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Hochschild cohomology, the characteristic morphism

and derived deformations

Wendy Lowen

Abstract

A notion of Hochschild cohomology HH ∗(A) of an abelian category A was defined by
Lowen and Van den Bergh (Adv. Math. 198 (2005), 172–221). They also showed the ex-
istence of a characteristic morphism χ from the Hochschild cohomology of A into the
graded centre Z∗(Db(A)) of the bounded derived category of A. An element c ∈ HH 2(A)
corresponds to a first-order deformation Ac of A (Lowen and Van den Bergh, Trans. Amer.
Math. Soc. 358 (2006), 5441–5483). The problem of deforming an object M ∈ Db(A) to
Db(Ac) was treated by Lowen (Comm. Algebra 33 (2005), 3195–3223). In this paper we
show that the element χ(c)M ∈ Ext2A(M,M) is precisely the obstruction to deforming M
to Db(Ac). Hence, this paper provides a missing link between the above works. Finally we
discuss some implications of these facts in the direction of a ‘derived deformation theory’.

1. Introduction

Let k be a commutative ring. It is well known that for a k-algebra A, there is a characteristic
morphism χA of graded commutative algebras from the Hochschild cohomology of A to the graded
centre of the derived category D(A). If k is a field, this morphism is determined by the maps,
for M ∈ D(A),

M ⊗L
A − : HH ∗

k(A) ∼= Ext∗Aop⊗
k A

(A,A) −→ Ext∗A(M,M).

The characteristic morphism plays an important role, for example, in the theory of support
varieties [AB00, EHTSS04, SS04]. Characteristic morphisms were generalized to various situations
where a good notion of Hochschild cohomology is at hand. Recently, Buchweitz and Flenner de-
fined and studied Hochschild cohomology for morphisms of schemes or analytic spaces, and proved
the existence of a characteristic morphism in this context [BF08]. In [Kel03], Keller defined the
Hochschild cohomology of an exact category as the Hochschild cohomology of a certain dg quotient.
For an abelian category A, this is precisely the Hochschild cohomology of a ‘dg enhancement’ of the
bounded derived category Db(A). Consequently, the projection on the zero part of the Hochschild
complex (see § 2.5) is itself a natural dg enhancement of a characteristic morphism

χA : HH ∗
ex(A) −→ Z∗(Db(A)),

where the right-hand side denotes the graded centre of Db(A) (see § 4.2). Explicitly, χA maps a
Hochschild n-cocycle c to a collection of elements χA(c)M ∈ Ext∗A(M,M) for M ∈ Db(A). The
main purpose of this paper is to give an interpretation of χA(c)M in terms of deformation theory.
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In [LV06], a deformation theory of abelian categories was developed. Its relation with Hochschild
cohomology goes through an alternative definition of the latter given by the authors in [LV05], and
shown in the same paper to be equivalent to Keller’s definition. Let us consider, from now on, an
abelian category A with enough injectives, and let us assume that k is a field. Then Inj(A) is a
k-linear category and we put

HH ∗
ab(A) = HH ∗(Inj(A)). (1)

The main advantage of Inj(A) is that, considering it as a ring with several objects, its deformation
theory is entirely understood in the sense of Gerstenhaber’s deformation theory of algebras [Ger64].
It is shown in [LV06] that the abelian deformation theory of A is equivalent to the linear deformation
theory of Inj(A), justifying (1). An abelian deformation B of A gives rise to a morphism

Db(B) −→ Db(A), (2)

and an obstruction theory for deforming objects M ∈ Db(A) to Db(B), which is the subject
of [Low05]. The main theorem of the current paper (see also Theorem 4.8) can be stated as follows.

Theorem 1.1. Consider c ∈ HH 2
ex(A) and let Ac be the corresponding (first-order) deformation

of A. For M ∈ Db(A), the element χA(c)M ∈ Ext2A(M,M) is the obstruction against deforming M
to an object of Db(Ac).

Hence, the characteristic morphism χA is a natural ingredient in a theory describing the simul-
taneous deformations of an abelian category together with (families or diagrams of) objects in the
abelian (or derived) category. The details of this theory remain to be worked out.

In [Low05], (2) is expressed in terms of complexes of injectives in A and B, and the obstructions
are expressed in terms of the element c ∈ HH 2

ab(A) = HH 2(Inj(A)) corresponding to the abelian
deformation. Essentially, our approach for proving the above theorem is to tighten the relation
between HH ∗

ab(A) and HH ∗
ex(A).

For a differential graded category a, let C(a) denote its Hochschild complex [Kel03]. Let Db
dg(A)

be a dg model of Db(A) constructed using complexes of injectives. The natural inclusion Inj(A) ⊂
Ddg(A) induces a projection morphism

C(Ddg(A)) −→ C(Inj(A)) (3)

which is proven in [LV05] to be a quasi-isomorphism of B∞-algebras. The B∞-structure of the
Hochschild complexes captures all of the operations relevant to deformation theory, such as the cup
product and the Gerstenhaber bracket, but also the more primitive brace operations (see § 2.3).
In § 3, we explicitly construct a B∞-section

embrδ : C(Inj(A)) −→ C(Ddg(A))

of (3) (Theorem 3.22). In the notation, δ is the element in C1(Ddg(A)) determined by the differentials
of the complexes of injectives, and embr, short for ‘embrace’, refers to the brace operations. More
concretely, for c ∈ Cn(Inj(A)), we have

embrδ(c) =
n∑

m=0

c{δ⊗m}.

After introducing the characteristic morphism in § 4.3, we use the morphism embrδ to prove
Theorem 1.1 in § 4.4.

The morphism embrδ also throws some light on the following question, which is part of a research
project in progress.

Question. Given an abelian deformation B of an abelian category A, in what sense can we interpret
Db(B) as a ‘derived’ deformation of Db(A)?
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More precisely, the morphism embrδ gives us a recipe to turn a linear deformation of Inj(A)
(and, hence, an abelian deformation of A) into a deformation of Db

dg(A) . . . as a cdg category. Here
cdg, as opposed to dg, means that apart from compositions m and differentials d, the category has
‘curvature elements’ correcting the fact that d2 �= 0. This ‘small’ alteration has serious consequences,
ruining, for example, the notion of quasi-isomorphism.

In Theorem 4.18 we show that the cdg deformation of Db
dg(A) contains a maximal partial dg

deformation which is a skeleton of Db
dg(B) (see also Remarks 4.19 and 4.20). The part of Db

dg(A)
that is dg deformed in this way is spanned by the ‘zero locus’ of the characteristic element

(M �→ χA(c)M ) ∈
∏

Ob(Db(A))

Ext2A(M,M).

Hence, an object M ∈ Db(A) contributes to the dg deformation of Db
dg(A) if and only if it deforms,

in the sense of [Low05], to an object of Db(B).

2. A[0,∞[-categories

Nowadays A∞-algebras and categories are widely used as algebraic models for triangulated cate-
gories (see [BLM06, HL04, Kel06, KS06] and the references therein). Although the generalization
to the A[0,∞[-setting causes serious new issues, a large part of the theory can still be developed
‘in the A∞-spirit’. In this section we try to give a brief, reasonably self-contained account of the
facts we need. For more detailed accounts we refer the reader to [GJ90, Laz03] for A∞-algebras,
to [Lef03, Lyu03] for A∞-categories and to [Nic07] for A[0,∞[-algebras.

2.1 A word on signs and shifts
Let k be a commutative ring. All of the algebraic constructions in this paper take place in and
around the category G(k) of Z-graded k-modules. For M,N ∈ G(k), we have the familiar tensor
product

(M ⊗N)n =
⊕
i∈Z

M i ⊗Nn−i

and internal hom

[M,N ]p =
∏
i∈Z

Hom(M i,M i+p)

over k. For m ∈M i, the degree of m is |m| = i. We adopt the Koszul sign convention, that is, G(k)
is endowed with the well-known closed tensor structure with ‘super’ commutativity isomorphisms

M ⊗N −→ N ⊗M : m⊗ n �−→ (−1)|m||n|n⊗m (4)

and the standard associativity and identity isomorphisms. The closed structure is determined by
the evaluation morphism

[M,N ] ⊗M −→ N : (f,m) �−→ f(m).

Furthermore, we make a choice of shift functors on G(k). For i ∈ Z, let Σik ∈ G(k) be the object
whose only nonzero component is (Σik)−i = k. The shift functors are the functors

Σi = Σik ⊗− : G(k) −→ G(k) : M �−→ ΣiM = Σik ⊗M.

