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Abstract

It is well known that traditional Markov chain Monte Carlo (MCMC) methods can fail
to effectively explore the state space for multimodal problems. Parallel tempering is a
well-established population approach for such target distributions involving a collection
of particles indexed by temperature. However, this method can suffer dramatically
from the curse of dimensionality. In this paper we introduce an improvement on
parallel tempering called QuanTA. A comprehensive theoretical analysis quantifying
the improved efficiency and scalability of the approach is given. Under weak regularity
conditions, QuanTA gives accelerated mixing through the temperature space. Empirical
evidence of the effectiveness of this new algorithm is illustrated on canonical examples.
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1. Introduction

Consider the problem of stochastic simulation from a target distribution, π (x), on a d-
dimensional state space X where π (·) is known up to a scaling constant. The gold standard
methodology for this problem uses Markov chain Monte Carlo (MCMC). However, these
methods often perform poorly in the context of multimodality.

Most MCMC algorithms use localised proposal mechanisms, tuned towards local approxi-
mate optimality, e.g. [31] and [35]. Indeed, many MCMC algorithms incorporate local gradient
information in the proposal mechanisms, typically attracting the chain back towards the centre
of the mode. This can exacerbate the difficulties of moving between modes [17].

Popular methods used to overcome these issues include simulated tempering [18] and
the population-based version, parallel tempering [8], [9]. These methods use state space
augmentation to allow Markov chains to explore target distributions proportional to πβ (x)
for β typically in the range (0, 1]. For simulated tempering, this is done by introducing an
auxiliary inverse temperature variable, β, and running a (d+ 1)-dimensional Markov chain on
X×�, where � consists of a discrete collection of possible inverse temperatures including
1. For the more practically applicable parallel tempering approach, a Markov chain is run on a
(|�| × d)-dimensional state space, X|�|, where |�| denotes the cardinality of the set �.

Within this paper we will concentrate on parallel tempering as it obviates the need to
approximate certain normalisation constants to work effectively. While parallel tempering
has been highly successful, for example, see [5], [20], [49], etc., its efficiency declines as a
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FIGURE 1: Trace plots of the target state chains for representative runs of the parallel tempering (top) and
QuanTA schemes (bottom).

function of d, at least linearly and often much worse [1], [48]. This is caused by the need to set
inter-inverse temperature spacings in � extremely small to make swaps between temperatures
feasible.

In this paper we introduce and analyse the QuanTA algorithm which facilitates inter-
temperature swaps by proposing moves which attempt to adjust within-mode variation
appropriately for the proposed new temperature. This leads to improved temperature mixing,
which in turn leads to vastly improved inter-modal mixing. Its typical improvement is
demonstrated in Figure 1 with a five-mode target distribution. The construction of QuanTA
resonates with the noncentering MCMC methodology described, for example, in [4], [12], [25],
and [26].

Supporting theory is developed to guide setup and analyse the utility of the novel QuanTA
scheme. There are two key theoretical results. The first, Theorem 1, establishes that there is an
optimal temperature schedule setup for QuanTA, concluding that in general the dimensionality
scaling of the distance between consecutive inverse temperature spacings should be O(d−1/2).
Further to this it suggests that optimising the expected squared jumping distance between
any two consecutive temperature levels induces a temperature swap move acceptance rate
of 0.234, giving a useful metric for a practitioner to optimally tune QuanTA. The second
key theoretical contribution, Theorem 2, of this paper shows that, under mild regularity
conditions, the optimal temperature spacings of QuanTA are more ambitiously spaced than
for the standard parallel tempering algorithm for cold (i.e. large) values of the inverse
temperatures. The significance of this result is that QuanTA can give accelerated mixing
through the cooler parts of the temperature schedule by allowing more ambitious temperature
spacings.

This paper is structured into six core sections. In Sections 2 we review the parallel tempering
algorithm and some of the relevant existing literature. Section 3 motivates the main idea behind
the novel QuanTA scheme, which is then presented in Section 4. QuanTA utilises a population
MCMC approach that requires a clustering scheme; discussion for this is found in Section 5.
Section 6 contains the core theoretical contributions mentioned above. Simulation studies are
detailed in Section 7 along with a discussion of the computational complexity of QuanTA.

https://doi.org/10.1017/apr.2019.35 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.35


804 N. G. TAWN AND G. O. ROBERTS

2. The parallel tempering algorithm

There is an array of methodology available to overcome the issues of multimodality using
MCMC or closely related sequential Monte Carlo (SMC) techniques, e.g. [8], [16], [18],
[21], [23], [28], [37], and [46]. The majority of these methods use state space augmentation
approaches. Auxiliary distributions that allow a Markov chain to explore the entirety of the
state space are targeted and their mixing information is then passed on to aid inter-modal
mixing in the desired target. A convenient approach for the augmentation methods is to use
power-tempered target distributions i.e. the target distribution at inverse temperature level, β,
for β ∈ (0, 1] is defined as

πβ (x)∝ [π (x)]β .

Such targets are the most common choice of auxiliary target when augmenting the state
space for use in the popular simulated tempering (ST) and parallel tempering (PT) algorithms
introduced in [18] and [8]. For each algorithm, one needs to choose a sequence of n+ 1
‘inverse temperatures’, �= {β0, . . . , βn}, where 0≤ βn <βn−1 < · · ·<β1 <β0 = 1 with the
specification that a Markov chain sampling from the target distribution πβn (x) can mix well
across the entire state space.

The PT algorithm runs a Markov chain on the augmented state space, X(n+1), targeting an
invariant distribution given by

πn(x0, x1, . . . , xn)∝ πβ0 (x0)πβ1 (x1) · · · πβn (xn). (1)

From an initialisation point for the chain, the PT algorithm alternates between two types
of Markovian move: within temperature Markov chain moves that use standard localised
MCMC schemes to update each of the xi whilst preserving marginal invariance; temperature
swap moves that propose to swap the chain locations between a pair of adjacent temperature
components. It is these swap moves that will allow mixing information from the hot, rapidly
mixing temperature level to be passed to aid mixing at the cold target state.

To perform the swap move, a pair of temperatures is chosen uniformly from the set of all
adjacent pairs, call this pair xi and xi+1 at inverse temperatures βxi and βxi+1 , respectively. The
proposal is then

(x0, . . . , xi, xi+1, . . . , xn)→ (x0, . . . , xi+1, xi, . . . , xn). (2)

To preserve detailed balance and therefore invariance to πn(·), the swap move is accepted with
probability

A=min

(
1,
πβxi+1

(xi)πβxi
(xi+1)

πβxi
(xi)πβxi+1

(xi+1)

)
.

It is the combination of the suitably specified within temperature moves and temperature
swap moves that ensures ergodicity of the Markov chain to the target distribution, πn(·). Note
that the within temperature moves certainly influence the performance of the algorithm [7];
however, the focus of the work in this article will be on designing a novel approach for the
temperature swap move.

The novel work presented in this paper focuses on the setting where the d-dimensional state
space is given by R

d and the target, π (·), is the associated probability density function. Thus,
herein take X=R

d, but note that natural generalisations to other state spaces and settings are
possible.
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3. Modal rescaling transformation

3.1. A motivating transformation move

Consider a PT algorithm that has two components x1 and x2 running at the neighbouring
inverse temperature levels β and β

′
. Suppose that a temperature swap move is proposed

between the two chains at the two temperature levels. Due to the dependence between the
location in the state space and the temperature level, β and β

′
need to be close to each other

to avoid the move having negligible acceptance probability. Intuitively, the problem is that
the proposal from the hotter chain is likely to be an ‘unrepresentative’ location at the colder
temperature, and vice versa.

So there is clearly a significant dependence between the temperature value and the location
of the chain in the state space, thus explaining why temperature swap moves between arbitrarily
largely spaced temperatures are generally rejected. This issue is typically exacerbated when the
dimensionality grows.

Consider, for motivational purposes, a simple one-dimensional setting where the state space
is given by R and the target density is given by π (·). For notational convenience, letting
j= i+ 1, suppose that a temperature swap move has been proposed between adjacent levels βi

and βj with marginal component values xi and xj, respectively.
Suppose that an oracle has provided a function, tij : R→R, that is bijective, with

tji(tij(x))= x, and differentiable and preserves the cumulative distribution function (CDF)
between the two temperature levels such that

Fβj (tij(x))= Fβi (x), (3)

where Fβ ( · ) denotes the CDF of πβ (·).
Suppose that rather than the standard temperature swap move proposal in (2), the following

is instead proposed:

(x0, . . . , xi, xj, . . . , xn)→ (x0, . . . , tji(xj), tij(xi), . . . , xn).

To preserve detailed balance, this is accepted with an acceptance ratio similar to reversible-
jump MCMC [10] to account for the deterministic transformation:

min

(
1,
πβj(tij(xi))πβi(tji(xj))

πβi(xi)πβj(xj)

∣∣∣∣∂tij(xi)

∂x

∣∣∣∣∣∣∣∣∂tji(xj)

∂x

∣∣∣∣). (4)

By differentiating (3) with respect to x and rearranging

πβj (tij(x))

πβi (x)

∣∣∣∣∂tij(x)

∂x

∣∣∣∣= 1. (5)

Using the result in (5), and noting the cancellation of normalising constants in (4), we can
see that (4) evaluates to 1 and, hence, such a swap would always be accepted. Essentially,
the transformation tij(·) has made the acceptance probability of a temperature swap move
independent of the locations of xi and xj in the state space.

