MULTIPLIER HERMITIAN STRUCTURES ON KÄHLER MANIFOLDS

TOSHIKI MABUCHI

Abstract. The main purpose of this paper is to make a systematic study of a special type of conformally Kähler manifolds, called multiplier Hermitian manifolds, which we often encounter in the study of Hamiltonian holomorphic group actions on Kähler manifolds. In particular, we obtain a multiplier Hermitian analogue of Myers' Theorem on diameter bounds with an application (see [M5]) to the uniquness up to biholomorphisms of the "Kähler-Einstein metrics" in the sense of [M1] on a given Fano manifold with nonvanishing Futaki character.

§1. Introduction

For a connected complete Kähler manifold (M, ω_0) of complex dimension n, let \mathcal{K} denote the set of all Kähler forms on M expressible as

(1.1)
$$\omega_{\varphi} := \omega_0 + \sqrt{-1} \,\partial \bar{\partial} \varphi$$

for some real-valued smooth function $\varphi \in C^{\infty}(M)_{\mathbb{R}}$ on M. In this paper, we fix once for all a holomorphic vector field $X \neq 0$ on M, and M is assumed to be compact except in Section 4 and in Theorem B below. Put

$$\mathcal{K}_X := \{ \omega \in \mathcal{K} \; ; L_{X_{\mathbb{D}}} \omega = 0 \},$$

where $X_{\mathbb{R}} := X + \bar{X}$ denotes the real vector field on M associated to the holomorphic vector field X. Let \mathcal{H}_X denote the set of all $X_{\mathbb{R}}$ -invariant functions φ in $C^{\infty}(M)_{\mathbb{R}}$ such that ω_{φ} is in \mathcal{K}_X . Let $\mathcal{K}_X \neq \emptyset$, so that we may assume without loss of generality that

$$\omega_0 \in \mathcal{K}_X$$
.

In terms of a system (z^1, z^2, \dots, z^n) of holomorphic local coordinates on M above, we write each Kähler form ω in \mathcal{K}_X as

$$\omega = \sqrt{-1} \sum_{\alpha,\beta} g_{\alpha\bar{\beta}} \, dz^{\alpha} \wedge dz^{\bar{\beta}}.$$

Received July 3, 2000.

²⁰⁰⁰ Mathematics Subject Classification: Primary 53C55; Secondary 14J45, 14J50, 32J25.

Throughout this paper, we assume that X is Hamiltonian, i.e., to each $\omega \in \mathcal{K}_X$, we can associate a function $u_\omega \in C^\infty(M)_\mathbb{R}$ such that X is expressible as

$$\operatorname{grad}_{\omega}^{\mathbb{C}} u_{\omega} := \frac{1}{\sqrt{-1}} \sum_{\alpha,\beta} g^{\bar{\beta}\alpha} \frac{\partial u_{\omega}}{\partial z^{\bar{\beta}}} \frac{\partial}{\partial z^{\alpha}}.$$

Then u_{ω} is an $X_{\mathbb{R}}$ -invariant function, and the image I_X of the function u_{ω} on M is an interval in \mathbb{R} . For an arbitrary nonconstant real-valued smooth function

$$\sigma: I_X \longrightarrow \mathbb{R}, \quad s \longmapsto \sigma(s),$$

we define functions $\dot{\sigma} = \dot{\sigma}(s)$ and $\ddot{\sigma} = \ddot{\sigma}(s)$ on I_X as the derivatives $\dot{\sigma} := (\partial/\partial s)\sigma$ and $\ddot{\sigma} := (\partial^2/\partial s^2)\sigma$, respectively. We further define a function $\psi_{\omega} \in C^{\infty}(M)_{\mathbb{R}}$ by

$$(1.2) \psi_{\omega} = \sigma(u_{\omega}),$$

which is obviously $X_{\mathbb{R}}$ -invariant. The function σ is said to be *strictly convex* or *weakly convex*, according as $\ddot{\sigma} > 0$ on I_X or $\ddot{\sigma} \geq 0$ on I_X . By abuse of terminology, σ is said to be *convex* if either σ is strictly convex or σ satisfies $\dot{\sigma} \leq 0 \leq \ddot{\sigma}$ on I_X .

