
Proceedings of the Edinburgh Mathematical Society (2006) 49, 551–565 c©
DOI:10.1017/S0013091505000301 Printed in the United Kingdom

THE EXISTENCE OF ISOTROPIC MODULI SPACES

MD. SHOWKAT ALI

Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh
(msa417@hotmail.com)

(Received 9 March 2005)

Abstract A theorem on the existence of moduli spaces of compact complex isotropic submanifolds in
complex contact manifolds is established.

Keywords: contact manifold; isotropic; Legendre and Kodaira moduli spaces

2000 Mathematics subject classification: Primary 53D10; 53D30; 32G10

1. Introduction

In 1962 Kodaira [3] proved that if X ↪→ Y is a compact complex submanifold of a complex
manifold Y with normal bundle NX|Y such that H1(X, NX|Y ) = 0, then there exists a
complete analytic family {Xt ↪→ Y | t ∈ M} of compact complex submanifolds Xt

of Y with the moduli space M . The family is maximal and its moduli space M , called
the Kodaira moduli space, is an h0(X, NX|Y )-dimensional complex manifold. Kodaira’s
theorem found many applications in geometry and analysis, especially in twistor theory.
Merkulov [7] proved that if X ↪→ Y is a compact complex Legendre submanifold of a com-
plex contact manifold Y with contact line bundle L such that H1(X, LX) = 0, then there
exists a complete and maximal analytic family {Xt ↪→ Y | t ∈ M} of compact Legendre
submanifolds containing X with the moduli space M , which is an h0(X, LX)-dimensional
complex manifold. In this paper we prove that if X ↪→ Y is a compact complex isotropic
submanifold of a complex contact manifold Y with contact line bundle L such that
H1(X, LX) = H1(X, SX) = 0, where LX is the restriction of L on Y to X and SX is
a certain canonically defined vector bundle on X which is the kernel of the canonical
projection p : NX|Y → J1LX , then there exists a complete and maximal analytic family
{Xt ↪→ Y | t ∈ M} of compact isotropic submanifolds containing X with the moduli
space M , which is an h0(X, LX) + h0(X, SX)-dimensional smooth complex manifold.
There are strong indications in [8] that the moduli spaces of such families studied in
this paper will play a pivotal role in the twistor theory of G-structures with restricted
invariant torsion.

551

https://doi.org/10.1017/S0013091505000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000301


552 Md. Showkat Ali

2. Complex contact manifolds

Definition 2.1. A complex contact manifold is a pair (Y, D) consisting of a (2n + 1)-
dimensional complex manifold Y and a rank-2n holomorphic subbundle D ⊂ T Y of the
holomorphic tangent bundle to Y such that the Frobenius form

φ : D × D → T Y/D,

(v, w) → [v, w] mod D

is non-degenerate. Define the contact line bundle L := T Y/D on Y by the exact sequence

0 → D2n → T Y 2n+1 θ−→ L → 0,

where θ is the tautological projection and D = ker θ. However, we may also think of θ (in
a trivialization of L) as a line bundle-valued 1-form θ ∈ H0(Y, Ω1Y ⊗L), and so attempt
to form its exterior derivative dθ. We can easily verify that the maximal non-degeneracy
of the distribution D is equivalent to the fact that the ‘twisted’ 1-form defined above
satisfies the condition

θ ∧ (dθ)n �= 0.

3. Complex isotropic submanifolds

Definition 3.1. A compact complex p-dimensional submanifold Xp ↪→ Y 2n+1 of a
complex contact manifold Y 2n+1 is called isotropic if T X ⊂ D|X .

An isotropic submanifold of maximal possible dimension n is called a Legendre sub-
manifold. The normal bundle NX|Y of any Legendre submanifold X ↪→ Y is isomorphic
to J1LX [5], where LX = L|X , and, therefore, fits into the exact sequence

0 → Ω1X ⊗ LX → NX|Y
pr−→ LX → 0.

Definition 3.2. The bundle SX is defined to be the kernel of the canonical projection

p : NX|Y → J1LX ,

i.e. it is defined by the exact sequence

0 → SX → NX|Y → J1LX → 0.

Definition 3.3. Let X be an isotropic submanifold of a complex contact manifold
(Y, D). Let

TX⊥ = {Z ∈ D | dθ(Z, W ) = 0, ∀W ∈ TX}.

Then TX ⊆ TX⊥ and the bundle SX is defined by SX = TX⊥/TX.