In practice, a CDF-preserving transformation tij(·) will not generally be available. Consider
a simplified setting when the target is now a d-dimensional Gaussian, i.e. π ∼N(μ, �), and
so the tempered target at inverse temperature β is given by πβ ∼N(μ, �/β). Defining a d-
dimensional transformation by

tij(x, μ)=
(
βi

βj

)1/2

(x−μ)+μ, (6)

https://doi.org/10.1017/apr.2019.35 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.35


806 N. G. TAWN AND G. O. ROBERTS

a simple calculation shows that in this setting such a transformation, which only requires
knowledge of the mode location, permits swap moves to always be accepted independently
of the dimensionality and magnitude of the inverse temperature spacings.

In a broad class of applications it is not unreasonable to make a Gaussian approximation to
posterior modes [36]. Indeed, this is the motivation for the similar transformation derived in
[12] for use in a reversible-jump MCMC framework.

Beyond a single-dimensional setting a quantile is typically nonunique since multiple
locations in the state space produce the same CDF evaluation. However, the transformation
in (6), motivated via Gaussianity, is bijective and can be seen as a way of uniquely pairing
two quantiles at different temperature levels allowing for ‘quantile uniqueness’ and, therefore,
reversibility of the transformation. It is from this that QuanTA gets its name.

3.2. Transformation-aided move in a PT framework

In a multimodal setting a single Gaussian approximation to the posterior will be poor.
However, it is often reasonable that the local modes may be individually approximated as
Gaussian. In this paper we explore the use of the transformation in (6) applied to the local
mode with the aim being to accelerate the mixing through the temperature schedule of a PT
algorithm.

Now that the transformations are localised to modes we need careful specification of the
transformation function. Suppose that there is a collection of K-mode points, μ1, . . . , μK, and
a metric, m(x, y) for x, y ∈Rd, that will be used to associate locations in the state space with a
mode. To this end, define the mode allocating function

Z(x)= arg min
h∈{1,...,K}

[m(x, μh)].

Then, with tij(·) from (6), define the sets

Aij = {x ∈Rd : Z(tij(x, μZ(x)))= Z(x)}
and the transformation

t(x, βi, βj)= tij(x, μZ(x)). (7)

Fundamentally, the set Aij is the subset of the βi-level marginal state space where the
transformation in (7) is reversible, i.e. one would remain associated with the same mode point
after the transformation. An illustrative example is given in Figure 2.

The aim is to use the transformation in a PT framework. So suppose that a temperature
swap move proposal is made between two marginal components xi and xj at respective inverse
temperatures βi and βj with βi >βj. The idea is that this swap move now utilises (7) so that the
proposed move takes the form

(x0, . . . , xi, xj, . . . , xn)→ (x0, . . . , t(xj, βj, βi), t(xi, βi, βj), . . . , xn), (8)

which to satisfy detailed balance is accepted with probability

min

(
1,
π (t(xi, βi, βj))βjπ (t(xj, βj, βi))βi

π (xi)βiπ (xj)βj
1{xi∈Aij}1{xj∈Aji}

)
. (9)

Proposition 1. Consider a Markov chain that is in stationarity with a target distribution given
by (1) on a state space X=R

(n+1)d. Let μ1, . . . , μK ∈Rd. If a temperature swap move of the
form (8) is proposed where the transformation is given by (7) and is accepted with probability
given in (9) then the chain is invariant with respect to (1).

https://doi.org/10.1017/apr.2019.35 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.35


Accelerating parallel tempering: QuanTA 807

−20 −10

0.0
0.2
0.4
0.6

0.8

−20 −10

0 10 20

0 10 20

0.0
0.2
0.4
0.6
0.8
1.0

FIGURE 2: Plots of a simple bimodal Gaussian mixture distribution at two temperature levels βi and βj.
The metric m(·, ·) that allocates locations to mode points is chosen to be the Euclidean metric on R. The

shaded regions represent Aij and Aji in the top and bottom plots, respectively.

4. Quantile tempering algorithm (QuanTA)

The aim is to utilise the transformation-aided temperature swap moves in a PT algorithm.
However, to perform the transformation, we need a collection of K centring points. Typically,
these are unknown a priori and must be estimated. There are three obvious directions to
proceed in: an involved optimisation process prior to the run of the algorithm that searches
for mode points which are then fixed therein; an adaptive scheme that learns the mode points
during the run of the algorithm; or a population Monte Carlo approach which discovers a
collection of mode points using the most recent location of the Markov chain in a way that
ensures that the Markov chain remains reversible.

Fixing the centring points prior to the run of the algorithm can be highly nonrobust since it
leaves no scope to adjust in situations when new regions of mass are found during the run of
the Markov chain. Also, it requires careful and potentially expensive precomputation.

Using adaptive techniques that ‘learn’ the best centring points are therefore preferable.
However, adaptive MCMC approaches where the proposal mechanism adapts throughout the
run of the algorithm [32], [33] requires careful design to ensure ergodicity. In contrast, the
population MCMC approach essentially allows the proposal mechanism to adapt at every
iteration without concerns about affecting the ergodicity, albeit typically at a computational
cost which can be somewhat mitigated by exploiting computer parallelism.

The algorithm presented below utilises a population MCMC approach with N ‘copies’ of
the PT approach to provide a large population of points in the state space that can be used in
an appropriate clustering procedure to obtain a collection of K centring points, suggestions for
which are given in Section 5.

4.1. The procedure

QuanTA runs the equivalent of N parallel tempering algorithm procedures in parallel with
each single procedure using the same tempering schedule. With a temperature schedule given
by �= {β0, . . . , βn}, the QuanTA approach can be seen as running a single Markov chain
on the augmented state space, (Rd)n∗N . Letting x= (x(1,0), . . . , x(1,n), x(2,0), . . . , x(N,n)), the
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invariant target distribution for the Markov chain induced by QuanTA is

πQ(x)∝
N∏

i=1

πβ0 (x(i,0))πβ1 (x(i,1)) · · · πβn (x(i,n)).

Initialisation. To initialise the QuanTA algorithm, we need to choose initial starting
values for the Markov chain components, a suitable temperature schedule (see Theorem 1
in Section 6.2 for a suggested optimality criteria for the temperature schedule), the size of N,
and suitable parameters for the chosen clustering method that will be used.

Running the chain. From the start point of the chain, QuanTA alternates between two types
of Markov chain moves.

1. Within temperature Markov chain moves that use standard localised MCMC schemes
for marginal updates of each of the x(i,j). Essentially, this is just Metropolis-within-Gibbs
MCMC and in this setting, with hugely exploitable marginal independence, this process
is highly parallelisable. Denote the πQ-invariant Markov transition kernel that performs
temperature marginal updates on all components from a current point x as P1(x, dy).

2. Temperature swap moves that propose to swap the chain locations between a
pair of adjacent temperature components. This is where QuanTA differs from the
standard PT procedure and uses the new transformation-aided temperature swap move
detailed in Section 3.2, in particular in (7). This follows a two-phase population-MCMC
update procedure.

• Phase 1. Group marginal components into two collections,

C1 =
{
x(i,j) : i= 1, . . . ,

⌊ 1
2 N
⌋

and j= 0, . . . , n
}
,

C2 =
{
x(i,j) : i= (⌊ 1

2 N
⌋+ 1

)
, . . . ,N and j= 0, . . . , n

}
.

An appropriate clustering scheme (see Section 5) is performed on C1, providing a
set of K centres {c1, . . . , cK}. To enhance the effectiveness of the transformation,
it is suggested that these cluster centre points are used as initialisation locations for
a suitable local optimisation procedure to find K mode points M1 = {μ1, . . . , μK}
of π (·) (see Theorem 2 in Section 6.2).
For each i ∈ {(	N/2
 + 1), . . . ,N}, sample l∼Unif{0, 1, . . . , n− 1} and select
the corresponding pair of adjacent temperature marginals (x(i,l), x(i,l+1)) for a tem-
perature swap move proposal utilising the transformation from (7) (which is cen-
tred on the associated point from M1). This move is accepted with probability (9).

• Phase 2. Repeat phase 1, but with the roles of C1 and C2 reversed.

Denote the πQ-invariant Markov transition kernel that implements this temperature swap
update procedure for all components using the above two-phase process by P2(x, dy).

From the initialisation point x, the Markov chain output is created by application of the
kernel compilation

(P2 ◦ Pk
1)T ,

where k is the user-chosen number of within temperature Markov chain updates between each
swap move proposal and T is the user-chosen number of iterations of the algorithm before
stopping.

Remark 1. By Proposition 1, the transformation-aided temperature swap move established in
Section 3.2 leaves the Markov chain constructed by QuanTA πQ(·) invariant. Provided that
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appropriate within-temperature MCMC moves are utilised then QuanTA establishes an
irreducible and aperiodic πQ(·) invariant Markov chain as required [42].

Remark 2. Although not made explicit in the notation above, the transformation centring
points, {μ1, . . . , μK}, are repeatedly estimated from subsets of the points in the population
of the N replicate PT schemes. As such, their values are not fixed and have flexibility to
change and adapt accordingly with the population. This is a major bonus of the population
MCMC framework for a multimodal problem, allowing powerful and robust adaptation when
new regions of mass are discovered.