Let $G := \operatorname{Aut}^0(M)$ be the identity component of the group of all holomorphic automorphisms of M. Let

Q: closure in G of the real one-parameter group $\{\exp(tX_{\mathbb{R}}) ; t \in \mathbb{R}\}.$

Under the assumption of the compactness of M, we require the function u_{ω} to satisfy the equality $\int_{M} u_{\omega} \omega^{n} = 0$, and applying the theory of moment maps to the action on M of the compact torus Q, we obtain

$$I_X = [\alpha_X, \beta_X],$$

where both $\alpha_X := \min_M u_\omega$ and $\beta_X := \max_M u_\omega$ are independent of the choice of ω in \mathcal{K}_X . To each $\omega \in \mathcal{K}_X$, we associate the corresponding Laplacian \square_ω of the Kähler manifold (M,ω) , and define an operator $\tilde{\square}_\omega$ on $C^\infty(M)_\mathbb{R}$ by

$$(1.3) \quad \tilde{\Box}_{\omega} := \sum_{\alpha,\beta} g^{\bar{\beta}\alpha} \frac{\partial^2}{\partial z^{\alpha} \partial z^{\bar{\beta}}} - \sum_{\alpha,\beta} g^{\bar{\beta}\alpha} \frac{\partial \psi_{\omega}}{\partial z^{\alpha}} \frac{\partial}{\partial z^{\bar{\beta}}} = \Box_{\omega} + \sqrt{-1} \dot{\sigma}(u_{\omega}) \bar{X}.$$

The natural connection, induced by ω , on the holomorphic tangent bundle TM of M is denoted by ∇ . To each ω in \mathcal{K}_X , we associate a conformally Kähler metric $\tilde{\omega}$ by

(1.4)
$$\tilde{\omega} := \omega \exp(-\psi_{\omega}/n),$$

which is called a multiplier Hermitian metric (of type σ). Here, a Hermitian form and the corresponding Hermitian metric are used interchangeably. The Hermitian metric $\tilde{\omega}$ naturally induces a Hermitian connection $\tilde{\nabla}: \mathcal{A}^0(TM) \to \mathcal{A}^1(TM)$ such that

$$\tilde{\nabla} = \nabla - \frac{\partial \psi_{\omega}}{n} \operatorname{id}_{TM},$$

where $\mathcal{A}^q(TM)$ denotes the sheaf of germs of TM-valued C^{∞} q-forms on M. By abuse of terminology, the Ricci form of $(\tilde{\omega}, \tilde{\nabla})$ is denoted by $\operatorname{Ric}^{\sigma}(\omega)$. Then (see [L2], [K1], [Mat])

(1.5)
$$\operatorname{Ric}^{\sigma}(\omega) = \sqrt{-1}\,\bar{\partial}\partial\log(\tilde{\omega}^n) = \operatorname{Ric}(\omega) + \sqrt{-1}\,\partial\bar{\partial}\psi_{\omega},$$

where we set $\operatorname{Ric}(\omega) := \sqrt{-1} \, \bar{\partial} \partial \log(\omega^n)$. For each nonnegative real number ν , let $\mathcal{K}_X^{(\nu)}$ denote the set of all $\omega \in \mathcal{K}_X$ such that

$$\operatorname{Ric}^{\sigma}(\omega) \geq \nu \omega$$
,

i.e., $\operatorname{Ric}^{\sigma}(\omega) - \nu \omega$ is a positive semi-definite (1,1)-form on M. Now for $\varphi \in \mathcal{H}_X$, we set $\operatorname{Osc}(\varphi) := \max_M \varphi - \min_M \varphi$. Consider the set \mathcal{S}^{σ} of all ω in \mathcal{K}_X such that

$$\operatorname{Ric}^{\sigma}(\omega) = t\omega + (1-t)\omega_0$$
 for some $t \in [0,1]$.

Let $\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma}$ be the analogue of Aubin's functional as in Appendix 1. The main purpose of this paper is to prove the following theorems (see Sections 3, 4 and 5):

THEOREM A. (a) If $\dot{\sigma} \leq 0 \leq \ddot{\sigma}$ on I_X , then for each $\nu > 0$, we have positive real constants C_0 , C_1 , C_1' , C_1'' , C_2 independent of the choice of the pair (ω_{φ}, ν) such that

(1.6)
$$\operatorname{Osc}(\varphi) \leq C_0(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega_0, \omega_{\varphi}) + \frac{C(\nu)}{\nu}$$

for all ω_{φ} in $\mathcal{K}_{X}^{(\nu)} \cap \mathcal{S}^{\sigma}$, where $C(\nu) := C_1 + C_1'\nu + C_1''e^{C_2/\nu}$.