For m ∈ M , we put σim = 1 ⊗ m ∈ ΣiM . All of the canonical isomorphisms (and, in particu-
lar, the signs) in this paper are derived from the above conventions. The most general canonical
isomorphisms we will use are of the form, for M1, . . . ,Mn,M ∈ G(k):

ϕ : Σi−i1−···−in [M1 ⊗ · · · ⊗Mn,M ] −→ [Σi1M1 ⊗ · · · ⊗ ΣinMn,ΣiM ] (5)
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defined by ϕ(σi−i1−···−inφ)(σi1m1, . . . , σ
inmn) = (−1)ασiφ(m1, . . . ,mn), where

α = (i1 + · · · + in)|φ| + i2|m1| + · · · + in(|m1| + · · · + |mn−1|).

2.2 The Hochschild object of a (graded) quiver
In this section and the next we introduce the Hochschild complex of an A[0,∞[-category (see
also [GJ90, Laz03]) in two steps. Our purpose is to distinguish between the part of the struc-
ture that comes from the A[0,∞[-structure (next section) and the part that does not (this section).
This will be useful later on when we will transport A[0,∞[-structures.

Let k be a commutative ring. A graded k-quiver is a quiver enriched in the category G(k). More
precisely, a graded k-quiver a consists of a set of objects Ob(a) and for A,A′ ∈ Ob(a), a graded
object a(A,A′) ∈ G(k). Since we only use graded k-quivers in this paper, we systematically call
them simply quivers. The category of quivers with a fixed set of objects admits a tensor product

a ⊗ b(A,A′) =
⊕
A′′

a(A′′, A′) ⊗ b(A,A′′)

and an internal hom
[a, b](A,A′) = [a(A,A′), b(A,A′)].

We put [a, b] =
∏
A,A′ [a, b](A,A′). A morphism of degree p from a to b is, by definition, an element

of [a, b]p. The tensor cocategory T (a) of a quiver a is the quiver

T (a) =
⊕
n�0

a⊗n

equipped with the comultiplication ∆ : T (a) −→ T (a) ⊗ T (a) which separates tensors. There
are natural notions of morphisms and of coderivations between cocategories and there is a G(k)-
isomorphism

[T (a), a] ∼= Coder(T (a), T (a)).
The object [T (a), a] is naturally a brace algebra. We recall the definition.

Definition 2.1 (Gerstenhaber and Voronov [GV95]). For V ∈ G(k), the structure of brace algebra
on V consists of the datum of (degree zero) operations

V ⊗n+1 −→ V : (x, x1, . . . xn) �−→ x{x1, . . . xn}
satisfying the relation

x{x1, . . . xm}{y1, . . . yn} =
∑

(−1)αx{y1, . . . , x1{yi1 , . . .}, yj1 . . . , xm{yim, . . .}, yjm , . . . yn}

where α =
∑m

k=1 |xk|
∑ik−1

l=1 |yl|. The associated Lie bracket of a brace algebra is

〈x, y〉 = x{y} − (−1)|x||y|y{x}.
A brace algebra morphism (between two brace algebras) is a graded morphism preserving all of the
individual brace operations.

Proposition 2.2. Let V be a brace algebra. The tensor coalgebra T (V ) naturally becomes a
(graded) bialgebra with the associative multiplication M : T (V ) ⊗ T (V ) −→ T (V ) defined by the
compositions

Mk,l : V ⊗k ⊗ V ⊗l −→ T (V ) ⊗ T (V ) −→ T (V ) −→ V

with

M1,l(x;x1, . . . xl) = x{x1, . . . , xl}
and all other components equal to zero. The unit for the multiplication is 1 ∈ k = V ⊗0.
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Proof. This is standard (see [GJ94]). A coalgebra morphism M is uniquely determined by the
components Mk,l and the brace algebra axioms translate into the associativity of M .

Put
[T (a), a]n = [a⊗n, a] =

∏
A0,...,An∈a

[a(An−1, An) ⊗ · · · ⊗ a(A0, A1), a(A0, An)].

The brace algebra structure on [T (a), a] =
∏
n�0[T (a), a]nis given by the operations

[T (a), a)]n ⊗ [T (a), a)]n1 ⊗ · · · ⊗ [T (a), a)]nk
−→ [T (a), a)]n−k+n1+···+nk

with
φ{φ1, . . . φn} =

∑
φ(1 ⊗ · · · ⊗ φ1 ⊗ 1 ⊗ · · · ⊗ φn ⊗ 1 ⊗ · · · ⊗ 1).

The associated Lie bracket corresponds to the commutator of coderivations. We put Ba = T (Σa)
and Cbr(a) = [T (Σa),Σa] = [Ba,Σa]. Summarizing, the quiver a yields towering layers of (graded)
algebraic structure:

(0) the quiver a, that is, the graded objects a(A,A′);
(1) the cocategory Ba = T (Σa);
(2) the brace algebra Cbr (a) = [Ba,Σa] ∼= Coder(Ba, Ba) which is, in particular, a Lie algebra;
(0′) the associated Hochschild object C(a) = Σ−1Cbr (a);
(1′) the bialgebra T (Cbr (a)) = BC(a).

There is a natural inclusion
Cbr (a) −→ T (Cbr (a) = BC(a) (6)

of (2) into (1′).

2.3 The Hochschild complex of an A[0,∞[-category
Definition 2.3 (Getzler and Jones [GJ90]). Let a be a quiver. An A[0,∞[-structure on a is an
element b ∈ C1

br (a) satisfying
b{b} = 0. (7)

The morphisms
bn : Σa⊗n −→ Σa

defining b are sometimes called (Taylor) coefficients of b. The pair (a, b) is called an A[0,∞]-category.
If b0 = 0, it is called an A∞-category. If bn = 0 for n � 3, it is called a cdg category. If b0 = 0 and
bn = 0 for n � 3, it is called a dg category.

Remark 2.4. Consider b ∈ C1
br (a).

(i) Equation (7) can be written out completely in terms of the coefficients bn of b (see [Lef03,
Nic07]).

(ii) If we consider b as a coderivation inside [Ba, Ba]1, then (7) is equivalent to

b2 = b ◦ b = 0.

(iii) If we consider b as an element of the bialgebra BC(a) through (6), then (7) is equivalent to

b2 = M(b, b) = 0 (8)

where M is the multiplication of BC(a).

The easiest morphisms to consider between A[0,∞[-categories are those with a fixed set of objects.
To capture more general morphisms, one could follow the approach of [Lef03] for A∞-categories.
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Definition 2.5 (Getzler and Jones [GJ90]). Consider A[0,∞[-categories (a, b) and (a′, b′) with
Ob(a) = Ob(a′). A (fixed object) morphism of A[0,∞[-categories is a (fixed object) morphism of
differential graded cocategories f : Ba −→ Ba′ (that is, a morphism of quivers preserving the
comultiplication and the differential). It is determined by morphisms

fn : (Σa)⊗n −→ Σa′

for n � 0.

An A[0,∞[-structure on a introduces a load of additional algebraic structure on the tower of § 2.2.
The Hochschild differential on Cbr (a) associated to b is given by

d = 〈b,−〉 ∈ [Cbr (a),Cbr (a)]1 : φ �−→ 〈b, φ〉

and makes Cbr(a) into a dg Lie algebra. The complex Σ−1Cbr (a) is (isomorphic to) the classical
Hochschild complex of a. Similarly, considering b ∈ BC(a)1, we define a differential

D = [b,−]M ∈ [BC(a), BC(a)]1 : φ �−→ [b, φ]M

where [−,−]M denotes the commutator of the multiplication M determined by the brace operations.
As D is a coderivation, it defines an A[0,∞[-structure on C(a). Let us examine the coefficients

Dn : ΣC(a)⊗n −→ ΣC(a)

of this A[0,∞[-structure. By definition, Dn(φ1, . . . , φn) = M1,n(b;φ1, . . . , φn) −Mn,1(φ1, . . . , φn; b),
so for n = 1 we have

D1(φ) = 〈b, φ〉
whereas for n > 1 we have

Dn(φ1, . . . , φn) = b{φ1, . . . , φn}.
The differential D makes BC(a) into a dg bialgebra. By definition, this makes C(a) into a B∞-
algebra [GJ94]. Summarizing, we obtain the following tower:

(0) the A[0,∞[-category a;

(1) the dg cocategory Ba = T (Σa);

(2) the B∞-algebra Cbr (a) = [Ba,Σa] ∼= Coder(Ba, Ba) which is, in particular, a dg Lie algebra;

(0′) the associated Hochschild complex C(a) = Σ−1Cbr (a);

(1′) the dg bialgebra T (Cbr(a)) = BC(a).

By a B∞-morphism (between B∞-algebras B1 and B2) we always mean a graded morphism
(super)commuting with all of the individual operations on B1 and B2. A B∞-morphism is a brace
algebra morphism, and a very particular case of a morphism of A∞-algebras.

