n. We then define a functional process at c

that accepts an integer and indicates completion immediately but spawns a call to

the functional process located at f. Finally, we call appupto again with the process

located at c and 10 as arguments. The outcome is that for each n from 0 to 10, we

print all the integers from 0 to n, with the 11 streams being produced in parallel.

Here is an example of projection:
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- fun ltest name s = let val n = newname()

val p = Interpreter.interpret (Exp.read s,

name :: Builtins.static) (n :: Builtins.dynamic)

in (schedule p; n)

end;

val ltest = fn : string -> string -> BaseValue

- val ctr = project (unit-->int) (ltest

"c " "new v v!0 | v?*n = c?[r]=r!n | inc![n v] ");

val ctr = fn : unit -> int

- ctr();

val it = 0 : int

- ctr();

val it = 1 : int

- ctr();

val it = 2 : int

We have defined a π-calculus process implementing a counter and projected it as a

stateful ML function of type unit->int. An interesting variant is the following, in

which two counter processes, both listening on the same channel, are composed in

parallel:

- val dctr = project (unit --> int) (ltest "c "

"(new v v!0 | v?*n = c?[x r]=r!n | inc![n v]) |

(new v v!0 | v?*n = c?[x r]=r!n | inc![n v]) ");

val dctr = fn : unit -> int

- dctr();

val it = 0 : int

- dctr();

val it = 0 : int

- dctr();

val it = 1 : int

- dctr();

val it = 1 : int

Each call to dctr nondeterministically picks one of the counters to advance. And,

of course, we can calculate factorials by projecting a π-calculus version of a fixpoint

combinator to ML:

- val y = project (((int-->int)-->int-->int)-->int-->int)

(ltest "y " "y?*[f r] = new c new l r!c | f![c l] |

l?h = c?*[x r2]= h![x r2] ");

val y = fn : ((int -> int) -> int -> int) -> int -> int

- y (fn f=>fn n=>if n=0 then 1 else n*(f (n-1))) 5;

val it = 120 : int

Utility The embedded π-calculus interpreter demonstrates that a theoretical con-

struction has a more direct implementation in a real programming language than
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one might have expected. In the form presented here, however, its main value seems

to be didactic. One apparent problem is that the concurrency we have is non-

preemptive: embedded ML functions have to run to completion before any other

process will be scheduled. However, it is fairly easy to modify the code given here to

be preemptive under SML/NJ by using an operating system timer and asynchronous

signal to force a context-switch at regular intervals. This is the way in which CML

is implemented; more details are given by Reppy (1999). Even so, it is not clear

that the ‘first order’ style of embedding given here is the most natural one for a

concurrent command language, or that factoring an application so the concurrency

is encapsulated in the command language (rather than running throughout the rest

of the application) is useful. Simply applying the basic ideas of Section 2 in a more

pervasively concurrent language, such as CML, seems more practical.

Some version of our π-calculus translation does appear potentially useful in

building distributed systems. Most traditional remote procedure call (RPC) systems,

as well as more recent variants such as web services (World Wide Web Consortium,

2002), restrict transmissible values to be first order. Ohori & Kato (1993) described

a uniform type-directed method for generating stub code for higher-order RPC in a

distributed CBV language, dML. Their translation is based on passing functions as

dynamically generated remote handles and has been used as a case study in work

on intensional type analysis by Harper & Morrisett (Harper & Morrisett, 1995)

and by Trifonov et al. (2000). The original dML language is single-threaded with

synchronous (blocking) remote calls and one can easily implement something similar

in any ML system using only our basic technique. The continuation-based variant

presented here would allow one to perform higher-order RPC in a more realistic

concurrent and asynchronous setting.

8 Discussion and related work

We have shown how the simple idea of representing types by pairs of functions, one

mapping out of the type and one mapping back into it, can be applied, focussing on

the way in which it allows one to move between the object and metalanguages when

writing interpreters. The idea is surprisingly robust, extending from the metacircular

case (in which the two languages are (essentially) the same) to situations in which

the languages appear quite different.