5. Estimating local mode locations

The QuanTA algorithm, presented in Section 4, requires online estimation of the local mode
points as centring locations for the transformation. In this section we outline a practical scheme
that is used in the canonical simulation studies.

With a typically unknown number of modes and a population of chains, a principled
approach would be to fit a Dirichlet process mixture model, e.g. [15] and [22]. A compre-
hensive Gibbs sampling approach for this can be computationally expensive, but there are
alternative cheaper but approximate methods that are left for exploration in further work [29].

For the examples with well-separated modes that were studied here, it sufficed to use
a cheap and fast clustering scheme [13]. To this end, a K-means approach was used [11],
where although the theoretical computational complexity is NP-hard in full generality, when
in a setting with well-separated clusters, the algorithm rapidly reaches a good solution as the
problem is much easier.

The clustering procedure provides a collection of cluster centres that can be directly
used as centring points for the transformation or as very useful initialisation points for a
local optimisation method. Indeed, Theorem 2 of Section 6 shows that QuanTA can achieve
accelerated mixing through the temperature levels when the centring point is chosen as the
mode point, particularly at colder temperatures when the Gaussian approximation to the mode
becomes increasingly accurate; see, e.g. [2] and [24].

5.1. A weighted K-means clustering

Typically, the K-means algorithm assigns all points equal leverage in determining cluster
centres. A weighted K-means approach incorporates weights that can alter the leverages of
points. In the tempering setting chains at the colder states, where the modes are less disperse,
should have more leverage in determining the centres.

Weighted K means is an almost identical procedure to the K-means algorithm of [11] but
now incorporates the weights to give points leverage. For the setting of interest, each chain
location will be allocated a weight, determined by their inverse temperature value. So, for
a collection of ν chain locations x1, . . . , xν at inverse temperature levels, βx1 , . . . , βxν form
their respective weights.

The weighted K-means algorithm gives a pragmatic way of creating a plausible particle
allocation, Ŝ, in to K partitions. Denoting a partition S by S= {S1, . . . , SK}, where Sj ⊂
{x1, . . . , xν}, then the procedure aims to establish an allocation, Ŝ, such that

Ŝ= argminS

{ M∑
i=1

ν∑
j=1

1{xj∈Si}βxj ||xj −μi||2
}

.
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The weighted K-means algorithm begins with an initial set of K centres {μ1, . . . , μK}. It
then proceeds by alternating between two updating steps until point allocations do not change
(signaling a minimum of or a pre-specified number of iterations is reached); a point allocation
step, where each point x is assigned to the set Sj, where j= arg minj ||x−μj||2; a centre point
update step, where, for the new allocation, the centring points are each updated to be the
weighted mean of their respective component steps, i.e.

μi =
∑

j∈Si
xjβxj∑

j∈Si
βxj

.

The weighted K-means procedure (see, e.g. [14] and [44]) can be implemented using the
R package‘FactoClass’ by Pardo and Del Campo [27], which uses a modified version of the
K-means algorithm of Hartigan and Wong [11].

6. Theoretical underpinnings of QuanTA in high dimensions

In both QuanTA and the PT algorithms, the acceptance of temperature swap proposals
allow the transfer of hot-state mixing information to be passed through to the cold state.
The ambitiousness of the spacings between the consecutive inverse temperatures dictate the
performance of the algorithm. Similarly to the problem of tuning the RWM algorithm [35], we
seek the optimal balance between over- and under-ambitious proposals. This issue becomes
increasingly problematic with an increase in dimensionality; hence, careful scaling of the
consecutive temperature spacings is needed to prevent degeneracy of acceptance rates.

The work in [1] sought an optimal scaling result for temperature spacings in a PT algorithm.
This section takes a similar approach to derive an equivalent result for QuanTA. It will
be shown in Theorem 1 that consecutive spacings inducing swap rates of approximately
0.234 are optimal, thus giving guidance for practitioners to tune towards an optimal setup.
Complementary to this, Theorem 2 justifies the use of QuanTA outside the Gaussian setting,
showing that, under mild conditions, the transformation move allows for larger spacings in the
temperature schedule than the PT algorithm does.

6.1. Optimal scaling of QuanTA—the setup and assumptions

As the dimensionality d of the target distribution tends to infinity, the problem of selecting
temperature spacings for QuanTA is investigated. Suppose that a swap move between two
consecutive temperature levels β and β ′ = β + ε for some ε > 0 is proposed. As in [1], the
measure of the efficiency of the inverse temperature spacing will be the expected squared
jumping distance, ESJDβ , defined as

ESJDβ =Eπn [(γ − β)2], (10)

where γ = β + ε if the proposed swap is accepted and γ = β otherwise. Note the assumption
that the Markov chain has reached invariance and so the expectation is taken with respect to
the invariant distribution πn(·).

The ESJDβ is a natural quantity to consider ([38]) since maximising this would appear
to ensure that one is being sufficiently ambitious with spacings but not inducing degenerate
acceptance rates. However, it is worth noting that it is only truly justified when there is an
associated diffusion limit for the chain; see [34].

The aim is to establish the limiting behaviour of the ESJDβ as d→∞ and then optimise
this limiting form. To this end, for tractability, the form of the d-dimensional target is restricted
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to distributions of the form

π (x)∝ fd(x)=
d∏

i=1

f (xi), (11)

and to achieve a nondegenerate acceptance rate as d→∞ the spacings are necessarily scaled
as O(d−1/2), i.e.

ε = 


d1/2
,

where 
 a positive constant that one tunes to attain an optimal ESJDβ .
Furthermore, assume that the univariate marginal components f (·) are C4 and have a global

maxima at μ, i.e.
f ′(μ)= 0 and f (μ)> f (z) for all z �=μ. (12)

The point μ is the centring point for the transformation-aided temperature swap move analysed
in the forthcoming Theorem 1. Note that the result of Theorem 1 still holds even if μ is chosen
as an arbitrary point in the state space. However, the global mode point μ is the canonical
transformation centring point, as will be seen in the subsequent result in Theorem 2.

Furthermore, the marginal components f (·) are assumed to be of the form

f (x)= e−H(x) for all x ∈R, (13)

where H(x) :=− log (f (x)) is regularly varying [3], i.e. there exists an α > 0 such that, for
x> 0,

H(tx)

H(t)
→ xα as |t|→∞. (14)

This is a sufficient condition for Theorem 1 and ensures that the moments and integrals required
for the proof are all well defined. Furthermore, assume that the fourth derivatives of ( log f )(·)
are bounded, i.e. there exists an M> 0 such that

|( log f )′′′′(z)|<M for all z ∈R. (15)

This condition is sufficient for proving Theorem 1 but not necessary. The proof still works if
the condition is weakened so that, for some k≥ 4, the kth derivative of the logged density is
bounded.

Finally, for notational convenience, the following are defined, with the subscript β
indicating that the expectation is with respect to f β (·):

V(β)= 1

β2
,

I(β)= varβ [( log f )(x)],

R(β)=Eβ [(x−μ)2( log f )′′(x)− (x−μ)( log f )′(x)].

Theorem 1 below deals with a single-mode setting which is a very good approximation of
a multimodal setting with homogeneous modal structure and where the mode weights remain
stable at consecutive temperatures [40], [48]. Outside this setting other methods are needed to
stabilise the modal weights at different temperatures [41]; then the QuanTA transformation-
aided swap moves can be successfully utilised alongside such an approach.
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Since we assume only one transformation-centring point, there is a simplified form of the
acceptance probability that no longer requires the indicator functions. Denote the acceptance
probability of the QuanTA-style swap move by αβ (x, y), so

αβ (x, y)=min

(
1,

f β
′

d (g(x, β, β
′
))f βd (g( y, β

′
, β))

f β
′

d ( y)f βd (x)

)
. (16)

Then a simple calculation shows that the ESJDβ from (10) becomes

ESJDβ = ε2
Eπn [αβ (x, y)], (17)

which will be maximised with respect to 
 in the limit as d→∞.

6.2. Scaling results and interpretation

Under the setting of Section 6.1 and with �(·) denoting the CDF of a standard Gaussian,
the following optimal scaling result is derived.

Theorem 1. (Optimal scaling for the QuanTA algorithm.) Consider QuanTA targeting a
distribution π (·) satisfying (11). Assume that the marginal components f (·) satisfy (12), are
regularly varying satisfying (13) and (14), and that log f (·) satisfies (15). Assuming that
ε = 
/d1/2 for some 
 ∈R+ then in the limit as d→∞, the ESJDβ , given in (17) is maximised
when 
 is chosen to maximise

2
2�

(
− 
[V(β)/2− I(β)+ R(β)/4β]1/2

√
2

)
. (18)

Furthermore, for the optimal 
, the corresponding swap move acceptance rate induced
between two consecutive temperatures is given by 0.234 (to three significant figures).

Proof. The details of the proof of Theorem 1 are deferred to Appendix A. The strategy
comprises three key stages: establishing a Taylor series expansion of the logged swap
move acceptance ratio (i.e. the log of (16)); establishing limiting Gaussianity of this logged
acceptance ratio; and, finally, achieving a tractable form of the limiting ESJDβ which is then
optimised with respect to 
, giving rise to an associated optimal acceptance rate. �
Remark 3. In the special case that the marginal targets are Gaussian, i.e. f (x)= φ(x;μ, σ 2),
then the transformation swap move should permit arbitrarily ambitious spacings. This is
verified by observing that in this case[

1

2
V(β)− I(β)+ 1

4β
R(β)

]
= 0,

and so, with respect to 
, (18) becomes proportional to 
2 which has no finite maximal value;
thus demonstrating consistency with what is know in the Gaussian case.