2.4 Limited functoriality
The following tautological proposition will be used later on to transfer Hochschild cochains.

Proposition 2.6. Consider quivers a and b and a brace algebra morphism Ψ : Cbr(a) −→ Cbr (b).
If b is an A[0,∞[-structure on a, then Ψ(b) is an A[0,∞[-structure on b and

Ψ : Cbr (a, b) −→ Cbr(b,Ψ(b))

is a B∞-morphism.

Proof. For φ ∈ T (Cbr (a, b)), we show that T (Ψ)([b, φ]) = [Ψ(b), T (Ψ)(φ)], which immediately follows
from the fact that Ψ preserves the brace multiplication.
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Let b ⊂ a be the inclusion of a full subquiver, that is, Ob(b) ⊂ Ob(a) and b(B,B′) = a(B,B′).
Using the induced Bb −→ Ba, there is a canonical restriction brace algebra morphism

πb : Cbr (a) −→ Cbr (b).

If (a, b) is an A[0,∞[-category, b can be endowed with the induced A[0,∞[-structure πb(b) and πb
becomes a B∞-morphism (see Proposition 2.6). The A[0,∞[-category (b, πb(b)) is called a full A[0,∞[-
subcategory of a. In particular, for every object A ∈ a, (a(A,A), πA(b)) is an A[0,∞[-algebra.

2.5 Projection on the zero part
Let a be an A[0,∞[-category. By the zero part of Cbr (a) we mean

Cbr (a)0 = [T (Σa),Σa]0 =
∏
A∈a

Σa(A,A).

Consider the graded morphisms
π0 : Cbr (a) −→ Cbr(a)0

and σ0 : Cbr (a)0 −→ Cbr (a). The morphism

b1 ∈ [Σa,Σa]1 =
∏

A,A′∈a
[Σa(A,A′),Σa(A,A′)]1

determines degree 1 morphisms (b1)A : Σa(A,A) −→ Σa(A,A) and a product morphism

b∆1 : Cbr (a)0 −→ Cbr (a)0.

Let d : Cbr (a) −→ Cbr(a) be the Hochschild differential.

Proposition 2.7. We have

b∆1 = π0dσ0.

In particular, if a is an A∞-category, π0 : (Cbr (a), d) −→ (Cbr (a)0, b∆1 ) is a morphism of differential
graded objects.

Proof. For an element x ∈ Σa(A,A), we have πA(d(x)) = 〈b, x〉 = b1{x} = b1(x).

2.6 From Σa to a

The Hochschild complex of a and the B∞-structure on ΣC(a) are often expressed in terms of a

rather than Σa. This can be done using the canonical isomorphisms

Σ1−n[a(An−1, An) ⊗ · · · ⊗ a(A0, A1), a(A0, An)]

��
[Σa(An−1, An) ⊗ · · · ⊗ Σa(A0, A1),Σa(A0, An)]

(9)

determined by the conventions of § 2.1, thus introducing a lot of signs. We define the bigraded object
C(a) by

Ci,n(a) =
∏

A0,...An

[a(An−1, An) ⊗ · · · ⊗ a(A0, A1), a(A0, An)]i.

An element φ ∈ Ci,n has degree |φ| = i, arity ar(φ) = n and Hochschild degree deg(φ) = i+ n. We
put Cp(a) =

∏
i+n=pC

i,n(a). The B∞-structure of Cbr (a) is translated in terms of operations on
C(a) through (9). The complex C(a) is also called the Hochschild complex of a and its elements
are called Hochschild cochains. For a Hochschild cochain φ ∈ Ci,n(a), the corresponding element of
Cbr (a) has

σ1−n(φ)(σfn, . . . , σf1) = (−1)ni+(n−1)|fn|+···+|f2|σφ(fn, . . . , f1).
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This identification is different from the others used, for example, in [GJ94, Lef03, Nic07]. Neverthe-
less, it allows us to recover many standard constructions (up to minor modifications). For example,
the operation

dot : Cbr(a)n ⊗ Cbr(a)m −→ Cbr (a)n+m−1 : (x, y) �−→ x{y}
gives rise to the classical ‘dot product’

• : Ci,n(a) ⊗ Cj,m(a) −→ Ci+j,n+m−1

on C(a) given by

φ • ψ =
n−1∑
k=0

(−1)εφ(1⊗n−k−1 ⊗ ψ ⊗ 1⊗k) (10)

where

ε = (deg(φ) + k + 1)(ar(ψ) + 1).

In the following, when no confusion arises, we do not distinguish in the notation between the
operations on Cbr (a) and the induced operations on C(a). In particular, the brace operations are
always denoted using the symbols { and }. An A[0,∞[-structure b ∈ C1

br(a) on a is often translated
into an element µ ∈ C2(a), which is also called an A[0,∞[-structure on a. Similarly, we speak about
brace algebra and B∞-morphisms between Hochschild complexes C(a), C(a′).

We prove the following result.

Lemma 2.8. Consider φ ∈ Ci,n(a) and δ ∈ Cj,0(a). We have

φ{δ⊗n} = (−1)n(i+((n−1)/2)j)φ(δ, . . . , δ).

2.7 The Hochschild complex of a cdg category
By the previous section a cdg category is a graded quiver a together with:

(i) compositions µ2 = m ∈
∏
A0,A1,A2

[a(A1, A2) ⊗ a(A0, A1), a(A0, A2)]0;

(ii) differentials µ1 = d ∈
∏
A0,A1

[a(A0, A1), a(A0, A1)]1;

(iii) curvature elements µ0 = c ∈
∏
A a(A,A)2;

satisfying the identities:

(i) d(c) = 0;

(ii) d2 = −m(c⊗ 1 − 1 ⊗ c);

(iii) dm = m(d⊗ 1 + 1 ⊗ d);

(iv) m(m⊗ 1) = m(1 ⊗m).

Remark 2.9. Note that identity (ii) differs from the conventional d2 = m(c⊗ 1− 1⊗ c) (see [GJ90,
Nic07]). However, it suffices to change c into −c to recover the other definition.

Example 2.10. Let a be a linear category. An example of a cdg category is the category PCom(a) of
precomplexes of a-objects. A precomplex of a-objects is a Z-graded a-object C (with Ci ∈ a) together
with a Z-graded a-morphism δC : C −→ C of degree 1. We have PCom(a)(C,D)n =

∏
i a(C

i,Di+n)
and, for f : D −→ E and g : C −→ D:

(i) m(f, g)i = (fg)i = fi+|g|gi,

(ii) d(f) = δEf − (−1)|f |fδD,

(iii) cC = −δ2C .
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Inside PCom(a), we have the usual dg category Com(a) of complexes C of a-objects, for which
cC = δ2C = 0. We use the notation Com+(a) and Com−(a) for the respective categories of bounded
below and bounded above complexes.

As an example of the passage from Σa to a, let us use (10) to compute the Hochschild differential
on C(a) for a cdg category a. The differential on Cbr (a) is given by

〈σc+ d+ σ−1m,−〉.
Consider φ ∈ Ci,n(a). By definition

〈σc+ d+ σ−1m,σ1−nφ〉 = dot(σc+ d+ σ−1m,σ1−nφ) − (−1)1−n+idot(σ1−nφ, σc+ d+ σ−1m).

The corresponding three terms in terms of C(a) are:

(i) [c, φ] = c • φ− (−1)deg(φ)+1φ • c which equals
n−1∑
k=0

(−1)k+1φ(1⊗n−k−1 ⊗ c⊗ 1⊗k),

(ii) [d, φ] = d • φ− (−1)deg(φ)+1φ • d which equals

(−1)arφ+1(dφ− (−1)|φ|
n−1∑
k=0

φ(1⊗n−k−1 ⊗ d⊗ 1⊗k)),

(iii) [m,φ] = m • φ− (−1)deg(φ)+1φ •m which equals

m(φ⊗ 1) +
n−1∑
k=0

(−1)k+1φ(1⊗n−k−1 ⊗m⊗ 1⊗k) + (−1)n+1m(1 ⊗ φ).

If we look at the bigraded object Ci,n with i being the ‘vertical’ grading and n being the ‘horizontal’
grading, then dh = [m,−] defines a horizontal contribution whereas dv = [d,−] defines a vertical
contribution to the Hochschild differential d. Clearly, up to a factor (−1)n+1, the horizontal contri-
bution generalizes the classical Hochschild differential for an associative algebra. If we look at the
‘nth column’ graded object

C∗,n =
∏

A0,...An

[a(An−1, An) ⊗ · · · ⊗ a(A0, A1), a(A0, An)],

then the vertical contribution on C∗,n is (−1)n+1 times the canonical map induced from d. Compared
with the dg case, we have a new curved contribution dc = [c,−] which goes ‘two steps up and one
step back’. The curved contribution is zero on the zero part C∗,0. In the Hochschild complex of an
arbitrary A[0,∞[-category, there are additional contributions going ‘n steps down and n + 1 steps
ahead’ for n � 1.