Modelling types as retracts or projections of a universal domain is an old

idea in denotational semantics, going back to the early work of Scott (1976) and

McCracken (1979). It is only comparatively recently that related techniques have

been recognised as useful in functional programming. Danvy (1998b) credits Filinski

and Yang with having used our basic construction in 1995 and 1996, respectively, to

implement normalization by evaluation (NBE), whilst Kennedy and I discovered it

in 1997 in the contexts of writing picklers (also known as serializers, or marshallers)

(Kennedy, 2004) and interpreters, respectively. Similar type-directed constructions

have also been used in implementing printf-like string formatting (Danvy, 1998a)

and in generic programming. We have already mentioned Ramsey’s (2003; 2004)

independent use of the same basic technique to embed the LuaML interpreter.
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The applications described here are most similar to work on NBE and type-

directed partial evaluation (TDPE) (Danvy, 1996; Hatcliff et al., 1998; Danvy,

1998b; Yang, 1998). NBE produces syntactic normal forms from compiled code via

type-indexed reification and reflection functions between metalanguage types and

a syntactic ‘universal’ type. Indeed, were it not for the fact that NBE does not

apply to all the types and values in which we are interested (e.g. infinite coproducts

like int and recursive functions), one could imagine solving our original problem

in a dual manner: using NBE to produce object-level expressions corresponding

to already-compiled metalanguage values and then simply interpreting them along

with the user program. Filinski’s monadic reflection techniques are also used when

extending TDPE and NBE to languages with sums and side-effects (Danvy, 1996).

Our observation that monadic reflection can be used to define an extensional

variant of Moggi’s CBV translation is original, though Filinski (2001) has recently,

and independently, published a paper on using the same technique to define an

extensional CPS translation. Our treatment of recursive types does not seem to have

any analogue in the NBE literature, though Kennedy’s (2004) pickler combinators

use essentially the same technique.

Amongst the many other contexts in which similar type-indexed pairs of functions

arise are Leroy’s (1992) work on compiling polymorphism using specialized repres-

entations, Findler & Felleisen’s (2002) work on run-time monitoring of contracts for

higher-order functions and the Cousots’ (1977) abstract interpretation framework

for static analyses. At a rather abstract level, the same ideas appear repeatedly

because we are dealing with a situation which is ubiquitous in computer science:

relating multiple interpretations of typed programming languages. If the language

is fixed then the interpretations may be at different levels of abstraction (as in

abstract interpretation), choose different data representations or relate either to

different locations (as in distributed computation) or to different times (as in

staged computation). The details of the relations between interpretations may

vary, but the same basic semantic techniques of adjunctions, logical relations,

embedding/projection pairs and modal logic are applicable in all cases.

If we were working in Haskell, rather then SML, we could make good use

of the type class mechanism, which is powerful enough to deal with the generic

requirements of our simple interpreters. (Of course, the monadic and π-calculus

embeddings cannot be implemented in Haskell, since they rely on first-class control.)

One can define a type class EP specifying the types of the embedding and projection

functions and then declare firstly, each of the base types to be instances of that class

(giving the specific embeddings and projections), and secondly, that if ’a and ’b

are in the class EP, so are ’a->’b and ’a*’b (giving the appropriate constructions

on embeddings and projections). Then one can just write embed v instead of embed

τ v, though polymorphic values still need to be explicitly constrained to resolve

the ambiguity. Rose (1998) has applied just this technique to an implementation of

TDPE in Haskell.

There is, of course, ample scope for formulating, and attempting to prove, some

correctness results for the constructions presented here. Reynolds’s (2000) careful

analysis of the relationship between the ‘intrinsic’ (meanings are assigned to typing
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judgements) and ‘extrinsic’ (meanings are assigned to untyped terms and types are

interpreted as properties of those meanings) approaches to semantics should provide

a starting point.
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