Remark 4. The optimality criterion given in (18) is very similar to that derived in [1] and [34].
Indeed, both QuanTA and the PT algorithm require the same dimensionality spacing scaling,
and both are optimised when a 0.234 acceptance rate is induced. However, there will be a
difference in the behaviour of the optimal 
̂, which is where QuanTA can be shown to give
accelerated mixing versus the PT approach; see Theorem 2 below.
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Remark 5. Theorem 1 gives an explicit formula for derivation of the optimal 
̂ between
consecutive temperatures, but this is usually intractable in a real problem. However, for a
practitioner, the associated 0.234 optimal swap acceptance rate gives useful setup guidelines. In
fact, the theorem suggests a strategy for optimal setup starting with a chain at the hottest level
and tuning the spacing to successively colder temperature levels based on the swap acceptance
rate to attain consecutive swap rates close to 0.234. Indeed, using a stochastic approximation
algorithm (see [30]), Miasojedow et al. [19] took an adaptive MCMC approach [33] to do this
for the PT algorithm, but their framework also extends naturally to QuanTA.

6.2.1. Higher-order scalings at cold temperatures. For any univariate Gaussian distribution at
inverse temperature level β, I(β)= 1/(2β2). It was shown in [1] that the optimal choice for the
scaling parameter takes the form


̂∝ I (β)−1/2 ∝ β
resulting in a geometrically spaced temperature schedule.

Assuming appropriate smoothness for the marginal components f (·), for a sufficiently
cold temperature, the local mode can be well approximated by a Gaussian [43]. So, for
sufficiently cold temperatures (i.e. large β), we expect I (β)≈ 1/(2β2), thus spacings become
(approximately) O(β) (note that a rigorous derivation that I (β)≈ 1/(2β2) is contained in the
proof of Theorem 2). Defining the ‘order of the spacing with respect to the inverse temperature
β’ as the value of ζ such that the optimal spacing is O(βζ ), then the standard PT algorithm is
order 1 for sufficiently cold temperatures.

In the Gaussian setting, QuanTA exhibits ‘infinitely’ high-order behaviour since there is no
restriction on the size of the temperature spacings with regards the value of β. It is hoped that
some of this higher-order behaviour is inherited in a more general target distribution setting
when the modes can be considered to be sufficiently close to Gaussian.

It will be seen in Theorem 2 below that, under the setting of Theorem 1 but with a single
additional condition, QuanTA does exhibit higher-order behaviour than the PT algorithm at
cold temperatures.

With f (·) as in Theorem 1 (but now, without loss of generality, the mode point is at μ= 0),
define the normalised density gβ (·) as

gβ ( y)∝ f β
(
μ+ y√−β( log f )′′(μ)

)
= f β

(
y√−β( log f )′′(0)

)
.

The additional assumption required to prove the higher-order behaviour of QuanTA is that
there exists γ > 0 such that, as β→∞,

|vargβ (Y2)− 2| =O

(
1

βγ

)
. (19)

This assumption essentially guarantees the convergence to Gaussianity about the mode as
β→∞. This assumption appears to be reasonable with studies of both gamma and student-t
distributions, demonstrating a value of γ = 1; details can be found in [39].

Theorem 2. (Cold temperature scalings.) For marginal targets f (·) satisfying the conditions of
Theorem 1 and (19), for sufficiently large β,[

1

2
V(β)− I(β)+ 1

4β
R(β)

]
=O

(
1

βk

)
,
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where

• k=min{2+ γ, 3}> 2 if f is symmetric about the mode point 0,

• k=min{2+ γ, 5
2 }> 2 otherwise.

This induces an optimising value 
̂ such that


̂=O(βk/2),

showing that at the colder temperatures QuanTA permits higher-order behaviour than the
standard PT scheme which has 
̂=O(β).

Proof. Since the optimal 
 derived in Theorem 1 is given by


̂∝
[

1

2
V (β)− I (β)+ 1

4β
R(β)

]−1/2

,

the proof of Theorem 2 follows immediately if it can be shown that[
1

2
V (β)− I (β)+ 1

4β
R(β)

]
=O

(
1

βk

)
. (20)

Indeed, two key lemmata are derived in Appendix A.2: Lemma 4 establishes that 1
2 V(β)−

I(β)=O(1/βk) and Lemma 5 establishes that R(β)/4β =O(1/βk). Thus, the result in (20)
holds and the proof is complete. �
Remark 6. Theorem 2 studies the behaviour of the optimal spacings for large values of β,
where β is larger than 1. Even though the QuanTA and PT approaches use temperatures in the
range [0, 1], the result still proves insightful in many situations that QuanTA can encounter.

This is due to the arbitrary nature of the ‘β = 1’ temperature level which is a result of the
tempering being relative rather than absolute for the modes. Hence, the modes of the target
distribution of interest may exhibit a within mode structure that makes it appear that a mode
has been cooled to an inverse temperature much larger than 1.

As an example, take a Gamma(α, γ ) distribution, where, for some α > 0, γ > 0, and x> 0,

f (x)∝ xα−1e−γ x.

Then, with slight abuse of notation, f β
∗ ∼Gamma(αβ∗ − β∗ + 1, γβ∗). Suppose that the target

distribution of interest was given by π ∼ f β
∗

and one raises π to a power β < 1. Then πβ ∼
Gamma(αββ∗ − ββ∗ + 1, γββ∗). Thus, if β∗ is large and β < 1 is such that ββ∗ remains large,
then one is in the setting of Theorem 2.

Furthermore, ongoing work is hoping to develop novel methodology for sampling from
multimodal distributions that utilises temperature levels with β > 1 where necessarily β→∞
as d→∞. The results established here are directly applicable to that work.

Remark 7. The result in Theorem 2 does not imply that QuanTA is not useful outside the
Gaussian or super cold settings. The QuanTA approach will be practically useful in settings
where the mode can be well approximated by a Gaussian and thus the transformation in the
transformation-aided swap move approximately preserves the mode’s CDF. What Theorem 2
does show is that, for a large class of distributions that exhibit appropriate smoothness, QuanTA
is sensible, and is arguably the canonical approach to take at the colder temperature levels,
since it enables accelerated mixing speed through the temperature schedule.
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7. Examples of implementation

In this section we give illustrative examples for the canonical setting of a Gaussian mixture
to illustrate the potential gains of QuanTA over the standard PT approach.

The QuanTA transformation move does not solve all the issues inherent in the PT
framework. This will be highlighted with the final example in this section. In fact, Woodard
et al. [47], [48] showed that, for most ‘interesting’ examples, the mixing speed decays
exponentially slowly with dimension. Prototype approaches to navigating this problem can
be found in [39] and [41]. Also, note that the examples all focus on the setting when the
target distribution is a Gaussian mixture, which is often a good approximation to a range of
multimodal distributions. Outside the setting of Gaussian modes the transformation-aided swap
move will not be as effective since the within-mode CDF preservation transformation will only
be an approximation to preservation of the CDF.

In each of the examples given, both the new QuanTA and standard (PT) parallel schemes
will be run for comparison of performance. In all examples the following applies.

1. Both the new QuanTA and PT versions were run 10 times to ensure replicability.

2. Both the PT and QuanTA algorithms were run so that 20 000 swap moves would be
attempted. For QuanTA, this would be 20 000 swaps for each of the N individual parallel
tempering schemes in parallel of which there were N = 100 in this example. Also, all
schemes had the same within to swap move ratio (3 : 1).

3. Both versions use the same set of (geometrically generated) temperature spacings,
chosen to be overly ambitious for the PT setup but demonstrably under ambitious for
the new QuanTA scheme.

4. Also presented is the optimal temperature schedule for the PT setup generated under
the optimal acceptance rate of 0.234 for the PT algorithm suggested in [1]. This
demonstrates the extra complexity needed to produce a functioning algorithm for the
PT approach.

5. For all runs, the within temperature level proposals were made with Gaussian RWM
moves tuned to an optimal 0.234 acceptance rate (see [35]).

7.1. One-dimensional example

The target distribution given by

π (x)∝
5∑

k=1

wkφ(x ; μk, σ
2), (21)

where φ( · ;μ, σ 2) is the density function of a univariate Gaussian with mean μ and vari-
ance σ 2. In this example, σ = 0.01, the mode centres are given by (μ1, μ2, μ3, μ4, μ5)=
(− 200,−100, 0, 100, 200) and all modes are equally weighted with w1 =w2 = · · · =w5.

The temperature schedule for this example is given by a geometric schedule with an
ambitious 0.0002 common ratio for the spacings. Only three levels are used and so the
temperature schedule is given by �= {1, 0.0002, 0.00022}; see Figure 3.

In all runs all the chains were started from a start location of −200. In Figure 1, from the
introductory section, we presented two representative trace plots of the target state chain for a
run of the PT algorithm and a single scheme from QuanTA. There is a clear improvement in
the inter-modal mixing for the QuanTA.
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FIGURE 3: The (non-normalised) tempered target distributions for (21) for inverse temperatures �=
{1, 0.0002, 0.00022}, respectively.