3. A B∞-section to twisted objects

Let a be a quiver. As explained in § 2.4, an inclusion a ⊂ a′ of a as a subquiver of some a′ induces
a morphism of brace algebras π : C(a′) −→ C(a). This section is devoted to the construction
of certain quivers a′ = Tw(a) of ‘twisted objects over a’ for which π has a certain brace algebra
section embrδ. The morphism embrδ is used in § 3.3 to transport A[0,∞[-structures from a to Tw(a).
Quivers of twisted complexes encompass the classical twisted complexes over a dg category [BK90,
Dri04, Kel99], but also the ‘infinite’ quivers of semifree dg modules [Dri04] as well as quivers of
(pre)complexes over a linear category. The morphism embrδ is such that in those examples, it
induces the correct A[0,∞[-structures on these quivers, thus defining a B∞-section of π. It is used
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in § 4.3 to define the characteristic dg morphism of a linear category a, which allows us to prove
Theorem 4.8 and hence Theorem 1.1. This section is related to ideas in [Fuk03, FOOO, Lef03, Nic07].

3.1 Some quivers over a

Let a be a quiver. In this section we define the quiver Twfree(a) of formal coproducts of shifts of
a-objects twisted by a morphism of degree 1. First we define the quiver Free(a). An object of Free(a)
is a formal expression M =

⊕
i∈I ΣmiAi with I an arbitrary index set, Ai ∈ a and mi ∈ Z. For

another N =
⊕

j∈J ΣniBi ∈ Free(a), the graded object Free(a)(M,N) is, by definition,

Free(a)(M,N) =
∏
i

⊕
j

Σnj−mia(Ai, Bj).

An element f ∈ Free(a)(M,N) can be represented by a matrix f = (fji), where fji represents the
element σnj−mifji .

Definition 3.1. For M,N as above, consider a morphism f ∈ Free(a)(M,N). For a subset S ⊂ I,
let Φf (S) ⊂ J be defined by

Φf (S) = {j ∈ J | ∃i ∈ Sf ji �= 0}.
We say that f ∈ Free(M,M) is intrinsically locally nilpotent (iln) if for every i ∈ I there exists
n ∈ N with Φn

f ({i}) = ∅.

Proposition 3.2. The canonical isomorphisms

[a(An−1, An) ⊗ · · · ⊗ a(A0, A1), a(A0, An)]

��
[Σin−in−1a(An−1, An) ⊗ · · · ⊗ Σi1−i0a(A0, A1),Σin−i0a(A0, An)]

(11)

for Ak ∈ a, nk ∈ Z define a morphism of brace algebras

C(a) −→ C(Free(a)) : φ �−→ φ (12)

with

φ(fn, . . . , f1)ji =
∑

kn−1,...,k1

(−1)εφ((fn)jkn−1 , (fn−1)kn−1kn−2 , . . . , (f2)k2k1 , (f1)k1i). (13)

Lemma 3.3. Consider φ ∈ C(a) and (fn, . . . , f1) ∈ Free(a)(Mn−1,Mn) ⊗ · · · ⊗ Free(a)(M0,M1).
Write M0 =

⊕
i∈I ΣαiAi and consider S ⊂ I. There is an inclusion

Φφ(fn,...,f1)(S) ⊂ Φfn(Φfn−1(. . .Φf1(S))).

Proof. Suppose that j is not contained in the right-hand side. Then for every sequence j =
kn, . . . , k1, k0 = i with i ∈ S one of the entries (fp)kpkp−1 is zero. However, then, looking at the
expression (13), clearly φ(fn, . . . , f1)ji = 0, so j is not contained in the left-hand side.

Next we define the quiver Twfree(a). An object of Twfree(a) is a pair (M, δM ) with M ∈ Free(a)
and

δM ∈ Free(a)(M,M)1.
For (M, δM ), (N, δN ) ∈ Twfree(a), Twfree(a)((M, δM ), (N, δN )) = Free(a)(M,N). Consequently, the
δM determine an element

δ ∈ C1(Twfree(a)).
The isomorphisms (11) also define a morphism of brace algebras

C(a) −→ C(Twfree(a)) : φ �−→ φ (14)
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which is a section of the canonical projection morphism C(Twfree(a)) −→ C(a). In the next section
we show that for certain a ⊂ Tw ⊂ Twfree,

π : C(Tw(a)) −→ C(a) (15)

has another section depending on δ, which can be used to transport A[0,∞[-structures.

Definition 3.4. A quiver of locally nilpotent twisted objects over a is by definition a quiver Tw(a)
with a ⊂ Tw(a) ⊂ Twfree(a) such that for every φ ∈ C(a), for every

(fn, . . . f1) ∈ Tw(a)(Mn−1,Mn) ⊗ · · · ⊗ Tw(a)(M0,M1)

with M0 =
⊕

i∈I ΣαiAi, and for every i ∈ I there exists m0 ∈ N such that for all m � m0,
Φg({i}) = ∅ for

g = φm+n{δ⊗m}(fn, . . . f1).

Example 3.5. If a is concentrated in degree zero, then Twfree(a) is a quiver of locally nilpotent
twisted objects over a. Indeed, for φ ∈ C(a), there is only a single m for which the component φm
is different from zero.

Proposition 3.6. Let Twilnil(a) ⊂ Twfree(a) be the quiver with as objects the (M, δM ) for which
δM ∈ Free(a)(M,M) is intrinsically locally nilpotent. Then Twilnil(a) is a quiver of locally nilpotent
twisted objects over a.

Proof. Consider φ, (fn, . . . f1) and i as in Definition 3.4 and put δi = δMi . For m ∈ N, consider
gm = φm+n{δ⊗m}(fn, . . . , f1). This gm is a sum of expressions

gmn,...,m0 = φm+n(δ⊗mn
n , fn, δ

⊗mn−1

n−1 , . . . , δ⊗m1
1 , f1, δ

⊗m0
0 )

with mn + · · · +m0 = m. For Φgmn,...,m0
({i}) to be empty, it suffices by Lemma 3.3 that

Φmn
δn

(Φfn(. . . (Φf1(Φ
m0
δ0

({i}))))) = ∅. (16)

We recursively define numbers pl and finite sets Sl for l = 0, . . . , n in the following manner. Put
S0 = {i}. Once Sl is defined, pl is such that Φpl

δl
(Sl) = ∅ (such a pl exists since δl is iln) and

Sl+1 =
⋃
p∈NΦfl+1

Φp
δl
(Sl). By the pigeonhole principle, if m � pn + · · · + p0, every gmn,...,m0 with

mn+· · ·+m0 = m has at least oneml � pl, and consequently (16) holds true. Hence, in Definition 3.4,
it suffices to take m0 = pn + · · · + p0.

3.2 A word on topology
Although not strictly necessary, it is convenient to use a bit of topology to understand and refor-
mulate Definition 3.4. The language of this section is used in the proof of Proposition 3.11. All of
the topologies we consider will turn the underlying k-modules into topological k-modules, so in par-
ticular we can speak about completions. Put C = Cbr (Tw(a)) for some arbitrary full subcategory
Tw(a) ⊂ Twfree(a). To manipulate certain elements of B∏C =

∏
n�0(ΣC)⊗n that are not in BC, it

will be convenient to consider a certain completion B̂C of BC. As a first step we endow BC with
a complete Hausdorff ‘pointwise’ topology T0. To do so we suppose that a is naturally a complete
Hausdorff topological k-quiver, that is, the a(A,A′) are complete Hausdorff topological k-modules
(if there is no natural topology, the a(A,A′) are endowed with the discrete topology).

Now consider the algebra multiplication

M : BC⊗BC −→ BC

defined by the brace operations. We suppose that M preserves Cauchy nets with respect to T0. For
every φ ∈ Cbr (a) ⊂ BC we consider the map

Mφ = M(φ,−) : BC −→ (BC,T0).
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Next we endow BC with the ‘weak topology’ T ⊂ T0 which is by definition the initial topology for
the collection (Mφ)φ, and we let B̂C denote the completion of BC with respect to T . The Mφ have
natural continuous extensions

M̂φ : B̂C −→ BC. (17)

Lemma 3.7. For ψ ∈ BC, the map Mψ = M(−, ψ) : BC −→ BC preserves Cauchy nets with
respect to T . Consequently, there is a natural continuous extension

M̂ψ : B̂C −→ B̂C. (18)

Proof. Suppose that we have a T -Cauchy net (xα)α in BC. We have to show that M(φ,M(xα, ψ)) is
T0-Cauchy for every φ ∈ Cbr (a). This follows since M is associative and preserves Cauchy nets.