Theorem 3.4. Let (Y, D) be a complex contact manifold and X ⊂ Y be an isotropic
submanifold of Y with contact line bundle L. Then there is a short exact sequence

0 → SX → NX|Y → J1LX → 0.
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Proof. Consider a particular 1-form θ that represents the contact structure. Let p ∈
X, Z ∈ TpX be a vector in the normal bundle and Q ∈ TpY . There are then two equations

f(p) = θ(Q), dθ(Z, Q) = Z(f)|p,

which uniquely determine the 1-jet on X of a function f at p.
Consider rescaling θ 	→ gθ, where g is a function on Y . If we set θ̂ = gθ and f̂ = gf ,

then we have
θ̂(Q) = gθ(Q) = gf(p) = f̂ |p

and

dθ̂(Z, Q) = (dg ∧ θ)(Z, Q) + g dθ(Z, Q)

= dg(Z)θ(Q) − dg(Q)θ(Z) + gZ(f)|p
= Z(g)f(p) − 0 + gZ(f)|p
= Z(gf)|p
= Z(f̂)|p.

(Since TpX ⊆ TpX
⊥ ⊂ D, we have Z ∈ D, so θ(Z) = 0.) Therefore, this elementary

calculation shows that the two conditions above are satisfied by gf and so we can conclude
that we have defined a map NX|Y → J1LX . Furthermore, it is clear that the kernel is
TX⊥/TX. Thus, the proof is completed. �

4. Kodaira relative deformation theory

In this section we recall some useful facts about relative deformation theory of compact
complex submanifolds of complex manifolds [6].

Let Y and M be complex manifolds and let π1 : Y × M → Y and π2 : Y × M → M

be two natural projections. An analytic family of compact submanifolds of the complex
manifold Y with moduli space M is a complex submanifold F ↪→ Y × M such that the
restriction of the projection π2 on F is a proper regular map (regularity means that the
rank of the differential of ν ≡ π2|F : F → M is equal to dim M at every point). Thus,
the family F has double fibration structure

Y
µ←− F

µ−→ M,

where µ = π1|F . For each t ∈ M we say that the compact complex submanifolds Xt :=
µ ◦ ν−1(t) ↪→ Y belong to the family F .

5. Existence of Legendre moduli spaces

Let Y be a complex contact manifold. An analytic family F ↪→ Y × M of compact sub-
manifolds of Y is called an analytic family of compact Legendre submanifolds if, for any
point t ∈ M , the corresponding subset Xt := µ ◦ ν−1(t) ↪→ Y is a Legendre submanifold.
The parameter space M is called a Legendre moduli space. In 1995, Merkulov [7] proved
the following theorem for the existence of complete Legendre moduli spaces.
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Theorem 5.1 (Merkulov [7]). Let X be a compact complex Legendre submanifold
of a complex contact manifold Y with contact line bundle L. If H1(X, LX) = 0, then there
exists a complete and maximal analytic family {Xt ↪→ Y | t ∈ M} of compact Legendre
submanifolds containing X with the moduli space M , which is an h0(X, LX)-dimensional
complex manifold.

6. Families of complex isotropic submanifolds

Let Y be a complex contact manifold. An analytic family F ↪→ Y × M of compact
submanifolds of the complex manifold Y is called an analytic family of isotropic subman-
ifolds if, for any t ∈ M , the corresponding subset Xt = µ ◦ ν−1(t) ↪→ Y is an isotropic
submanifold. We will use the notation {Xt ↪→ Y | t ∈ M} to denote an analytic family
of isotropic submanifolds.

Let X = Xt0 for some t0 ∈ M . If Xp ↪→ Y 2n+1 is an isotropic submanifold, then each
point in X has a neighbourhood U in Y such that the contact structure in a suitable
trivialization of L over U (see [2]) is

θ = dω0 +
n∑

ā=p+1

ωā dω
¯̄a +

p∑
a=1

ωa dza

and X in U is given by

ω0 = ωa = ωā = ω
¯̄a = 0.

There exists an adopted coordinate covering {Ui} of a tubular neighbourhood of X

inside Y . In view of the above fact one can always choose local coordinate functions
(ω0

i , ωa
i , ωā

i , ω¯̄a
i , za

i ) in Ui, where ā, ¯̄a = 1, . . . , n and a = 1, . . . , p such that the contact
structure in Ui is represented by

θi = dω0
i +

n∑
ā=p+1

ωā
i dω

¯̄a
i︸ ︷︷ ︸

(n−p)-terms

+
p∑

a=1

ωa
i dza

i︸ ︷︷ ︸
p-terms

and Ui ∩ X is given by

ω0
i = ωa

i = ωā
i = ω

¯̄a
i = 0

and

θi|Ui∩Uj = Aijθj |Ui∩Uj (6.1)

for some nowhere-vanishing holomorphic functions Aij . They satisfy the condition