(b) If σ is strictly convex, then for each $\nu > 0$, there exist positive real constants C_0 , C_1 , C_1' independent of the choice of the pair (ω_{φ}, ν) such that, by setting $C(\nu) := C_1 + C_1'\nu$, we have the inequality (1.6) for all ω_{φ} in $\mathcal{K}_X^{(\nu)}$.

THEOREM B. Let $\nu > 0$ and $\omega \in \mathcal{K}_X^{(\nu)}$. Furthermore, let (X, σ) be of Hamiltonian type (cf. Definition 4.1), where σ is weakly convex. Let p be an arbitrary point in $\operatorname{zero}(X)$ or in M, according as (4.1.1) or (4.1.2) holds (cf. Section 4). Put $c := \sup_{s \in I_X} |\sigma(s)|$. Then

$$\operatorname{dist}_{\omega}(p,q) \leq \pi \{ (2n-1+4c)/\nu \}^{1/2} \quad \textit{for all } q \in M,$$

where $\operatorname{dist}_{\omega}(p,q)$ denotes the distance between p and q on the complete Kähler manifold (M,ω) . Hence, the diameter $\operatorname{Diam}(M,\omega)$ of the complete Kähler manifold (M,ω) satisfies

(1.7)
$$\operatorname{Diam}(M,\omega) \le 2^{\delta} \pi \{ (2n - 1 + 4c)/\nu \}^{1/2}.$$

where δ denotes 1 or 0, according as (4.1.1) or (4.1.2) holds. In particular, if $|\psi_{\omega}|$ is bounded from above on M, then M is compact and $\pi_1(M)$ is finite.

Let \mathcal{E}_X^{σ} be the set of all $\omega \in \mathcal{K}_X$ such that $\mathrm{Ric}^{\sigma}(\omega) = \omega$. We also consider the subgroup Z(X) of G consisting of all $g \in G$ such that $\mathrm{Ad}(g)X = X$, and let $Z^0(X)$ denote the identity component of Z(X). Then in Section 5, we apply Theorems A and B (Theorem B will be implicitly used) to showing that \mathcal{E}_X^{σ} consists of a single $Z^0(X)$ -orbit[†] under the assumption of convexity of σ .

THEOREM C. Assume that σ is convex. Then \mathcal{E}_X^{σ} consists of a single $Z^0(X)$ -orbit, whenever \mathcal{E}_X^{σ} is nonempty.

This work is mainly motivated by the study of "Kähler-Einstein metrics" (cf. [M1]) which are closely related to the case where $\sigma(s) = -\log(s + C)$ (cf. [M5]). Parts of this work were done during my stay in International Centre for Mathematical Sciences (ICMS), Edinburgh in 1997. I thank especially Professor Michael Singer who invited me to give lectures at ICMS on various subjects of Kähler-Einstein metrics.

[†]For a similar result on Kähler-Ricci solitons, see [TZ1]. For "Kähler-Einstein metrics" in the sense of [M1], the arguments in Section 5 were given at the meeting in 1997 at ICMS, though at that time a crucial gap in a priori C^0 estimates was pointed out by G. Tian. Theorems A and B above solve this gap.

§2. Notation, convention and preliminaries

To each $\omega \in \mathcal{K}_X$ as in the introduction, we associate a multiplier Hermitian metric $\tilde{\omega}$ in (1.4) and an operator $\tilde{\square}_{\omega}$ in (1.3). For complex-valued functions $u, v \in C^{\infty}(M)_{\mathbb{C}}$ on M, we put (cf. [L2], [K1], [Mat], [F1])

$$\langle\!\langle u, v \rangle\!\rangle_{\tilde{\omega}} := \int_M u \bar{v} e^{-\psi_\omega} \omega^n = \int_M u \bar{v} \tilde{\omega}^n.$$

In the arguments in [F1, p. 41], we replace the function F by ψ . Then $\tilde{\square}_{\omega}$ is easily shown to be self-adjoint with respect to the above Hermitian inner product as follows:

Lemma 2.1.

$$\langle\!\langle u, \tilde{\square}_{\omega} v \rangle\!\rangle_{\tilde{\omega}} = -\int_{M} (\bar{\partial}u, \bar{\partial}v)_{\omega} \tilde{\omega}^{n} = \langle\!\langle \tilde{\square}_{\omega} u, v \rangle\!\rangle_{\tilde{\omega}}, \quad u, v \in C^{\infty}(M)_{\mathbb{C}}.$$