Definition 3.8. Let a be a topological k-quiver. A quiver of twisted objects over a is by defini-
tion a quiver a ⊂ Tw(a) ⊂ Twfree(a) such that for the canonical δ ∈ C1(Tw(a)) the sequence
(
∑m

k=0 δ
⊗k)m�0 converges in B̂C to a unique element

eδ =
∞∑
k=0

δ⊗k.

Remark 3.9. We note that the same suggestive exponential notation is used in [Fuk03].

Proposition 3.10. Let a be a k-quiver and consider a ⊂ Tw(a) ⊂ Twfree(a). The following are
equivalent:

(i) Tw(a) is a quiver of twisted objects over a where a is endowed with the discrete topology;

(ii) Tw(a) is a quiver of locally nilpotent twisted objects over a.

Proof. By definition of the completion, the sequence converges in B̂C if and only if for every
φ ∈ Cbr(a), the sequence (

∑m
k=0 φ{δ⊗k})m�0) converges for the ‘pointwise discrete’ topology T0

on BC. By definition of this topology, this means that for every (fn, . . . , f1) and i ∈ I as in
Definition 3.4, there exists an m0 such that the general term ((

∑m
k=0 φ{δ⊗k}(fn, . . . , f1)(i)) becomes

constant for m � m0. This is clearly equivalent to the fact that the expressions φ{δ⊗k}(fn, . . . , f1)(i)
become zero for k � m0.

3.3 Transport of A[0,∞[-structures to Tw(a)
Let a be a topological quiver and consider the inclusion a ⊂ Tw(a) of a into a quiver of twisted
objects over a (in particular, Tw(a) can be a quiver of locally nilpotent twisted objects over an
arbitrary quiver a). Let

δ ∈ C1(Tw(a))
be the canonical Hochschild cochain of Tw(a).

Proposition 3.11. The canonical projection π : C(Tw(a)) −→ C(a) has a brace algebra section

embrδ : C(a) −→ C(Tw(a)) : φ �−→
∞∑
m=0

φ{δ⊗m}. (19)

For M = (M, δM ) ∈ Tw(a) and φ ∈ Cp(a), the component φM = (embrδ(φ))M ∈ Tw(a)(M,M)1 is
given by

φM =
∞∑
m=0

(−1)αφm(δ⊗mM ) (20)

with α = m((p−m) + (m− 1)/2).
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Remark 3.12. If char(k) = 0, the map embrδ is the Lie morphism e[−,δ].

Proof. According to Definition 3.8, we dispose of an element eδ =
∑∞

k=0 δ
⊗k ∈ B̂C. We define embrδ

to be the restriction of the morphism

M̂(−, eδ) : BC(a) −→ BC(Tw(a)) (21)

which exists by § 3.2. In particular, the right-hand side of (19) should be read as a pointwise series,
that is, for (fn, . . . , f1) ∈ Tw(a)(Mn−1,Mn) ⊗ · · · ⊗ Tw(a)(M0,M1) where M0 =

⊕
i∈I ΣαiAi and

Mn =
⊕

j∈J ΣβjBj, we have
(( ∞∑

m=0

φ{δ⊗m}
)

(fn, . . . , f1)
)

ji

=
∞∑
m=0

((φ{δ⊗m}(fn, . . . , f1))ji )

and the right-hand side converges for the topology of a. Next we verify that (21) is a morphism of
algebras, that is, preserves the multiplication M . Consider φ,ψ ∈ BCbr(a). We have

M̂(M̂(φ,ψ), eδ) = M̂(φ, M̂ (ψ, eδ)) = M̂(M̂(φ, eδ), M̂ (ψ, eδ))

where we used the associativity of M , continuity of (17) and (18) and the fact that M̂(eδ , ψ) = ψ.
Finally, the statement (20) follows from Lemma 2.8.

Combining Proposition 3.11 with Proposition 2.6, we obtain the following result.

Proposition 3.13. We have the following.

(i) If µ is an A[0,∞[-structure on a, then embrδ(µ) is an A[0,∞[-structure on Tw(a) and

embrδ : (a, µ) −→ (Tw(a), embrδ(µ))

is a B∞-morphism.

(ii) If µ = c+ d+m is a cdg structure on a, then

embrδ(µ) = (c+ d{δ} +m{δ, δ}) + (d+m{δ}) +m

is a cdg structure on Tw(a).

(iii) If µ = d+m is a dg structure on a and δ ∈ C1(Tw(a)) satisfies

d{δ} +m{δ, δ} = 0,

then

embrδ(µ) = (d+m{δ}) +m

is a dg structure on Tw(a).

From now on, quivers of twisted objects over an A[0,∞[-category (a, µ) will always be endowed
with the A[0,∞[-structure embrδ(µ).

Remark 3.14. A similar kind of ‘transport’ is used in [Lef03, Section 6] in order to construct A∞-
functor categories.

3.4 Classical twisted complexes
We now discuss how some classical categories of twisted complexes fit into the framework of the
previous sections.

Definition 3.15. Let a = (a, µ) be an A[0,∞[-category. The ∞-part of a is the full subcategory
a∞ ⊂ a with the A ∈ a for which µA ∈ a(A,A)2 is zero as objects.
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Example 3.16. Let a be an A∞-category and let twilnil(a) ⊂ Twilnil(a) be the quiver with the (M, δM )
as objects where M =

⊕k
i=0 ΣmiAi is ‘finite’.

(i) If a is a dg category, then the dg category twilnil(a)∞ is equivalent to the classical dg category
of twisted complexes over a (see [BK90, Dri04, Kel99]). Indeed, the ∞-part of twilnil(a) is its
restriction to the objects (M, δM ) with

d{δM} +m{δM , δM} = 0.

More generally, twilnil(a)∞ is equivalent to the A∞-category tw(a) of twisted objects over a

(see [Lef03], and [Fuk03] for the algebra case).
(ii) The dg category Twilnil(a)∞ is equivalent to the classical dg category of semifree complexes over

a (see [Dri04]) which is a dg-model for D(a), that is, there is an equivalence of triangulated
categories H0(Twilnil(a)∞) ∼= D(a).

Remark 3.17. We conjecture that for an A∞-category a, the A∞-category Twilnil(a)∞ is an A∞-
model for the derived category of a, that is, there is an equivalence of triangulated categories
H0(Twilnil(a)∞) ∼= D∞(a), where we refer the reader to [Lef03], for definitions of the right-hand
side. The finite version of this result has been obtained in [Lef03, Section 7.4].

Remark 3.18. For an A[0,∞[-category a, we have twilnil(a)∞ = twilnil(a∞)∞ and similarly for Twilnil(a).
In particular, an A[0,∞[-algebra A with µ0 �= 0 has Twilnil(a)∞ = 0. This illustrates the poor
‘derivability’, in general, of A[0,∞[-algebras.

The following theorem, which immediately follows from Proposition 3.11, is a refinement of
[LV05, Theorem 4.4.1].

Theorem 3.19. Let a be a dg category. Then Tw(a) = Twilnil(a)∞ is a dg category which is dg
equivalent to the category of semifree dg modules over a. The canonical projection π : C(Tw(a)) −→
C(a) has a B∞-section

embrδ : C(a) −→ C(Tw(a)) : φ �−→
∞∑
m=0

φ{δ⊗m}

which is an inverse in the homotopy category of B∞-algebras. In particular, both π and embrδ are
quasi-isomorphisms.

3.5 (Pre)complexes over linear categories
Next we apply Proposition 3.11 to categories of (pre)complexes. Let (a,m) be a linear category.
Consider the quiver Twpre(a) with (

M =
⊕
i∈Z

ΣiAi, δM

)

as objects, with δM ∈ Free(a)(M,M)1. For another (N =
⊕

i∈ZΣiBi, δN ), since a is concentrated in
degree zero, we have Twpre(a)(M,N)n =

∏
i∈Z a(Ai, Bi−n). If we change to cohomological notation

Ai = A−i, we have

Twpre(a)(M,N)n =
∏
i∈Z

a(Ai, Bi+n).

By Example 3.5, Twpre(a) is a quiver of locally nilpotent twisted objects over a. According to
Proposition 3.13, the corresponding A[0,∞[-structure on Twpre(a) is embrδ(m) = m{δ, δ}+m{δ}+m
with

m{δ, δ} = −δ2
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and
m{δ} = m(δ ⊗ 1 − 1 ⊗ δ).

Hence, Twpre(a) is precisely the cdg category PCom(a) of precomplexes of a-objects of Example 2.10.
The category Twcom(a) = Twpre(a)∞ is the dg category Com(a) of complexes of a-objects.

Consider the inclusions
a ⊂ Com+(a) ⊂ Com(a).