Aik = AijAjk

on every triple intersection Ui∩Uj∩Uk. Clearly, {Aij} are glueing functions of the contact
line bundle L.
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On the intersection Ui ∩ Uj , the coordinates ωA
i := (ω0

i , ωa
i , ωā

i , ω¯̄a
i ) and za

i are holo-
morphic functions of ωB

j := (ω0
j , ωa

j , ωā
j , ω¯̄a

j ) and zb
j ,

ω0
i = f0

ij(ω
B
j , zb

j)

ωa
i = fa

ij(ω
B
j , zb

j)

ωā
i = f ā

ij(ω
B
j , zb

j)

ω
¯̄a
i = f

¯̄a
ij(ω

B
j , zb

j)

za
i = ga

ij(ω
B
j , zb

j)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇐⇒
ωA

i = fA
ij (ωB

j , zb
j),

za
i = ga

ij(ω
B
j , zb

j),

}
(6.2)

with fA
ij (0, zb

j) = 0. Equation (6.1) puts the following constraints on glueing functions:

Aij =
∂f0

ij

∂ω0
j

+
∑

b

f b
ij

∂gb
ij

∂ω0
j

+
∑

b̄

f b̄
ij

∂f
¯̄b
ij

∂ω0
j

, (6.3)

0 =
∂f0

ij

∂ωa
j

+
∑

b

f b
ij

∂gb
ij

∂ωa
j

+
∑

b̄

f b̄
ij

∂f
¯̄b
ij

∂ωa
j

, (6.4)

0 =
∂f0

ij

∂ωā
j

+
∑

b

f b
ij

∂gb
ij

∂ωā
j

+
∑

b̄

f b̄
ij

∂f
¯̄b
ij

∂ωā
j

, (6.5)

Aijω
ā
j =

∂f0
ij

∂ω¯̄a
j

+
∑

b

f b
ij

∂gb
ij

∂ω¯̄a
j

+
∑

b̄

f b̄
ij

∂f
¯̄b
ij

∂ω¯̄a
j

, (6.6)

Aijω
a
j =

∂f0
ij

∂za
j

+
∑

b

f b
ij

∂gb
ij

∂za
j

+
∑

b̄

f b̄
ij

∂f
¯̄b
ij

∂za
j

, (6.7)

which express the fact that the chosen coordinate charts Ui are glued by the contacto-
morphisms.

For any point t in a sufficiently small coordinate neighbourhood M0 ⊂ M of t0 with
coordinate functions tα, α = 1, . . . , m = dimM , the associated isotropic submanifold
Xt = µ ◦ ν−1(t) is given in the domain Ui by equations of the form [2]

ωA
i = φA

i (za
i , tα), A = 0, a, ā, ¯̄a.

Lemma 6.1. Xt is isotropic if and only if

φa
i (zi, t) = −∂φ0

i (zi, t)
∂za

i

−
n∑

b̄=p+1

φb̄
i (zi, t)

∂φ
¯̄b
i (zi, t)
∂za

i

holds.
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Proof. Let Xp ↪→ Y 2n+1 be an isotropic submanifold in a complex contact mani-
fold Y . For an arbitrary Xt, the deformation of X inside Y is given by

ω0
i = φ0

i (zi, t)

ωa
i = φa

i (zi, t)

ωā
i = φā

i (zi, t)

ω
¯̄a
i = φ

¯̄a
i (zi, t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒ ωA
i = φA

i (zi, t).

Then, {∂φA
i /∂t|0} is a global section of NX|Y . Xt is isotropic if and only if

θi = dω0
i + ωā

i dω
¯̄a
i + ωa

i dza
i

vanishes on Xt. Then

0 = θi|Xt

= dφ0
i (zi, t) + φā

i (zi, t) dφ
¯̄a
i (zi, t) + φa

i (zi, t) dza
i

=
∂φ0

i (zi, t)
∂za

i

dza
i + φā

i (zi, t)
∂φ¯̄a

∂zb
i

dzb
i + φa

i (zi, t) dza
i

=
[
φa

i (zi, t) +
∂φ0

i (zi, t)
∂za

i

+
n∑

b̄=p+1

φb̄
i (zi, t)

∂φ
¯̄b
i (zi, t)
∂za

i

]
dza

i .

Thus, we obtain

φa
i (zi, t) = −∂φ0

i (zi, t)
∂za

i

−
n∑

b̄=p+1

φb̄
i (zi, t)

∂φ
¯̄b
i (zi, t)
∂za

i

, (6.8)

where φA
i (zi, t) is a holomorphic function of za

i and t, which satisfy the boundary condi-
tion φA

i (zi, t) = 0 for t = t0. �

7. Isotropic moduli spaces: completeness and maximality

Let Y be a complex contact manifold and F ↪→ Y ×M be an analytic family of compact
complex isotropic submanifolds. The latter is also an analytic family of compact complex
submanifolds in the sense of Kodaira and thus, for each t ∈ M , there is a canonical linear
map

kt : TtM → H0(Xt, NXt|Y ).