TABLE 1: Comparison of the acceptance rates of swap moves for the PT algorithm and QuanTA targeting
the one-dimensional distribution given in (21) and setup with the ambitious inverse temperature schedule

given by �= {1, 0.0002, 0.00022}.
Swap location

1 2

PT 0.06 0.07
QuanTA 0.99 0.99

In Table 1 we give the associated acceptance rates. Clearly, the rate of transfer of mixing
information from the hot states to the cold state is significantly higher for QuanTA.

In Figure 4 we compare the running modal weight approximation for the mode centred on
200 when using the standard PT and QuanTA schemes. This used the cold state chains from 10
individual runs of the PT algorithm and 10 single schemes selected randomly from 10 separate
runs of the QuanTA algorithm.

Denoting the estimator of the kth mode’s weight by ŵk and the respective cold state chain’s
ith value as Xi,

ŵk = 1

N − B+ 1

N∑
i=B

1{ck<Xi≤Ck},

where ck and Ck are the chosen upper and lower boundary points for allocation to the kth mode,
and B is the length of the burn-in removed.

Figure 4 reveals that the QuanTA approach has a vastly improved rate of convergence; with
the PT runs still exhibiting bias from the chain initialisation locations.

An interesting comparison between the approaches is to observe how many extra temper-
ature levels would be required to make the PT scheme work optimally (i.e. with consecutive
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FIGURE 4: For the target given in (21), the running weight approximations for the mode centred on
200 with target weight w5 = 0.2 for 10 separate runs of the PT and QuanTA schemes. Left: the PT runs
showing slow and variable estimates for w5. Right: the new QuanTA scheme showing fast, unbiased

convergence to the true value for w5.

0.234 swap acceptance rates). This gives a clearer idea of the reduction in the number of
intermediate levels that can be achieved using the QuanTA.

With the same hottest state level of β = 0.00022, a geometrical inverse temperature schedule
was tuned to give a swap rate of approximately 0.234 between consecutive levels for the PT
algorithm in this example. In fact, a 0.04 geometric ratio suggested optimality for the PT
scheme. Hence, to reach the stated hottest level, seven temperatures are needed, as opposed
to the three that were evidently unambitious for QuanTA.

7.2. Twenty-dimensional example

The target distribution is a twenty-dimensional tri-modal Gaussian:

π (x)∝
3∑

k=1

wk

[ 20∏
j=1

φ(xj ;μk, σ
2)

]
. (22)

In this example, σ = 0.01, the marginal mode centres are given by (μ1, μ2, μ3)=
(− 20, 0, 20), and all modes are equally weighted with w1 =w2 =w3. The temperature
schedule for this example is derived from a geometric schedule with an ambitious 0.002
common ratio for the spacings. Only four levels are used and so the temperature schedule is
given by {1, 0.002, 0.0022, 0.0023}.

In all runs all the chains were started from a start location of (− 20, . . . ,−20). In Figure 5
we show two representative trace plots of the target state chain for a run of the PT algorithm
and QuanTA. There is a clear improvement in the inter-modal mixing for the new QuanTA
scheme. There is a stark contrast between the two algorithmic performances. The run using
the standard PT scheme entirely fails to improve the mixing of the cold chain. In contrast, the
QuanTA scheme establishes a chain that is very effective at escaping the initialising mode and
then mixes rapidly throughout the state space between the three modes.
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FIGURE 5: Trace plots of the first component of the twenty dimensional cold state chains for
representative runs of the PT (top) and new QuanTA (bottom) schemes. Note the fast inter-modal mixing
of the new QuanTA scheme, allowing rapid exploration of the target distribution. In contrast the PT

scheme never escapes the initialising mode.

TABLE 2: Comparison of the acceptance rates of swap moves for the PT algorithm and QuanTA targeting
the twenty-dimensional distribution given in (22) and setup with the ambitious inverse temperature

schedule given by {1, 0.002, 0.0022, 0.0023}.
Swap location

1 2 3

PT 0 0 0
QuanTA 0.99 0.99 0.99

The consecutive swap acceptance rates between the four levels are given in Table 2. Clearly,
there is no transfer of mixing information from the hot states to the cold state for the PT
algorithm, but there is excellent mixing in the QuanTA scheme.

The temperature schedule choice that induces a 0.234 swap acceptance rate between
consecutive temperature levels for this example using the PT algorithm indicates a geometric
schedule with a 0.58 common ratio. This is in stark contrast to the 0.002 ratio that is evidently
underambitious for QuanTA. Indeed, to reach the allocated hot state of β = 0.0023 then the PT
algorithm would need 36 temperature levels in contrast to the 4 that sufficed for QuanTA.

7.3. Five-dimensional noncanonical example

Leaving the canonical symmetric mode setting, the following example has a five-
dimensional Gaussian mixture target with even weight to the modes but with different
covariance scaling within each mode. The target distribution is given by

π (x)∝
3∑

k=1

wk

[ 5∏
j=1

φ(xj ;μk, σ
2
k )

]
. (23)

In this example, (σ1, σ2, σ3)= (0.02, 0.01, 0.015), the marginal mode centres are given by
(μ1, μ2, μ3)= (− 20, 0, 20), and all modes are equally weighted with w1 =w2 =w3.
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FIGURE 6: Trace plots of the first component of the five dimensional cold state chains for representative
runs of the PT and QuanTA schemes respectively. Note the difference in inter-modal mixing between the

QuanTA scheme and the PT scheme which struggles to escape the initialisation mode.

Although at first glimpse this does not sound like a significantly harder problem, or even
far from the canonical setting, the differing modal scalings make this a much more complex
example. This is due to the lack of preservation of modal weight through power-based temper-
ing [48]. Indeed, Tawn and Roberts [40] and Tawn et al. [41] presented a novel modification
to the auxiliary tempered targets that remain compatible with the QuanTA scheme.

The temperature schedule for this example cannot be a simple geometric schedule as in the
previous example due to the scaling indifference between the modes. By using an ambitious
geometric schedule, the clustering was very unstable early on and this often led to an inability
to establish mode centres for the run. Instead, a mixture of geometric schedules was used with
an ambitious spacing for the coldest levels and then a less ambitious spacing for the hotter
levels. For the four coldest states, an ambitious geometric schedule with 0.08 common ratio
was used. A further eight hotter levels were added using a conservative geometric schedule
with ratio 0.4. Hence, the schedule was given by

�= {1, 0.08, 0.082, 0.083, 0.49, 0.410, . . . , 0.415, 0.416}. (24)

For the QuanTA scheme, the transformation moves were used for swap moves between the
coldest seven levels and standard swap moves were used otherwise.

In Figure 6 we show two representative trace plots of the target state chain for a run of the
PT and QuanTA algorithms. There is a clear improvement in the inter-modal mixing for the
QuanTA scheme; albeit far less stark than that in the canonical one-dimensional and twenty-
dimensional examples already shown. The run using the standard PT scheme fails to explore
the state space. The QuanTA scheme establishes a chain that is able to explore the state space
but does appear to have a bit of trouble during burn-in; mixing is good therein.

The consecutive swap acceptance rates between the 12 levels are given in Table 3. Clearly,
there is very poor mixing through the four coldest states for the PT algorithm. In contrast,
the QuanTA scheme has solid swap acceptance rates through the coldest levels but, unlike the
previous examples, they are not all close to 1.
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TABLE 3: Comparison of the acceptance rates of swap moves for the PT and new QuanTA algorithms
targeting the five-dimensional distribution given in (23) and setup with the ambitious inverse temperature
schedule given in (24). Note that, for QuanTA, the reparametrised swap move was only used for swaps

in the coldest seven levels.

Swap location

1 2 3 4 5 6

PT 0.001 0.0161 0.0138 0.469 0.317 0.348
QuanTA 0.446 0.970 0.997 0.999 0.999 0.999

7 8 9 10 11 –

PT 0.328 0.334 0.359 0.324 0.327 –
QuanTA 0.285 0.285 0.285 0.285 0.302 –

This example is both positive (showing the improved mixing using the QuanTA scheme on a
hard example), but also serves as a warning for the degeneracy of both the PT and new QuanTA
schemes when using power-based tempering on a target outside of the canonical symmetric
mode setting.

7.4. The computational cost of QuanTA

It is important to analyse the computational cost of QuanTA. To be an effective algorithm,
the inferential gains of QuanTA per iteration should not be outweighed by the increase in
runtime.

The analysis uses the runs of the one-dimensional and twenty-dimensional examples given
above, using both the QuanTA and PT approaches. The algorithms were setup the same as in
the ambitious versions of the spacing schedules in each case.

The key idea is to first establish the total runtime, denoted by R, in each case. Typically, one
looks to compare the time-standardised effective sample size. In this case it is natural to take
the acceptance rate as a direct proxy for the effective sample size. This is due to the fact that
the target distributions have symmetric modes with equal weights. Hence, the acceptance rate
between consecutive temperature levels dictates the performance of the algorithm, in particular
the quality of inter-modal mixing.

To this end, taking the first level temperature swap acceptance rate, denoted by A, the runs
are compared using runtime standardised acceptance rates, i.e. A/R.

Note that in both dimensional cases, the output from QuanTA is 100 times larger due to the
use of 100 schemes running in parallel. Hence, for a standardised comparison, the time was
divided by 100. Therefore, in what follows in this section, when the runtime R of the QuanTA
approach is referred to, this means the full runtime divided by 100. The fairness of this is
discussed below.