The following result is implicit in [LV05].

Proposition 3.20. The canonical projection π : C(Com+(a)) −→ C(a) is a B∞-quasi-isomorphism.

Proof. Consider the canonical morphisms

a
op −→ Com−(a

op
) −→ Com−(Mod(a

op
)) −→ Com(Mod(a

op
)) = Moddg(a

op
).

A complex in Com−(a
op

) gets mapped to a cofibrant object in Moddg(a
op

). Consequently, by [LV05,
Theorem 4.4.1], the first map induces a B∞-quasi-isomorphism. The result follows since π is induced
by the opposite of this map.

Theorem 3.21. The canonical projection π : C(PCom(a)) −→ C(a) has a B∞-section

embrδ : C(a) −→ C(PCom(a)) : φn �−→
n∑

m=0

φn{δ⊗m}.

The restrictions of both maps to C(Com+(a)) are inverse isomorphisms in the homotopy category
of B∞-algebras. In particular, they are both quasi-isomorphisms.

3.6 Abelian categories
The results of the previous section have an immediate application to abelian categories. Let A be
an abelian category. In [LV05], the Hochschild complex of A is defined as

Cab(A) = C(Inj(Ind(A)).

Let A be an abelian category with enough injectives and put i = Inj(A). By [LV05, Theorem 6.6],
we have

Cab(A) ∼= C(i)
and it will be convenient to actually take this as the definition of Cab(A).

The dg category Com+(i) of bounded below complexes of injectives is a dg model for the bounded
below derived category D+(A) of A, hence the notation D+

dg(A) = Com+(i). In the spirit of [Kel03],
put Cex(A) = C(D+

dg(A)). With a = i, Theorem 3.21 now yields the following result.

Theorem 3.22. The canonical projection π : C(Com+(i)) −→ C(i) has a B∞-section

embrδ : C(i) −→ C(Com+(i)) : φn �−→
n∑

m=0

φn{δ⊗m}

which is an inverse in the homotopy category of B∞-algebras. In particular, both π and embrδ are
quasi-isomorphisms establishing Cab(A) ∼= Cex(A).

4. Deformations

This section consists largely of applications of Theorem 3.21. We first recall some facts on defor-
mations and the graded centre enabling us to define, in § 4.3, the characteristic dg morphism of
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a linear category, and to show its relation to deformation theory in Theorem 4.8. The remainder
of the chapter is devoted to some applications to deformations of (enhanced) derived categories of
abelian categories.

Throughout we focus on first-order deformations, that is, deformations along k[ε] −→ k, since
they are in the most direct correspondence with Hochschild cohomology. All definitions can be
given for arbitrary deformations, and in the classical setting of an Artin local algebra R over a
field k of characteristic zero (with maximal ideal m), the deformation theory is governed by the
Maurer–Cartan equation in the Hochschild complex (tensored by m).

From now on, k will be a field.

4.1 Deformations of linear and abelian categories
The deformation theory of linear and abelian categories was developed in [LV06] as a natural
extension of Gerstenhaber’s deformation theory of algebras [Ger64]. In this section we recall the
main definitions. For a commutative ring R, let cat(R) denote the (large) category of R-linear
categories. The forgetful functor cat(k) −→ cat(k[ε]) has the left adjoint

k ⊗k[ε] − : cat(k[ε]) −→ cat(k)

and the right adjoint

Homk[ε](k,−) : cat(k[ε]) −→ cat(k)
where Homk[ε] denotes the category of k[ε]-linear functors. Clearly, for B ∈ cat(k[ε]), there is a
canonical inclusion functor Homk[ε](k,B) −→ B identifying Homk[ε](k,B) with the full subcategory
of objects B ∈ B for which ε : B −→ B is equal to zero.

In [LV06], a notion of flatness for abelian R-linear categories is defined which is such that an
R-linear category a is flat (in the sense that it has R-flat hom-modules) if and only if the module
category Mod(a) is flat as an abelian category.

Definition 4.1.

(i) Let a be a k-linear category. A first-order linear deformation of a is a flat k[ε]-linear category
b together with an isomorphism k ⊗k[ε] b

∼= a in cat(k).
(ii) Let A be an abelian k-linear category. A first-order abelian deformation of A is a flat abelian

k[ε]-linear category B together with an equivalence of categories A ∼= Homk[ε](k,B).

We denote the natural groupoids of linear deformations of a and of abelian deformations of A
by Defa(k[ε]) and ab − DefA(k[ε]), respectively. In [LV06], the notation defsa and DefA is used and
the terminology strict deformation is used in the linear case.

The following proposition extends the well-known result for algebras.

Proposition 4.2. Let a be a k-linear category. There is a map

Z2C(a) −→ Ob(Defa(k[ε]))

which induces a bijection

HH 2(a) −→ Sk(Defa(k[ε])).

Proof. Consider φ ∈ Z2C(a). The cocycle φ describes the corresponding linear deformation of (a,m)
in the following way. Consider the quiver a[ε] = k[ε] ⊗k a over k[ε]. The linear deformation of a is
aφ[ε] = (a[ε],m + φε).

Finally, we mention the following fundamental result of [LV05], where the Hochschild cohomology
of the abelian category A is as defined in § 3.6.
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Proposition 4.3. Let A be a k-linear abelian category. There is a bijection

HH 2
ab(A) −→ ab − DefA(k[ε]).

4.2 The centre of a graded category
We recall the definition of the centre of a graded category (see also [BF08, Section 3]).

Definition 4.4. Let a be a graded category. The centre of a is the centre of a as a category enriched
in G(k), that is,

Z(a) = Hom(1a, 1a)
where 1a : a −→ a is the identity functor and Hom denotes the graded module of graded natural
transformations.

Remark 4.5. Explicitly, an element in Z(a) is given by an element (ζA)A ∈
∏
A∈a a(A,A) with the

naturality property that for all A,A′ ∈ a, the following diagram commutes.

a(A,A′)
ζ⊗1 ��

1⊗ζ
��

a(A′, A′) ⊗ a(A,A′)

m

��
a(A,A′) ⊗ a(A,A) m

�� a(A,A′)

In other words, for f ∈ a(A,A′),
ζA′f = (−1)|f ||ζ|fζA.

Remark 4.6. Let T be a suspended linear category with suspension ΣT : T −→ T . There is an
associated graded category Tgr with Tgr(T, T ′)n = T (T,Σn

T T
′) and the graded centre of T is the

centre of the graded category Tgr. If t is an exact dg category with associated triangulated category
T = H0t, we have Tgr = H∗t.

4.3 The characteristic dg morphism
It is well known that for a k-algebra A, there is a characteristic morphism of graded commutative
algebras from the Hochschild cohomology of A to the graded centre of the derived category D(A).
This morphism is determined by the maps, for M ∈ D(A),

M ⊗L
A − : HH ∗

k(A) ∼= Ext∗Aop⊗A(A,A) −→ Ext∗A(M,M).

The characteristic morphism occurs, for example, in the theory of support varieties
[AB00, EHTSS04, SS04]. Recently, Buchweitz and Flenner proved the existence of a characteristic
morphism in the context of morphisms of schemes or analytic spaces [BF08].

In [LV05], it is observed that a characteristic morphism also exists for abelian categories. Let A
be an abelian category with enough injectives, i = Inj(A) and Com(i) the dg category of complexes
of injectives. As asserted in Proposition 2.7, there is a morphism of differential graded objects

π0 : C(Com(i)) −→
∏

E∈Com(i)

Com(i)(E,E).

Taking cohomology of π0 (where we restrict to Com+(i)) and composing with the isomorphisms
HH ∗

ab(A) ∼= HH ∗
ex(A) of Theorem 3.22, we obtain the characteristic morphism

χA : HH ∗
ab(A) −→ Z∗D+(A).

Using the B∞-section of Proposition 3.21, we can actually lift the characteristic morphism to the
level of dg objects. In fact, we can construct this lifted characteristic morphism for an arbitrary
k-linear category a instead of i.
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Definition 4.7. Let a be a k-linear category. The characteristic dg morphism

C(a) −→
∏

C∈Com(a)

Com(a)(C,C)

is the composition of the B∞-morphism C(a) −→ C(Com(a)) of Theorem 3.21 and the projection
on the zero part of Proposition 2.7. Taking cohomology, we obtain the characteristic morphism

HH ∗(a) −→ Z∗K(a)

where K(a) is the homotopy category of complexes of a-objects.

In the next section we interpret the characteristic morphism in terms of deformation theory.