The exact sequence

0 → SXt
→ NXt|Y → J1LXt → 0
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can be expanded as follows:

0

��
Ω1Xt ⊗ LXt

��
0 �� SXt

�� NXt|Y �� J1LXt
��

��

0

LXt

��
0

Hence, there is a canonical map represented by a diagonal arrow,

0

��
H0(Xt, Ω

1Xt ⊗ LXt
)

��
0 �� H0(Xt, SXt

) �� H0(Xt, NXt|Y ) ��

����������������
H0(Xt, J

1LXt
) ��

��

0

H0(Xt, LXt)

��
0

Thus, there is a canonical sequence of linear spaces:

0 → H0(Xt, SXt) → H0(Xt, NXt|Y ) → H0(Xt, LXt) → 0,

which is not exact, in general.

Definition 7.1. The analytic family F ↪→ Y × M of compact complex isotropic
submanifolds is complete at a point t ∈ M if the Kodaira map kt makes the induced
sequence,

0 → H0(Xt, SXt) → kt(TtM) → H0(Xt, LXt) → 0,

exact. The analytic family F ↪→ Y × M is called complete if it is complete at each point
of the moduli space.
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Lemma 7.2 (Ali [1]). If an analytic family F ↪→ Y ×M of compact complex isotropic
submanifolds is complete at a point t0 ∈ M , then there is an open neighbourhood U ⊆ M

of the point t0 such that the family F ↪→ Y × M is complete at all points t ∈ U .

Definition 7.3. An analytic family F ↪→ Y × M of compact complex isotropic sub-
manifolds is maximal at a point t0 ∈ M if, for any other analytic family F̃ ↪→ Y × M̃

of compact complex isotropic submanifolds such that µ ◦ ν−1(t0) = µ̃ ◦ ν̃−1(t̃0) for a
point t̃0 ∈ M̃ , there exists a neighbourhood Ũ ⊂ M̃ of t̃0 and a holomorphic map
f : Ũ → M such that f(t̃0) = t0 and µ̃ ◦ ν̃−1(t̃′) = µ ◦ ν−1(f(t̃′)) for each t̃′ ∈ Ũ . The
family F ↪→ Y × M is called maximal if it is maximal at each point t in the moduli
space M .

Lemma 7.4 (Ali [1]). If an analytic family of compact complex isotropic submani-
folds F ↪→ Y × M is complete at a point t0 ∈ M , then it is maximal at the point t0.

8. Existence theorem

Theorem 8.1. If X ↪→ Y is a compact complex isotropic submanifold in a complex
contact manifold Y , then its normal bundle NX|Y fits into an extension

0 → SX → NX|Y → J1LX → 0.

If H1(X, LX) = H1(X, SX) = 0, then there exists a complete and maximal analytic fam-
ily {Xt ↪→ Y | t ∈ M} of isotropic submanifolds such that

(i) Xt0 = X for some t0 ∈ M ;

(ii) the moduli space M is smooth;

(iii) dimM = h0(X, LX) + h0(X, SX);

(iv) the tangent space TtM , t ∈ M , fits into the extension

0 → H0(Xt, SXt) → kt(TtM) → H0(Xt, LXt) → 0.

Proof. Let (ω0
i , ωa

i , ωā
i , ω¯̄a

i , za
i ) be a coordinate system on Y that is adapted to

the isotropic character of the embedding X ↪→ Y as described in § 6. Assume that
{Xt ↪→ Y | t ∈ M} is a family of compact complex isotropic submanifolds in the com-
plex contact manifold Y . According to § 6, such a family can be described by φ0

i (zi, t),
φa

i (zi, t), φā
i (zi, t), φ¯̄a

i (zi, t), which solve the equations in Ui ∩ Uj :

φ0
i (zi, t) = f0

ij(φ
0
j (zj , t), φa

j (zj , t), φā
j (zj , t), φ

¯̄a
j (zj , t), zj),

φa
i (zi, t) = fa

ij(φ
0
j (zj , t), φa

j (zj , t), φā
j (zj , t), φ

¯̄a
j (zj , t), zj),

φā
i (zi, t) = f ā

ij(φ
0
j (zj , t), φa

j (zj , t), φā
j (zj , t), φ

¯̄a
j (zj , t), zj),

φ
¯̄a
i (zi, t) = f

¯̄a
ij(φ

0
j (zj , t), φa

j (zj , t), φā
j (zj , t), φ

¯̄a
j (zj , t), zj),

za
i = ga

ij(φ
0
j (zj , t), φa

j (zj , t), φā
j (zj , t), φ

¯̄a
j (zj , t), zj),
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and equation (6.8). We know that NX|Y fits into a diagram:

0

��
Ω1X ⊗ LX

��
0 �� SX

�� NX|Y
p �� J1LX

��

��

0

LXt

��
0

There exists a canonical morphism of sheaves of abelian groups, α : LX → J1LX , which,
in our local coordinates, is given explicitly by

{
φ0

i (zi, t)
}

→

⎧⎪⎨
⎪⎩

φ0
i (zi, t)

−∂φ0
i (zi, t)
∂za

i

⎫⎪⎬
⎪⎭ .

Define a subsheaf of abelian groups in the sheaves NX|Y as ÑX|Y := p−1(α(LX)),
where p : NX|Y → J1LX is the canonical epimorphism. By construction, ÑX|Y fits into
an exact sequence:

0 → SX → ÑX|Y → LX → 0.

The long exact sequence associated with the sequence above gives

0 → H0(X, SX) → H0(X, ÑX|Y ) → H0(X, LX) → H1(X, SX) → · · · .

By assumption, H1(X, SX) = 0. Hence, we have an exact sequence of vector spaces,

0 → H0(X, SX) → H0(X, ÑX|Y ) → H0(X, LX) → 0,

implying that

dim H0(X, ÑX|Y ) = dimH0(X, SX) + dimH0(X, LX) := m.

Let θα, α = 1, . . . , m, be a basis of the global sections of ÑX|Y . In our coordinate system,
each θα can be represented by a 0-cocycle,

θα ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ0
αi

−∂θ0
αi

∂za
i

θā
αi

θ¯̄a
αi

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
{

θA
αi

}
, A = 0, a, ā, ¯̄a.
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In Ui ∩ Uj , we have
θA

αi(z) = FA
ijB(z)θB

βj(z), z = (0, zi), (8.1)

where the matrix-valued functions are given by

FA
ijB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aij |X 0 0 0

∂fa
ij

∂ω0
j

∣∣∣∣
X

∂fa
ij

∂ωb
j

∣∣∣∣
X

0 0

∂f ā
ij

∂ω0
j

∣∣∣∣
X

∂f ā
ij

∂ωb
j

∣∣∣∣
X

∂f ā
ij

∂ωb̄
j

|X
∂f ā

ij

∂ω
¯̄b
j

∣∣∣∣
X

∂f ¯̄a
ij

∂ω0
j

∣∣∣∣
X

∂f ¯̄a
ij

∂ωb
j

∣∣∣∣
X

∂f
¯̄b
ij

∂ωb̄
j

|X
∂f

¯̄b
ij

∂ω
¯̄b
j

∣∣∣∣
X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Define

φA
i (zi, t) =

⎡
⎢⎢⎢⎢⎣

φ0
i (zi, t)

φa
i (zi, t)

φā
i (zi, t)

φ¯̄a
i (zi, t)

⎤
⎥⎥⎥⎥⎦ ,

where equation (6.8) holds. Let ε be a small positive number. In order to prove the-
orem 8.1, we must find the holomorphic functions φA

i (zi, t) in zi = (z1
i , . . . , zn

i ) and in
t = (t1, . . . , tm), |zi| < 1, |t| < ε, with |φA

i (zi, t)| < 1 such that

φA
i (ga

ij(φ
B
j (zj , t), zj), t) = fA

ij (φB
j (zj , t), zj) (8.2)

where A = 0, a, ā, ¯̄a, equation (6.8) and the boundary conditions

φA
i (zi, 0) = 0 (8.3)

and
∂φA

i (zi, t)
∂tα

∣∣∣∣
t=0

= θA
αi(z), z = (0, zi), (8.4)

are satisfied. If we succeed in solving all these equations for the functions {φA
i (zi, t)},

which are holomorphic in t in some neighbourhood U ⊂ Cq of the origin, then the
boundary conditions will guarantee that the resulting analytic family F ↪→ Y × U is
complete at t = 0 and, hence, by Lemmas 7.2 and 7.4, is complete and maximal in some
neighbourhood M ⊆ U of the origin. Therefore, all we need to prove the theorem is to
solve equations (8.2)–(8.4). We shall do this in three steps.