As can be seen in Tables 4 and 5, the QuanTA approach has a longer runtime to generate
the same amount of output, as would be expected due to the added cost of clustering. Indeed,
it takes approximately 1.5 times longer to generate the ‘same amount of output’. However, the
temperature swap move acceptance rates are 16.5 and∞ times better, respectively, when using
the QuanTA approach. Using the acceptance rate as a proxy for the effective sample size, the
quantity A/R is the fundamental value for comparison. In both cases the QuanTA approach
shows a significant improvement over the PT approach.
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TABLE 4: Complexity comparisons between QuanTA and PT for the one-dimensional example.

Algorithm PT QuanTA

Runtime (seconds) 5.60 8.01
Swap rate 0.06 0.99

A/R 0.01 0.12

TABLE 5: Complexity comparisons between QuanTA and PT for the twenty-dimensional example.

Algorithm PT QuanTA

Runtime (seconds) 8.00 12.79
Swap rate 0.00 0.99

A/R 0.00 0.08

There are the following issues with the fairness of this comparison.

• Standardising the runtime of QuanTA by the number of parallel schemes is not fully fair
since it is sharing out the clustering expense between schemes.

• The spacings are too ambitious for the PT approach, meaning that the acceptance rates
are very low. For a complete analysis, one should run the PT algorithm on its optimal
temperature schedule and then use the time-standardised effective sample size from each
of the optimised algorithms.

The empirical computational studies are favourable to the QuanTA approach. This is for
a couple of examples that are canonical for QuanTA. Outside of this canonical setting the
improvements from running QuanTA will be less obvious.

8. Conclusion and further work

The prototype QuanTA approach utilises a noncentred transformation approach to
accelerate the transfer of mixing information from the rapidly mixing ‘hot’ state to aid the
inter-modal mixing in the target ‘cold’ state. Examples show that this novel algorithm has the
potential to dramatically improve the inferential gains, particularly in settings where the modes
are similar to a Gaussian in structure.

The accompanying theoretical results that are given in Section 6 show that in a generic
non-Gaussian setting the QuanTA approach can still exhibit accelerated mixing through the
temperature schedule. Although the inverse temperature spacings are generally still O(d−1/2)
there is a higher-order behaviour exhibited in the mixing for large (i.e. cold) values of
the inverse temperature β. This suggests that the QuanTA approach will be powerful for
accelerating the mixing through the colder levels of the temperature schedule for a typical
smooth target.

It is clear that there are interesting questions to be addressed and further work needed
before QuanTA can be considered practical in a real-data problem. In terms of optimising
the computational expense, it has been shown that parallelisation of the PT algorithm can
give significant practical gains [45]; by design, QuanTA is also highly parallelisible. The
procedure described in Section 4.1 has huge scope to be parallelised. This requires care since
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communication costs and synchronisation between parallel collections of the PT schemes
could negate the effectiveness of the parallelisation.

A criticism of the current clustering method used is that it requires prior specification of the
number of modes K which is likely to be unknown and would need online estimation as part
of the clustering process.

An interesting question is whether using extra cold levels (with β > 1) along with the
weighted clustering would help to aid the stability of the clustering procedure once invariance
is reached for the population. Indeed, the mixing at these auxiliary extra cold levels should
be very fast due to the QuanTA exhibiting higher-order behaviour in these modes. The
other interesting question is regarding the robustness of the method outside of Gaussian
modes, e.g. in heavier tailed modes, when the Gaussian approximation to the mode can be
poor. Consider the setting of a univariate Laplace distribution and observe that the QuanTA-
style transformation never agrees with the true CDF preserving transformation. It would be
interesting to search, both empirically and theoretically, for settings where QuanTA fails to
outperform the standard PT swap move. Some initial ideas and details of this further work can
be found in [39].

Appendix A. Proofs

In this section we give the proof details of the results in Section 6.2. Firstly, some key
notation is introduced that will be useful throughout this section.

Definition 1. Let

• B= log

(
f β
′

d (t(x,β,β
′
))f βd (t( y,β

′
,β))

f β
′

d ( y)f βd (x)

)
;

• h(x) := log ( f (x));

• k(x) := (x−μ)h′(x); and

• r(x) := (x−μ)2h′′(x).

Then define

M(β)=Eβ (h(z)),

S(β)=Eβ (k(z)),

R(β)=Eβ (r(z)− k(z)), (25)

where all expectations are with respect to the distribution f β (x)/Zβ with Zβ =
∫

f β (z) dz.

Proposition 2. Under the notation and assumptions of Theorem 1 and Definition 1, it can be
shown that

I(β) :=M′(β)= varβ (h(x)) (26)

and

S(β)=− 1

β
, (27)

which trivially gives

V(β) := S′(β)= 1

β2
.
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Proof. The proof of (26) is routine and can be found in [1]. The derivation of (27) is less
obvious using integration by parts:

S(β)=
∫

(x−μ)( log f )′(x)
f β (x)

Zβ
dx

=
∫

(x−μ)f ′(x)
f β−1(x)

Zβ
dx

=
[

(x−μ)

β

f β (x)

Zβ

]∞
−∞
−
∫

1

β

f β (x)

Zβ
dx

=−
∫

1

β

f β (x)

Zβ
dx. �

A.1. Proof of Theorem 1

In this section we derive three key results that are specific to deriving the result in
Theorem 1. Lemma 1 will establish a Taylor-expanded form of the log acceptance ratio of
a temperature swap move that will prove to be asymptotically useful. Lemma 2 will then
establish the limiting Gaussianity of this logged acceptance ratio and, finally, Lemma 3
completes the proof of Theorem 1 by establishing the optimal spacings and associated optimal
acceptance rates required.

Lemma 1. (QuanTA log-acceptance ratio.) Under the notation and assumptions of Theorem 1
and Definition 1,

B= ε
[ d∑

i=1

h(xi)− h( yi)+ 1

2
(k( yi)− k(xi))

]

+ ε2

8β

[ d∑
i=1

r(xi)− k(xi)+ r( yi)− k( yi)

]
+ (Tx + Ty),

where both Tx→ 0 and Ty→ 0 in probability as d→∞.

Proof. By taking logarithms, it is immediate that

B=
d∑

i=1

[β ′h(t(xi, β, β
′
))− βh(xi)]+

d∑
i=1

[βh(t( yi, β
′
, β))− β ′h( yi)]

=: Hβ ′
β (x)+Hβ

β ′ (y)

With the aim being to derive the asymptotic behaviour of the log-acceptance ratio, the next
step is to use Taylor expansions (in ε) to appropriate order so that the asymptotic behaviour of
B can be understood.

For notational convenience, we

• make h(t(x, β, β
′
)) explicitly dependent on ε:

αx(ε) := h(t(x, β, β
′
))= log

[
f

((
β

β + ε
)1/2

(x−μ)+μ
)]

;
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• define

dx(ε) :=
(

β

β + ε
)1/2

(x−μ)+μ.

By a Taylor series expansion in ε, for fixed x, with Taylor remainder correction term denoted
by ξx such that 0< ξx < ε,

h(g(x, β, β
′
))= αx(ε)= αx(0)+ εα′x(0)+ ε

2

2
α′′x (0)+ ε

3

6
α′′′x (ξx), (28)

where

α′x(ε)=− (x−μ)

2

β1/2

(β + ε)3/2
( log f )′(dx(ε)), (29)

α′′x (ε)= (x−μ)2

4

β

(β + ε)3
( log f )′′(dx(ε))

+ 3(x−μ)

4

β1/2

(β + ε)5/2
( log f )′(dx(ε)), (30)

α′′′x (ε)=− (x−μ)3

8

β3/2

(β + ε)9/2
( log f )′′′(dx(ε))

− 9(x−μ)2

8

β

(β + ε)4
( log f )′′(dx(ε))

− 15(x−μ)

8

β1/2

(β + ε)7/2
( log f )′(dx(ε)). (31)

As a preview to the later stages of this proof, the terms up to second order in ε dictate the
asymptotic distribution of B. However, to show that the higher-order terms ‘disappear’ in the
limit as ε→ 0, a careful analysis is required. Thus, the next step is to establish that, under the
assumptions made above, the higher-order terms converge to 0 in probability.