4.4 The characteristic morphism and obstructions

Let a be a k-linear category. In [Low05], an obstruction theory is established for deforming objects
of the homotopy category K(a). Let c ∈ Z2C(a) be a Hochschild cocycle and ac[ε] the corresponding
linear deformation. Consider the functor

k ⊗k[ε] − : K(ac[ε]) −→ K(a)

and consider C ∈ K(a). We say that a (homotopy) c-deformation of C is a lift of C along k⊗k[ε] −.
According to [Low05, Theorem 5.2], first-order c-deformations of C are governed by an obstruction
theory involving K(a)(C,C[2]) and K(a)(C,C[1]). In particular, the obstruction against c-deforming
C is an element oc ∈ K(a)(C,C[2]) depending on c, whereas K(a)(C,C[2]) itself is independent of
c. In the remainder of this section we show that the way in which the obstruction oc depends on c
is encoded in the characteristic morphism.

Theorem 4.8. Let a be a linear category and consider the characteristic morphism

χa : HH 2(a) −→ Z2K(a).

We have

χa(c) = (oC)C∈K(a)

where oC ∈ K(a)(C,C[2]) is the obstruction to c-deforming C into an object of K(ac[ε]).

Proof. Let χ̄a be the characteristic dg morphism C2(a) −→
∏
C∈Com(a) Com(a)2(C,C) enhancing

χa. Consider C = (C, δC ) ∈ Com(a) and φ ∈ C2(a). According to Theorem 3.21, we have

(χ̄a(φ))C = −φ(δC , δC).

According to [Low05, Theorems 3.8, 4.1], [φ(δC , δC)] is the obstruction to c-deforming C.

Corollary 4.9. Let A be an abelian category with enough injectives. The characteristic morphism

χA : HH 2
ab(A) −→ Z2D+(A)

satisfies

χA(c) = (oC)C∈D+(A)

where oC ∈ Ext2A(C,C) is the obstruction to deforming C into an object of D+(Ac). For C ∈ Db(A),
this is equally the obstruction to deforming C into an object of Db(Ac).

Proof. This easily follows from Theorem 4.8 since D+(A) ∼= K+(Inj(A)). The last statement follows
from [Low05, Section 6.3].
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4.5 A[0,∞[-deformations
In this section, we discuss the sense in which the Hochschild cohomology of an A[0,∞[-category
a describes its first-order A[0,∞[-deformations. The easiest (although not necessarily the best, see
Remark 4.17 and § 4.7) deformations to handle are those with fixed set of objects. Note that the
‘flatness’ automatically imposed in this definition is graded freeness, which does not imply cofibrancy
in the dg case.

Definition 4.10. Let a be a k-linear A[0,∞[-category where, in the entire definition, A[0,∞[- can be
replaced by A∞-, cdg, dg or blank.

(i) A first-order A[0,∞[-deformation of a is a structure of k[ε]-linear A[0,∞[-category on a k[ε]-
quiver b ∼= k[ε] ⊗k a, such that its reduction to a coincides with the A[0,∞[-structure of a

(in other words, the canonical k ⊗k[ε] b ∼= a is an A[0,∞[-isomorphism).
(ii) A partial first-order A[0,∞[-deformation of a is an A[0,∞[-deformation of a′ for some full A[0,∞[-

subcategory a′ ⊂ a.
(iii) Let b and b′ be (partial) deformations of a. An isomorphism of (partial) deformations is an

isomorphism g : b −→ b′ of A[0,∞[-categories, of which the reduction to a (respectively a′ in
case of partial deformations) is the identity morphism. A morphism of partial deformations
is an isomorphism of deformations between b and a full A[0,∞[-subcategory of b′.

(iv) A partial deformation b of a is called maximal if every morphism b −→ b′ of partial defor-
mations is an isomorphism.

(v) The groupoid A[0,∞[ −Defa(k[ε]) has first-order A[0,∞[-deformations of a as objects. Its mor-
phisms are isomorphisms of deformations.

(vi) The category A[0,∞[−pDefa(k[ε]) has first-order partial A[0,∞[-deformations of a as objects. Its
morphisms are morphisms of partial deformations.

(vii) The groupoid A[0,∞[ −mpDefa(k[ε]) has maximal partial A[0,∞[-deformations of a as objects.
Its morphisms are isomorphisms of partial deformations.

(viii) The groupoid MC a(k[ε]) has ZC2(a) as objects. For c, c′ ∈ ZC2(a), a morphism c −→ c′ is
an element h ∈ C1(a) with d(h) = c′ − c.

Proposition 4.11. Let a be a k-linear A[0,∞[-category.

(i) There is an equivalence of categories

MC a(k[ε]) −→ A[0,∞[−Defa(k[ε]).

(ii) Consequently, there is a bijection

HH 2(a) −→ Sk(A[0,∞[−Defa(k[ε])).

Proof. Let µ be the A[0,∞[-structure on a and consider φ ∈ Z2C(a). The image of φ is the A[0,∞[-
category Aφ[ε] = (a[ε], µ + φε). To see that µ + φε is an A[0,∞[-structure, it suffices to compute
µ + φε{µ + φε} = µ{µ} + [µ{φ} + φ{µ}]ε which is zero since µ is an A[0,∞[-structure and φ is
a Hochschild cocycle. Next consider a morphism of cocycles h : φ −→ φ′. The image of h is the
morphism 1 +hε : Baφ[ε] −→ Baφ′ [ε]. The identity d(h) = φ′ − φ easily implies the compatibility of
1 + hε with the respective A[0,∞[-structures.

Definition 4.12. Consider a k-linear A∞-category a and φ ∈ HH 2(a). The φ−∞-part of a is the
full subcategory aφ−∞ ⊂ a with

Ob(aφ−∞) = {A ∈ a | 0 = H2(π0)(φ) ∈ H2(a(A,A))}
where π0 is as in § 2.5.
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Example 4.13. Consider a linear category a and φ ∈ HH 2(a). Put φ′ = [embrδ](φ) ∈ HH 2(Com(a)).
We have

Ob(Com(a)φ′−∞) = {C ∈ Com(a) | 0 = χa(φ)C ∈ K(a)(C,C[2])}.

Proposition 4.14. Let a be a k-linear A∞-category.

(i) There is a morphism

A[0,∞[ − Defa(k[ε]) −→ A∞ − pDefa(k[ε]) : b �−→ b∞

where b∞ is as in Definition 3.15.

(ii) There is a morphism

HH 2(a) −→ Sk(A∞ − pDefa(k[ε]))
mapping φ ∈ HH 2(a) to an A∞-deformation of aφ−∞ ⊂ a.

Proof. For part (ii), let φ̄ ∈ Z2C(a) be a Hochschild cocycle with [φ̄] = φ and let φ̄′ be its re-
striction to Z2C(aφ−∞). Then (φ̄′)0 ∈

∏
A∈aφ−∞ a2(A,A) is a coboundary, hence there exists h ∈∏

A∈aφ−∞ a1(A,A) with da(h) = (φ̄′)0. If we consider h as an element of C1(a), then φ̄′′ = φ̄′−d(h) is
a representative of φ with (φ̄′ + d(h))0 = 0. Consequently, (Aφ−∞)φ̄′′ [ε] is a partial A∞-deformation
of a corresponding to φ.

4.6 Deformations of categories of (pre)complexes
Let a be a k-linear category. In this section we use Theorem 3.21 to associate to a linear deformation
of a, a cdg deformation of the cdg category PCom(a) of precomplexes of a-objects, and a partial dg
deformation of the dg category Com(a) of complexes of a-objects.

Combining Theorem 3.21 and Proposition 4.11 we obtain a functor

MC a(k[ε]) −→ MCPCom(a)(k[ε]) −→ A[0,∞[ − DefPCom(a)(k[ε])

factoring through a ‘realization’ functor

R : MC a(k[ε]) −→ cdg − DefPCom(a)(k[ε])

whose restriction to cdg−DefCom+(a)(k[ε]) is an equivalence. Similarly, using Proposition 4.14(2),
there is a map

ρ′ : HH 2(a) −→ HH 2(Com+(a)) −→ Sk(dg − pDefCom+(a)(k[ε])).

Theorem 4.15. Consider φ ∈ Z2C(a) and the corresponding linear deformation aφ[ε].

(i) The cdg deformation R(φ) of PCom(a) is (isomorphic to) the subcategory PComtriv(aφ[ε]) ⊂
PCom(aφ[ε]) consisting of the ‘trivial’ precomplexes C̄ = k[ε] ⊗k C for C ∈ PCom(a).

(ii) For every collection of precomplexes Γ = {C̄}C∈PCom(a) where k ⊗k[ε] C̄ = C, the subcate-
gory PComΓ(aφ[ε]) ⊂ PCom(aφ[ε]) spanned by Γ is a cdg deformation of PCom(a) which is
isomorphic to R(φ).