Step 1 (simplification of the basic system of equations). Let us first show that
it is sufficient to solve only those equations of system (8.2), corresponding to A = 0, ā, ¯̄a,
which the holomorphic functions {φA

i (zi, t)} satisfy, on overlaps X ∩ Ui ∩ Uj . Then,
denoting

Aa
b :=

[ n∑
A=0

∂ga
ij

∂ωA
j

∂φA
j

∂zb
j

+
∂ga

ij

∂zb
j

]∣∣∣∣
ωA

j =φA
j (zj ,t)
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and using equations (6.3)–(6.7), we obtain (see [1, pp. 65, 66])

n∑
a=1

∂φ0
i

∂za
i

Aa
b =

[ n∑
a=1

∂φ0
i

∂za
i

n∑
A=0

∂ga
ij

∂ωA
j

∂φA
j

∂zb
j

+
∂ga

ij

∂zb
j

]∣∣∣∣
ωA

j =φA
j (zj ,t)

=
[ n∑

A=0

∂f0
ij

∂ωA
j

∂φA
j

∂zb
j

+
∂f0

ij

∂zb
j

]∣∣∣∣
ωA

j =φA
j (zj ,t)

= −
∑

c

fc
ijA

c
b −

∑
c̄

f c̄
ij

∂f ¯̄c
ij

∂za
i

Aa
b ,

which implies that
n∑

a=1

(
∂φ0

i

∂za
i

+
∑

c̄

f c̄
ij

∂f ¯̄c
ij

∂za
i

)
Aa

b = −
n∑

c=1

fc
ijA

c
b. (8.5)

Since the Jacobian of the coordinate transformation

det
∂(ω0

i , ωa
i , ωā

i , ω¯̄a
i , za

i )

∂(ω0
j , ωb

j , ω
b̄
j , ω

¯̄b
j , z

b
j)

∣∣∣∣
X

=
∂f0

ij

∂ω0
j

∣∣∣∣
X

det
(

∂fa
ij

∂ωb
j

)∣∣∣∣
X

det
(

∂f ā
ij

∂ωb̄
j

)∣∣∣∣
X

det
(

∂f ¯̄a
ij

∂ω
¯̄b
ij

)∣∣∣∣
X

det(Aa
b )|t=0

is nowhere zero on X, the matrix Aa
b is non-degenerate at t = 0 and hence is non-

degenerate for all t in some small neighbourhood U ′ of the zero in Cm. Equation (8.5)
then implies that(

−∂φ0
i

∂za
i

−
∑

ā

f ā
ij

∂f ¯̄a
ij

∂za
i

)∣∣∣∣
zi=gij(φB

j (zj ,t),zj)
= fa

ij |ωA
j =φA

j (zj ,t),

i.e. that equation (8.2) with A = a is automatically satisfied. Thus, we must solve equa-
tions (8.2) for A = 0, ā, ¯̄a with boundary conditions (8.3), (8.4).

Step 2 (existence of formal solutions). In what follows we write the power-series
expansion of an arbitrary holomorphic function P (t) in t1, . . . , tm, defined on a neigh-
bourhood of the origin, in the form

P (t) = P0(t) + P1(t) + · · · + Pq(t) + · · · ,

where each term Pq(t) denotes a homogeneous polynomial of degree q in t1, . . . , tm, and
denote by P [q](t) the polynomial

P [q](t) = P0(t) + P1(t) + · · · + Pq(t).

If Q(t) is another holomorphic function in t, we write P (t)
q≡ Q(t) if P [q](t) = Q[q](t).

Now we expand each component φA
i (zi, t) of φi(zi, t) into a power series

φA
i (zi, t) = φA

i|1(zi, t) + · · · + φA
i|q(zi, t) + · · ·
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in t1, . . . , tm, and write

φA
i|q(zi, t) = (φ1

i|q(zi, t), . . . , φA
i|q(zi, t), . . . , φ

p
i|q(zi, t)),

φ
A[q]
i (zi, t) = φA

i|1(zi, t) + · · · + φA
i|q(zi, t).

The equality (8.2) is then reduced to the following system of congruences:

φ
A[q]
i (ga

ij(φ
B[q]
j (zj , t), zj), t)

q≡ fA
ij (φB[q]

j (zj , t), zj), q = 1, 2, 3, . . . . (8.6)

We note that the congruence (8.6)1 is equivalent to

φA
i|1(zi, t) = FA

ijB(z) . φB
j|1(zj , t), z = (0, zi) = (0, zj).

First, we shall construct the polynomials φ
A[q]
i (zi, t) by induction on q. In view of the

boundary conditions (8.3), (8.4), we define

φA
i|1(zi, t) =

∑
α

θA
αi(z)tα.

It is clear by (8.1) that the linear forms φA
i|1(zi, t), i ∈ I, satisfy (8.6)1.