To this end, a careful analysis of α′′′x (·) is undertaken. Firstly, it will be shown that
|Eβ [α′′′x (ξx)]| is bounded; then application of Markov’s inequality will establish that the
higher-order terms converge to 0 in probability as d→∞. Define

ηε :=
[(

β

β + ε
)1/2

− 1

]
,

so that

dx(ε)− x=
[(

β

β + ε
)1/2

− 1

]
(x−μ) := ηε(x−μ),

which has the property that ηε→ 0 as d→∞ and |ηε | ≤ 1.
Then, with Taylor remainder correction terms denoted by ξε1 , ξ

ε
2 , and ξε3 such that 0<

|ξεk − x|< |dx(ε)− x|,

( log f )′(dx(ε))= ( log f )′(x)+ ηε(x−μ)( log f )′′(x)+ ηε
2(x−μ)2

2
( log f )′′′(x)

+ ηε
3(x−μ)3

6
( log f )′′′′(ξε1 ), (32)
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( log f )′′(dx(ε))= ( log f )′′(x)+ ηε(x−μ)( log f )′′′(x)+ ηε
2(x−μ)2

2
( log f )′′′′(ξε2 ), (33)

( log f )′′′(dx(ε))= ( log f )′′′(x)+ ηε(x−μ)( log f )′′′′(ξε3 ). (34)

Recall the assumptions (14) and (15). Substituting (32), (33), and (34) into (31), evaluating
the expectation with respect to X ∼ f β, and, for convenience, denoting |x−μ| by S, then there
exists C ∈R+ such that

|Eβ [α′′′x (ξx)]| ≤Eβ [|α′′′x (ξx)|]

≤Eβ

[
S3

8
β−3|( log f )′′′(d(ξx))| + 9S2

8
β−3|( log f )′′(d(ξx))|

+ 15S

8
β−3|( log f )′(d(ξx))|

]
≤Eβ

[
S3

8
β−3(|( log f )′′′(x)| + S|( log f )′′′′(ξξx

3 )|)

+ 9S2

8
β−3

(
|( log f )′′(x)| + S|( log f )′′′(x)| + |x|

2

2
|( log f )′′′′(ξξx

2 )|
)

+ 15S

8
β−3

(
|( log f )′(x)| + S|( log f )′′(x)| + S2

2
|( log f )′′′(x)|

+ S3

6
|( log f )′′′′(ξξx

1 )|
)]

≤C, (35)

where the first three inequalities are from the direct application of the triangle inequality (with
the second also using the boundedness of ηε); whereas the final inequality arises from both the
finiteness of expectations of the terms involving derivatives of order three or below (this is due
to the regularly varying tails of log ( f (·))) and the assumption that |( log f )′′′′(·)|<M.

Using (28), with substitution of terms from (29), (30), and (31), Hβ ′
β (x) can be expressed as

Hβ ′
β (x)=

d∑
i=1

(β + ε)[αxi(ε)− βαxi (0)]

= ε
d∑

i=1

[αxi(0)+ βα′xi
(0)]+ ε2

d∑
i=1

[
β

2
α′′xi

(0)+ α′xi
(0)

]

+ ε3
d∑

i=1

[
1

2
α′′xi

(0)+ β
6
α′′′xi

(ξxi)

]
+ ε4

d∑
i=1

1

6
α′′′xi

(ξxi).

By (35) and using the i.i.d. nature of the xi and Markov’s inequality, for all δ > 0,

δP

(∣∣∣∣ε3
d∑

i=1

[
1

2
α′′xi

(0)+ β
6
α′′′xi

(ξxi)

]∣∣∣∣> δ)<E

(∣∣∣∣ 
3

d3/2

d∑
i=1

[
1

2
α′′xi

(0)+ β
6
α′′′xi

(ξxi)

]∣∣∣∣)

≤ 
3

d1/2

[
1

2
E(|α′′xi

(0)|)+ β
6

C

]
→ 0 as d→∞.
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Thus,

ε3
d∑

i=1

[
1

2
α′′xi

(0)+ β
6
α′′′xi

(ξxi)

]
→ 0 in probability as d→∞.

By identical methodology, as d→∞,

ε4
d∑

i=1

1

6
α′′′xi

(ξxi)→ 0 in probability.

Consequently,

Hβ ′
β (x)= ε

[ d∑
i=1

h(xi)− 1

2
(xi −μ)h′(xi)

]

+ ε2

8β

[ d∑
i=1

(xi −μ)2h′′(xi)− (xi −μ)h′(xi)

]
+ Tx,

where

Tx = ε3
d∑

i=1

[
1

2
α′′xi

(0)+ β
6
α′′′xi

(ξxi)

]
+ ε4

d∑
i=1

1

6
α′′′xi

(ξxi),

with Tx→ 0 in probability as d→∞.
Now denoting h(t( y, β

′
, β)) as

αy(ε) := h(t( y, β
′
, β))= log

[
f

((
β + ε
β

)1/2

( y−μ)+μ
)]
,

the Taylor series expansion in ε, for a fixed y, with Taylor truncation term denoted by ξy such
that 0< ξy < ε is given by

h(t( y, β
′
, β))= αy(ε)= αy(0)+ εα′y(0)+ ε

2

2
α′′y (0)+ ε

3

6
αy(ξy).

By identical methodology to the above calculation in (35) for αx(·), it can be shown that there
exists Cy ∈R+ such that

|Eβ [α′′′y (ξy)]| ≤Cy.

Hence, using exactly the same methodology as for the xi above,

Hβ

β ′ (y)=−ε
[ d∑

i=1

h( yi)− 1

2
( yi −μ)h′( yi)

]

+ ε2

8β

[ d∑
i=1

( yi −μ)2h′′( yi)− ( yi −μ)h′( yi)

]
+ Ty,

where Ty→ 0 in probability as d→∞.
Using the notation from Definition 1, the desired form of B in Lemma 1 is reached. �
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Lemma 2. (Asymptotic Gaussianity of the log-acceptance ratio for QuanTA.) Under the
notation and assumptions of Theorem 1 and Definition 1, B is asymptotically Gaussian of
the form B∼̇N(−σ 2, 2, σ 2), where

σ 2 = 2
2
[

1

2
V(β)− I(β)+ 1

4β
R(β)

]
.

Proof. Recall the form of B from Lemma 1. Then, making the dimensionality dependence
explicit, write B=W(d)+ (Tx + Ty), where

W(d) := ε
[ d∑

i=1

h(xi)− h( yi)+ 1

2
(k( yj)− k(xj))

]

+ ε2

8β

[ d∑
i=1

r(xi)− k(xi)+ r( yi)− k( yi)

]
and (Tx + Ty)→ 0 in probability as d→∞. Hence, if it can be shown that W(d) converges in
distribution to a Gaussian of the form N(− c, 2c) then by Slutsky’s theorem we can conclude
that B converges in distribution to the same Gaussian as the W.

To this end, the asymptotic Gaussianity of W(d) is established. First note that, due to the
i.i.d. nature of the xi and yi respectively, by the standard central limit theorem (see, e.g. [6]) for
a sum of i.i.d. variables, asymptotic Gaussianity is immediate, where

W(d)⇒N(μW , σ
2
W ) as d→∞

and
μW = lim

d→∞E[W(d)], σ 2
W = lim

d→∞ var[W(d)].

To this end, the terms E[W(d)] and var[W(d)] are computed. We obtain

E[W(d)] := ε
[ d∑

i=1

M(β)−M(β + ε)− 1

2
(S(β)− S(β + ε))

]

+ ε2

8β

[ d∑
i=1

R(β)+ R(β + ε)

]

= ε
[ d∑

i=1

−εM′(β)+ ε
2

S′(β)

]
+ ε2

8β

[ d∑
i=1

2R(β)

]
+O(d−1/2)

→ 
2
[

1

2
V(β)− I(β)+ 1

4β
R(β)

]
as d→∞,

where the final line utilises the results in Proposition 2. Similarly,

var(W(d))→ 2
2varβ
(
h(x)− 1

2 k(x)
)

as d→∞.

Hence, by Slutsky’s theorem, B is asymptotically Gaussian such that

B∼̇N

(

2
[

1

2
V(β)− I(β)+ 1

4β
R(β)

]
, 2
2varβ

(
h(x)− 1

2
k(x)

))
. (36)
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However, this does not obviously have the form required with B∼̇N(−σ 2/2, σ 2) for some
σ 2. This form is verified with the following proposition, which completes the proof of
Lemma 2. �
Proposition 3. Under the notation and assumptions of Theorem 1 and Definition 1,


2
[

1

2
V(β)− I(β)+ 1

4β
R(β)

]
=−
2varβ

(
h(x)− 1

2
k(x)

)
. (37)

Proof. From (36), let

μ= 
2
[

1

2
V(β)− I(β)+ 1

4β
R(β)

]
(38)

and
σ 2 = 2
2varβ

(
h(x)− 1

2 k(x)
)
.

Then, by using the standard properties of variance, it is routine to show that

− σ
2

2
= 
2

[
− I(β)− 1

4
varβ (k(x))+ V(β)

]
. (39)

Consequently, equating the terms on the right-hand side of (38) and (39) shows that if the
following can be shown to hold then the required identity in (37) is validated:

1

4β
R(β)=−1

4
varβ (k(x))+ 1

2
V(β). (40)

The left-hand side (LHS) and right-hand side (RHS) of (40) will be considered separately.
The following integration by parts is well defined due to the assumption that − log ( f (·)) has
regularly varying tails. Starting with the RHS and recalling that, from (27), Eβ (k(x))=−1/β,

−1

4
varβ (k(x))+ 1

2
V(β)=−1

4
[Eβ (k(x)2)−Eβ (k(x))2]+ 1

2β2

=−1

4
Eβ (k(x)2)+ 3

4β2
.