(iii) For every collection of complexes Γ = {C̄}C∈Com+(a)φ−∞ where k ⊗k[ε] C̄ = C, the subcategory

Com+
Γ (aφ[ε]) ⊂ Com+(aφ[ε]) spanned by Γ is a maximal partial dg deformation of Com+(a)

representing ρ′([φ]).

Consequently, ρ′ factors over an injection

ρ : HH 2(a) −→ Sk(dg − mpDefCom+(a)(k[ε])).

The image consists of those maximal partial dg deformations that are dg deformations of some a′

with a ⊂ a′ ⊂ Com+(a).
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Remark 4.16. According to Theorem 4.15(iii), the part of Com+(a) that ‘dg deforms’ with respect
to φ ∈ HH 2(a) is spanned by the objects

{C ∈ Com+(a) | 0 = χa(φ)C ∈ K(a)(C,C[2])}.

Remark 4.17. Morally, Theorem 4.15(ii) suggests that we may consider PCom(aφ[ε]) as a represen-
tative of the class of cdg deformations of PCom(a) corresponding to the element [φ] ∈ HH 2(a). To
make this statement mathematically true, one needs a somewhat more relaxed notion of deforma-
tion (and isomorphism) in which the object set is not necessarily preserved. Clearly, the statement
is true for any such notion of which Definition 4.10 with the isomorphisms relaxed to fully faithful
morphisms that are surjective on objects is a special case. In the same spirit, Theorem 4.15(iii)
suggests that we may consider Com+(aφ[ε]) as a representative of the class of maximal partial dg
deformations of Com+(a) corresponding to [φ].

Proof. There is a canonical morphism of k[ε]-quivers

F : PCom(aφ[ε]) −→ k[ε] ⊗k PCom(a)

defined in the following manner. A precomplex C̄ of aφ[ε]-objects is mapped to C = k ⊗k[ε] C̄ ∈
PCom(a). For two precomplexes C̄ and D̄, PCom(aφ[ε])n(C̄, D̄) =

∏
i∈Z aφ[ε](Ci,Di+n) ∼= k[ε] ⊗

PCom(a)n(C,D). This defines F . From now on we tacitly use F to identify the left- and the right-
hand side.

Let us denote the composition of a by m. By definition, the composition of aφ[ε] is m+φε. Write
δ for the predifferentials in PCom(a) and δ̄ = δ+δ′ε for the predifferentials in (a full subcategory of)
PCom(aφ[ε]). By Examples 2.10 and 3.5, the cdg structure on PCom(a) is given by µ = m{δ, δ} +
m{δ} + m and the cdg structure on PCom(aφ[ε]) is given by µ̃ = (m + φε){δ + δ′ε, δ + δ′ε} +
(m+ φε){δ + δ′ε} +m. This expression can be rewritten as

µ̃0 = m{δ, δ} + [m{δ, δ′} +m{δ′, δ} + φ{δ, δ}]ε,
µ̃1 = m{δ} + [m{δ′} + φ{δ}]ε,
µ̃2 = m+ φε.

On the other hand, we have embrδ(φ) = φ{δ, δ}+φ{δ}+φ so the cdg structure on PCom(a)embrδ(φ)[ε]
is µ̄ with

µ̄0 = m{δ, δ} + φ{δ, δ}ε,
µ̄1 = m{δ} + φ{δ}ε,
µ̄2 = m+ φε.

Comparing µ̃ and µ̄, it becomes clear that on trivial precomplexes (where δ′ = 0), they coincide.
This already proves part (i). To produce a deformation isomorphic to µ̄, it is, by Proposition 4.11,
allowed to change embrδ(φ) up to a Hochschild coboundary. For a collection Γ as in (2), consider
the corresponding δ′ ∈ C1(PCom(a)). Using Definition 2.1 and the definition of the Hochschild
differential d (see § 2.3), it becomes clear that

µ̃ = µ̄+ d(δ′)ε

thus proving part (ii).
Now consider a collection Γ of complexes as in part (iii). Obviously Com+

Γ (aφ[ε]) defines a dg
deformation of Com+(a)φ−∞, hence a partial deformation of Com+(a). By the reasoning above,
dg deformations of a′ ⊂ Com+(a) isomorphic to µ̄|a′ are precisely given by µ̄η = µ̄|a′ + d(η)ε for
some η ∈ C1(a′). The existence of an η for which (µ̄η)0 = 0 (and, hence, for which the deformation
is dg) is equivalent to the existence of δ′ ∈

∏
C∈a′ a

′(C,C)1 with (d(δ′))0 = φ(δ, δ), in other words

1577

https://doi.org/10.1112/S0010437X08003655 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003655


W. Lowen

to the fact that

0 = χa(φ)C ∈ H2Com+(a)(C,C)

for every C ∈ a′. Clearly, a′ = Com+(a)φ−∞ is maximal with this property.
Finally, the statement concerning ρ easily follows from the observation that for every [φ] ∈

HH 2(a), a ⊂ Com+(a)φ−∞.

4.7 Deformations of derived categories
Let A be an abelian category with enough injectives. Putting a = Inj(A) in the previous section, we
obtain a bijection

Sk(R) : HH 2
ab(A) −→ Sk(cdg − DefD+

dg(A)(k[ε]))

and the morphism ρ′ translates into

ρ′ : HH 2
ab(A) −→ Sk(dg − pDefD+

dg(A)(k[ε])).

The following now immediately follows from Theorem 4.15.

Theorem 4.18. Consider φ ∈ Z2Cab(A) and the corresponding abelian deformation Aφ of A.
Consider the subcategory D+

dg(A)φ−∞ ⊂ D+
dg(A) spanned by the complexes C with

0 = χA(φ)C ∈ D+(A)(C,C[2]).

For every collection Γ = {C̄}C∈D+
dg(A)φ−∞ of bounded below complexes of Aφ-injectives with k⊗k[ε]

C̄ = C, the subcategory D+
dg,Γ(Aφ) ⊂ D+

dg(Aφ) spanned by Γ is a dg deformation of D+
dg(A)φ−∞

and a maximal partial dg deformation of D+
dg(A) representing ρ′([φ]). Consequently, ρ′ factors over

an injection

ρ : HH 2
ab(A) −→ Sk(dg − mpDefD+

dg(Aφ)(k[ε])).

The image consists of those maximal partial dg deformations that are dg deformations of some a

with Inj(A) ⊂ a ⊂ D+
dg(A).

Remark 4.19. Theorem 4.18 suggests that we may consider D+
dg(Aφ) as a representative of the class

of maximal partial dg deformations of D+
dg(A) corresponding to [φ] (see also Remark 4.17).

Remark 4.20. A ‘bounded’ version of Theorem 4.18 also holds true: simply replace every dg category
D+

dg in the theorem by its bounded version Db
dg ⊂ D+

dg spanned by the complexes with bounded
cohomology (see also [Low05, Section 6.3]).

As the maps Sk(R) and ρ are not entirely satisfactory, we propose another sense in which to
deform (exact) dg categories, which seems more adapted to (models of) derived categories of abelian
categories.

For a commutative ring R, let dgcat(R) denote the (large) category of R-linear dg categories.
In [Tab05], Tabuada defined a model structure on dgcat(R) for which the weak equivalences are the
quasi-equivalences of dg categories. Let hodgcat(R) denote the homotopy category for this model
structure. In [Toe07], Toën showed that hodgcat(R) is a closed tensor category, with the derived
tensor product ⊗L

R of dg categories, and with an internal hom between dg categories a and b, which
we denote by RHomR(a, b), but which is not a derived version of the internal hom of dgcat(R) for
the above model structure (in fact, it does have a derived interpretation for another model structure
defined in [Tab07b]). The forgetful functor hodgcat(k) −→ hodgcat(k[ε]) has the left adjoint

k ⊗L
k[ε] − : hodgcat(k[ε]) −→ hodgcat(k)
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and the right adjoint
RHomk[ε](k,−) : hodgcat(k[ε]) −→ hodgcat(k).

Definition 4.21. Let a be a k-linear dg category.

(i) A first-order homotopy dg deformation of a is a k[ε]-linear dg category b together with an
isomorphism k ⊗L

k[ε] b
∼= a in hodgcat(k).

(ii) If a is exact, a first-order exact homotopy dg deformation of a is a k[ε]-linear exact dg category
b together with an isomorphism a ∼= RHomk[ε](k, b) in hodgcat(k).

Using the techniques of [Toe07], it is not hard to show the following.

Proposition 4.22. Let A be an abelian k-linear category and suppose that B is a flat abelian
deformation of A. Then Ddg(B) is an exact homotopy dg deformation of Ddg(A).

The further investigation of Definition 4.21 (and its variations with respect to other model
structures on dg categories [Tab07a, Tab07b, Tab05]) is part of a work in progress.
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