Assume that the polynomials φ
A[q]
i (zi, t), i ∈ I, satisfying (8.6)q are already determined

for an integer q � 1. For the sake of simplicity we write

φ
A[q]
j (t) = φ

A[q]
j (zj , t),

fA
ij (ωB

j ) = fA
ij (ωB

j , zj),

fA
kj(ω

B
j ) = fA

kj(ω
B
j , zj),

ga
ij(ω

B
j ) = ga

ij(ω
B
j , zj),

...

and we set

ψA
ij(zj , t)

q+1
= φ

A[q]
i (zi, t)|za

i =ga
ij(φ

B[q]
j (zj ,t),zj)

− fA
ij (ωB

j , zj)|ωB
j =φ

B[q]
j (zj ,t). (8.7)

Note that ψA
ij(zj , t) is a homogeneous polynomial of degree q + 1 in t1, . . . , tm whose

coefficients are vector-valued holomorphic functions of zj , |zj | < 1, |gij(0, zj)| < 1, and
that

ψA
ij(zj , t)

q+1≡ φ
A[q]
i (gij(φ

B[q]
j (t)), t) − fA

ij (φB[q]
j (t)). (8.8)

We define
ψA

ij(z, t) = ψA
ij(zj , t) for z = (0, zj) ∈ Ui ∩ Uj .

We have the equality [1]

ψA
ij(z, t) = ψA

ik(z, t) + FA
ikB(z) . ψB

kj(z, t) for z ∈ Ui ∩ Uj ∩ Uk. (8.9)
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We now have to prove that the 1-cocycle {ψA
ij(zi, t)} takes values in ÑX|Y rather than

in NX|Y . By definition, we obtain

ψ0
ij(zj , t)

q+1
= φ

0[q]
i (zi, t)|za

i =ga
ij(φ

B[q]
j (zj ,t),zj)

− f0
ij(ω

B
j , zj)|ωB

j =φ
B[q]
j (zj ,t) (8.10)

and

ψa
ij(zj , t)

q+1
= φ

a[q]
i (zi, t)|za

i =ga
ij(φ

B[q]
j (zj ,t),zj)

− fa
ij(ω

B
j , zj)|ωB

j =φ
B[q]
j (zj ,t). (8.11)

Then {ψA
ij(zj , t)} represents a cohomology class in H1(X, ÑX|Y ) if and only if

ψa
ij(zj , t) = −

∂ψ0
ij(zj , t)
∂zb

j

(A−1)b
a

or

∂ψ0
ij(zj , t)
∂zb

j

= −
∑

a

ψa
ij(zj , t)Aa

b .

To prove this, differentiate (8.10) with respect to zb
j , and using equations (6.3)–(6.7) and

(8.11) with Lemma 6.1, we obtain (see [1])

∂ψ0
ij

∂zb
j

=
∂φ

0[q]
i (zi, t)
∂za

i

∣∣∣∣
za

i =ga
ij(φ

B[q]
j (zj ,t),zj)

(
∂ga

ij

∂ωA
j

∂φA
j

∂zb
j

+
∂ga

ij

∂zb
j

)

−
∂f0

ij

∂ωB
j

∣∣∣∣
ωB

j =φ
B[q]
j (zj ,t)

∂φ
B[q]
j

∂zb
j

−
∂f0

ij

∂zb
j

∣∣∣∣
ωB

j =φ
B[q]
j (zj ,t)

= −φ
a[q]
i Aa

b −
∑

b̄

φ
b̄[q]
i

∂φ
¯̄b[q]
i

∂za
i

Aa
b +

∑
a

fa
ij

∣∣∣∣
ωB

j =φ
B[q]
j (zj ,t)

Aa
b +

∑
b̄

φ
b̄[q]
i

∂φ
¯̄b[q]
i

∂za
i

Aa
b

= −
∑

a

ψa
ij(zj , t)Aa

b .

Hence,
∂ψ0

ij(zj , t)
∂zb

j

= −
∑

a

ψa
ij(zj , t)Aa

b .