Proof. $\langle\langle u, \tilde{\square}_{\omega} v \rangle\rangle_{\tilde{\omega}}$ is written as

$$\begin{split} \int_{M} u \{ \overline{\Box_{\omega} v} - (\bar{\partial} \psi_{\omega}, \bar{\partial} v)_{\omega} \} \tilde{\omega}^{n} \\ &= \int_{M} \{ -(\bar{\partial} (u e^{-\psi_{\omega}}), \bar{\partial} v)_{\omega} - u (\bar{\partial} \psi_{\omega}, \bar{\partial} v)_{\omega} e^{-\psi_{\omega}} \} \omega^{n} \\ &= - \int_{M} (\bar{\partial} u, \bar{\partial} v)_{\omega} \tilde{\omega}^{n}, \end{split}$$

while $\langle \langle \tilde{\square}_{\omega} u, v \rangle \rangle_{\tilde{\omega}}$ is just

$$\int_{M} \{ \Box_{\omega} u - (\bar{\partial} u, \bar{\partial} \psi_{\omega})_{\omega} \} v \tilde{\omega}^{n}
= \int_{M} \{ -(\bar{\partial} u, \bar{\partial} (e^{-\psi_{\omega}} v))_{\omega} - v(\bar{\partial} u, \bar{\partial} \psi_{\omega})_{\omega} e^{-\psi_{\omega}} \} \omega^{n}
= -\int_{M} (\bar{\partial} u, \bar{\partial} v)_{\omega} \tilde{\omega}^{n}.$$

Hence Lemma 2.1 is immediate.

To an arbitrary smooth path $\phi = \{\varphi_t : a \leq t \leq b\}$ in \mathcal{H}_X , we associate a one-parameter family of Kähler forms $\omega(t)$, $a \leq t \leq b$, in \mathcal{K}_X by

(2.2)
$$\omega(t) := \omega_{\varphi_t} = \omega_0 + \sqrt{-1} \,\partial \bar{\partial} \varphi_t, \quad a \le t \le b.$$

Let $\dot{\varphi}_t$ denote the partial derivative $\partial \varphi_t/\partial t$ of φ_t with respect to t. Next, by the notation (1.4) in the introduction, we consider the Hermitian form $\tilde{\omega}(t)$ on M defined by

(2.3)
$$\tilde{\omega}(t) := \omega(t) \exp\{-\psi_{\omega(t)}/n\}.$$

LEMMA 2.4. (a) $(\partial/\partial t)\tilde{\omega}(t)^n = (\tilde{\square}_{\omega(t)}\dot{\varphi}_t)\tilde{\omega}(t)^n$.

(b)
$$\int_M \tilde{\omega}^n = V_0$$
 for all $\omega \in \mathcal{K}_X$, where $V_0 := \int_M \tilde{\omega}_0^n > 0$.

Proof. (a) Recall that $u_{\omega(t)}$ is expressible as $u_{\omega_0} + \sqrt{-1} X \varphi_t$ (cf. [FM]). On the other hand, by $\varphi_t \in \mathcal{H}_X$, we see that $X_{\mathbb{R}} \varphi_t = 0$. Hence,

$$(2.5) u_{\omega(t)} = u_{\omega_0} - \sqrt{-1}\,\bar{X}\varphi_t.$$

Then we obtain the required equality as follows:

$$\frac{\partial}{\partial t}\tilde{\omega}(t)^{n} = \frac{\partial}{\partial t} \left\{ e^{-\psi_{\omega(t)}} \omega(t)^{n} \right\}$$

$$= \left\{ \Box_{\omega(t)} \dot{\varphi}_{t} - \dot{\sigma}(u_{\omega(t)}) \frac{\partial}{\partial t} u_{\omega(t)} \right\} e^{-\psi_{\omega(t)}} \omega(t)^{n}$$

$$= \left\{ \Box_{\omega(t)} \dot{\varphi}_{t} + \sqrt{-1} \dot{\sigma}(u_{\omega(t)}) \bar{X} \dot{\varphi}_{t} \right\} e^{-\psi_{\omega(t)}} \omega(t)^{n}$$

$$= \left(\tilde{\Box}_{\omega(t)} \dot{\varphi}_{t} \right) \tilde{\omega}(t)^{n}.$$