Then, noting that ( log f )′(x) f β (x)= f ′(x) f β−1(x), and using integration by parts (by first
integrating f ′(x) f β−1(x)),

Eβ (k(x)2)=
∫

(x−μ)2[( log f )′(x)]2 f β (x)

Zβ
dx

=
[

(x−μ)2

β
( log f )′(x)

f β (x)

Zβ

]∞
−∞

− 1

β

∫
[(x−μ)2( log f )′′(x)+ 2(x−μ)( log f )′(x)]

f β (x)

Zβ
dx

= 0− 1

β
Eβ (r(x))− 2

β
Eβ (k(x))

=− 1

β
Eβ (r(x))+ 2

β2
. (41)
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Collating the above in (40) and (41), we obtain

−1

4
varβ (k(x))+ 1

2
V(β)= 1

4β
Eβ (r(x))+ 1

4β2
= 1

4β
R(β),

where the final equality simply comes from the definition of R(β) from (25). �

Lemma 3. (Optimisation of the ESJDβ .) Under the notation and assumptions of Theorem 1
and Definition 1, the ESJDβ is maximised when 
 is chosen to maximise

2
2�

(
− 
[V(β)/2− I(β)+ R(β)/4β]1/2

√
2

)
.

Furthermore, for the optimal 
, the corresponding swap move acceptance rate induced
between two consecutive temperatures is given by 0.234 (to three significant figures).

Proof. Let φ(m,σ 2) denote the density function of a Gaussian with mean m and variance σ 2,

and suppose that G∼N(− σ 2/2, σ 2). Then a routine calculation (which can be found in, e.g.
[35]) shows that

E(1∧ eG)= 2�

(
− σ

2

)
. (42)

Using the result in (42) and Lemma 2, in the limit as d→∞,

lim
d→∞ (dESJDβ )= 2
2�

(
− 
[V(β)/2− I(β)+ R(β)/4β]1/2

√
2

)
.

Substituting

u= 

[

1

2
V(β)− I(β)+ 1

4β
R(β)

]1/2

,

and then maximising with respect to u attains an optimising value u∗ that does not depend on[
1

2
V(β)− I(β)+ 1

4β
R(β)

]
.

Recalling the form of the ESJDβ from (17), it is clear that the associated acceptance rate,
denoted (ACCβ ), induced by choosing any value of u is

ACCβ =Eπn [αβ (x, y)],

which, as established above, in the limit as d→∞ is asymptotically given by

ACCβ = 2�

(
− u√

2

)
.

Now it can be shown numerically that the optimising value u∗ induces

ACCβ = 0.234 (three significant figures). �
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A.2. Proof of Theorem 2

Note that in Theorem 2 the conditions on f (·) are inherited from the conditions on f (·) from
Theorem 1. This includes the bounded fourth derivatives of log ( f ) and the existence of eighth
moments, i.e. Eβ [X8], which is due to the assumption of regularly varying tails. These will be
assumed for the following lemmata.

Lemma 4. Under the notation and assumptions of Theorems 1 and 2 and Definition 1,

1
2 V(β)− I(β)=O(β−k),

where, in general, k=min{2+ γ, 5/2}, but if h′′′(0)= 0 then k=min{2+ γ, 3}.
Proof. It has already been established that V(β)= 1/β2 for all distributions. Also, for

a Gaussian density f (·), I(β)= 1/(2β2). Since gβ (·) approaches the density of a standard
Gaussian, φ(·), as β→∞, then we expect that I(β) would approach 1/(2β2) too. Hence, a
rigorous analysis of this convergence needs to be established. Note that

I(β)= varβ [h(X)]

=
∫

(h(x)−Eβ [h(X)])2 f β (x)

Z(β)
dx

=
∫ (

h

(
y√

β(− h′′(0))

)
−Egβ

[
h

(
y√

β(− h′′(0))

)])2

gβ ( y) dy, (43)

using the change of variable, X = Y/
√
β(− h′′(0)). By Taylor expansion of h about the mode

point 0 up to fourth order,

h

(
y√

β(− h′′(0))

)
= h(0)− y2

2β
+ y3h′′′(0)

6(β(− h′′(0)))3/2
+ y4h′′′′(ξ1( y))

24(β(− h′′(0)))2
, (44)

where ξ1(·) is the truncation term for the Taylor expansion such that 0< |ξ1( y)|<
|y/√β(− h′′(0))| for all y. Using the Taylor expansion form of h and the assumption of
bounded fourth derivatives,∣∣∣∣Egβ

[
h

(
Y√

β(− h′′(0))

)
− h(0)+ Y2

2β
− Y3h′′′(0)

6(β(− h′′(0)))3/2

]∣∣∣∣
≤Egβ

[∣∣∣∣ Y4h′′′′(ξ1(Y))

24(β(− h′′(0)))2

∣∣∣∣]
≤ M

24(β(− h′′(0)))2
Egβ [Y4]

=O

(
1

β2

)
,

where Egβ [Y4]<∞ due to the assumption on the existence of moments up to the eighth
moment. Thus,

Egβ

[
h

(
Y√

β(− h′′(0))

)]
= h(0)− Egβ [Y2]

2β
+ Egβ [Y3]h′′′(0)

6(β(− h′′(0)))3/2

+ Egβ [Y4h′′′′(ξ1(Y))]

24(β(− h′′(0)))2
,
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and substituting this into (43), along with the Taylor expansion of h to the fourth order given
in (44), gives

I(β)=
∫ (

h(0)− y2

2β
+ y3h′′′(0)

6(β(− h′′(0)))3/2
+ y4h′′′′(ξ1( y))

24(β(− h′′(0)))2

−
[

h(0)+ Egβ [Y2]h′′(0)

2β(− h′′(0))
+ Egβ [Y3]h′′′(0)

6(β(− h′′(0)))3/2

+ Egβ [Y4h′′′′(ξ1(Y))]

24(β(− h′′(0)))2

])2

gβ ( y) dy

= 1

4β2

∫
(y2 −Egβ [Y2])2gβ ( y) dy

+ 2h′′′(0)

24β5/2(− h′′(0))3/2

∫
(y2 −Egβ [Y2])(y3 −Egβ [Y3])gβ ( y) dy+O

(
1

β3

)
,

which is finite and well defined due to (14) and (15). Consequently, in general,

I(β)= 1

4β2
vargβ (Y2)+O

(
1

β5/2

)
,

but in the case that h′′′(0)= 0, which indeed holds in the case that f is symmetric about the
mode point, then

I(β)= 1

2β2
vargβ (Y2)+O

(
1

β3

)
,

and so, under the key assumption given in (19),

I(β)= 1

2β2
+O

(
1

βk

)
,

where, in general, k=min{2+ γ, 5/2}, but if h′′′(0)= 0 then k=min{2+ γ, 3}, and so
1
2 V(β)− I(β)=O(1/βk). �

Lemma 5. Under the notation and assumptions of Theorems 1 and 2 and Definition 1,

1

4β
R(β)=O(β−k),

where, in general, k= 5/2, but if h′′′(0)= 0 then k= 3.

Proof. Recall that

1

4β
R(β)= 1

4β
Eβ [X2h′′(X)− Xh′(X)]

= 1

4β
Egβ

[(
Y√

β(− h′′(0))

)2

h′′
(

Y√
β(− h′′(0))

)
− Y√

β(− h′′(0))
h′
(

Y√
β(− h′′(0))

)]
. (45)
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Using Taylor’s expansion about the mode at 0,

h′
(

y√
β(− h′′(0))

)
= h′(0)+ y√

β(− h′′(0))
h′′(0)+ y2

2β(− h′′(0))
h′′′(0)

+ y3

6β3/2(− h′′(0))3/2
h′′′′(ξ2( y)),

where ξ2(·) is the truncation term for the Taylor expansion such that 0< |ξ2( y)|<
|y/√β(− h′′(0)) | for all y. Also,

h′′
(

y√
β(− h′′(0))

)
= h′′(0)+ y√

β(− h′′(0))
h′′′(0)+ y2

2β3/2(− h′′(0))3/2
h′′′′(ξ3( y)),

where ξ3(·) is the truncation term for the Taylor expansion such that 0< |ξ3( y)|<
|y/√β(− h′′(0))| for all y. Hence,

y2

2β(− h′′(0))
h′′
(

y√
β(− h′′(0))

)
− y√

β(− h′′(0))
h′
(

y√
β(− h′′(0))

)
= y3

2(β(− h′′(0)))3/2
h′′′(0)+ y4

(β(− h′′(0)))2

[
1

2
h′′′′(ξ3( y))− 1

6
h′′′′(ξ2( y))

]
.

Substituting this into the R(β)/4β term in (45),

1

4β
R(β)= 1

4β
Egβ

[
Y3

2(β(− h′′(0)))3/2
h′′′(0)

+ Y4

(β(− h′′(0)))2

[
1

2
h′′′′(ξ3( Y))− 1

6
h′′′′(ξ2( Y))

]]
= h′′′(0)

8β5/2(− h′′(0))3/2
Egβ [Y3]

+ 1

4β3(− h′′(0))2
Egβ

[
Y4
[

1

2
h′′′′(ξ3( Y))− 1

6
h′′′′(ξ2( Y))

]]
,

where
Egβ

[
Y4[ 1

2 h′′′′(ξ3(Y))− 1
6 h′′′′(ξ2(Y))

]]
<∞

due to the assumptions of boundedness of the fourth derivatives of log f (X) and the existence
of moments. Hence, in general,

1

4β
R(β)=O

(
1

β5/2

)
,

but in the case that h′′′(·)= 0, which is the case when f (·) is symmetric about the mode point 0,

1

4β
R(β)=O

(
1

β3

)
.

Consequently,
1

4β
R(β)=O

(
1

βk

)
where, in general, k= 5/2, but in the case that h′′′(0)= 0 then k= 3. �
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