From the exact sequence
0 → SX → ÑX|Y → LX → 0,

it follows that

· · · → H1(X, SX) → H1(X, ÑX|Y ) → H1(X, LX) → · · ·

as H1(X, SX) = H1(X, LX) = 0, and hence we get H1(X, ÑX|Y ) = 0. Therefore, there
exists a collection {φA

i|q+1(z, t)} of homogeneous polynomials φA
i|q+1(z, t) of degree q + 1

in t1, . . . , tm, whose coefficients are holomorphic functions of z defined on Ui if we take
values in ÑX|Y such that

ψA
ij(z, t) = FA

ijB(z)φB
j|q+1(z, t) − φA

i|q+1(z, t) for z ∈ Ui ∩ Uj . (8.12)
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Considering the coefficients of φA
i|q+1(z, t) as functions of the local coordinate zi of z, we

write φA
i|q+1(zi, t) for φA

i|q+1(z, t). The formula (8.12) can then be written in the form

ψA
ij(zj , t) = FA

ijB(z)φB
j|q+1(zj , t) − φA

i|q+1(gij(0, zj), t). (8.13)

We now define

φ
A[q+1]
i (zi, t) = φ

A[q]
i (zi, t) + φA

i|q+1(zi, t), i ∈ I.

On writing φ
A[q+1]
j (t) for φ

A[q]
j (zj , t), we then have

φ
A[q+1]
i (gij(φ

B[q+1]
j (t)), t)

q+1≡ φ
A[q]
i (gij(φ

B[q]
j (t)), t) + φA

i|q+1(gij(0, zj), t),

fA
ij (φB[q+1]

j (t))
q+1≡ fA

ij (φB[q]
j (t)) + FA

ijB(z)φB
j|q+1(zj , t).

Consequently, from (8.8) and (8.9), we obtain the congruence

φ
A[q+1]
i (gij(φ

B[q+1]
j (t)), t)

q+1≡ fA
ij (φB[q+1]

j (t)).

This completes our inductive construction of the polynomials φ
A[q]
i (zi, t), i ∈ I, satisfy-

ing (8.6)q. Thus, setting

φA
i (zi, t) = φA

i|1(zi, t) + · · · + φA
i|q(zi, t) + · · · ,

we obtain a formal power series φA
i (zi, t), i ∈ I, in t1, . . . , tm, whose coefficients are

vector-valued holomorphic functions of zi, |zi| < 1, which satisfies equations (8.2)–(8.4).

Step 3 (convergence). There is an arbitrariness involved in the construction of the
formal power series φA

i (zi, t). For each q � 1, the 0-cochain {φA
i|q+1(zi, t)}, whose image

under the coboundary map is the 1-cocycle {ψA
ij(zj , t)}, is defined up to the addition

of a global holomorphic section of ÑX|Y over X. We now want to use this freedom to
ensure convergence of the formal constructions. The idea is to estimate each holomorphic
function involved in the construction of φA

i (zi, t) and show that, under appropriate choices
of {φA

i|q+1(zi, t)}, q = 1, 2, . . . , all the resulting power series {φA
i (zi, t)} are majorities by

an obviously convergent series

A(t) =
a

16b

∞∑
n=1

bn

n2 (t1 + t2 + · · · + tm)n,

where a and b are some positive constants. Fortunately, what really counts at this stage
is the compactness of X and the analyticity of all functions involved in the construction.
Therefore, all the estimates obtained by Kodaira [4] carry over verbatim to our case. We
conclude that polynomials φA

i|q+1(zi, t) can be chosen in such a way that the power series
φA

i (zi, t) converges for |t| < ε, where ε is some positive number. This completes the proof
of Theorem 8.1. �
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Example 8.2. Let Y be a five-dimensional complex projective space CP5 with con-
tact structure coming from some non-degenerate skew symmetric product ω on C6. The
contact line bundle L of such a structure is O(2). Let X = CP1 be an isotropic com-
plex projective line in Y such that LX = OX(2). The normal bundle of X ↪→ Y is
NX|Y = C4 ⊗ OX(1). Since J1LX = C2 ⊗ OX(1), the exact sequence,

0 → SX → NX|Y → J1LX → 0,

implies that SX � C2 ⊗ OX(1). As H1(X, LX) = H1(X, SX) = 0, Theorem 8.1 then
ensures that there is a (3 + 4) = 7-dimensional moduli space M of deformations of X in
the class of isotropic submanifolds.

In fact, X is a complex projective line, linearly embedded in CP5 in the usual way. Non-
projectively, this corresponds to a 2-plane in C6, and the condition that CP1 is isotropic
with respect to the contact structure translates into the condition that the 2-plane is
isotropic with respect to the symplectic form ω.

Let us consider first the linear deformations of X. These correspond to a subset of the
Grassmannian of all 2-planes in C6 which has dimension 2(6 − 2) = 8. We may embed
this Grassmannian in P(∧2C6) = CP14 by the Plücker embedding. The isotropic 2-planes
then correspond to a hyperplane section of the image of this Grassmannian, since the
symplectic form ω is a linear functional on ∧2C6. The space of isotropic 2-planes therefore
has complex dimension 7. Therefore, we can identify the moduli space M of deformations
of X with the isotropic Grassmannian of 2-planes in C6.
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