(b) In (a) above, we have $(\partial/\partial t) \int_M \tilde{\omega}(t)^n = \int_M (\tilde{\square}_{\omega(t)} \dot{\varphi}_t) \tilde{\omega}(t)^n = \langle (\tilde{\square}_{\omega} \dot{\varphi}_t, 1) \rangle_{\tilde{\omega}} = 0$ and hence the function $V : \mathcal{K}_X \to \mathbb{R}$ defined by

$$V(\omega) := \int_M \tilde{\omega}^n, \quad \omega \in \mathcal{K}_X,$$

is constant along any smooth path in \mathcal{K}_X . Since every $\omega \in \mathcal{K}_X$ and ω_0 are joined by the smooth path $t\omega_0 + (1-t)\omega$, $0 \le t \le 1$, in \mathcal{K}_X , we now conclude that V is constant on \mathcal{K}_X , as required.

By $\langle u, \tilde{\square}_{\omega} u \rangle_{\tilde{\omega}} = -\int_{M} (\bar{\partial}u, \bar{\partial}u)_{\omega} \tilde{\omega}^{n} \leq 0$, all eigenvalues of $-\tilde{\square}_{\omega}$ are nonnegative real numbers. Let $\lambda_{1} = \lambda_{1}(\tilde{\omega}) > 0$ be the first positive eigenvalue of $-\tilde{\square}_{\omega}$, and assume

$$\mathcal{K}_X^{(\nu)} \neq \emptyset$$

for some $\nu > 0$. Then we have $c_1(M) > 0$, and by the Kodaira vanishing theorem, we see that $0 = h^{0,1}(M) = h^{1,0}(M)$. In particular, $G := \operatorname{Aut}^0(M)$

is a linear algebraic group. The corresponding Lie algebra \mathfrak{g} is just the space $H^0(M, \mathcal{O}(TM))$ of holomorphic vector fields on M. We now have a \mathbb{C} -linear isomorphism of vector spaces

$$\mathfrak{g}^{\omega} \cong \mathfrak{g}, \quad u \leftrightarrow \operatorname{grad}_{\omega}^{\mathbb{C}} u,$$

where \mathfrak{g}^{ω} denotes the space of all $u \in C^{\infty}(M)_{\mathbb{C}}$, normalized by $\int_{M} u\tilde{\omega}^{n} = 0$, such that the condition $\operatorname{grad}_{\omega}^{\mathbb{C}} \varphi \in \mathfrak{g}$ is satisfied. Recall that

FACT 2.7. (see for instance [M3]) For a real number $\nu > 0$, let $\omega \in \mathcal{K}_X^{(\nu)}$. Then

- (a) $\lambda_1(\tilde{\omega}) \geq \nu$.
- (b) If $\lambda_1(\tilde{\omega}) = \nu$, then $\{u \in C^{\infty}(M)_{\mathbb{C}} ; \tilde{\square}_{\omega} u = -\lambda_1(\tilde{\omega})u\}$ is a subspace of \mathfrak{g}^{ω} .

Next, we consider the special case where the Kähler class of \mathcal{K}_X is $2\pi c_1(M)_{\mathbb{R}}$. In this case, to each $\omega \in \mathcal{K}_X$, we can associate a unique function f_{ω} in $C^{\infty}(M)_{\mathbb{R}}$ satisfying $\int_M (e^{f_{\omega}} - 1)\omega^n = 0$ and $\mathrm{Ric}(\omega) - \omega = \sqrt{-1}\,\partial\bar{\partial}f_{\omega}$. Put $c_{\omega} := \int_M \tilde{\omega}^n / \int_M \omega^n = \int_M \tilde{\omega}^n / \int_M \omega^n_0$, which is independent of the choice of ω in \mathcal{K}_X . We now put

(2.8)
$$\tilde{f}_{\omega} := f_{\omega} + \psi_{\omega} + \log c_{\omega} = f_{\omega} + \sigma(u_{\omega}) + \log c_{\omega}.$$

LEMMA 2.9. (a) $\operatorname{Ric}^{\sigma}(\omega) - \omega = \sqrt{-1} \, \partial \bar{\partial} \tilde{f}_{\omega}$.

(b)
$$\int_M (e^{\tilde{f}_\omega} - 1)\tilde{\omega}^n = 0$$
 for all $\omega \in \mathcal{K}_X$.

Proof. (a) follows immediately from (1.5), (2.8) and $\operatorname{Ric}(\omega) - \omega = \partial \bar{\partial} f_{\omega}$. As to (b), in view of (b) of Lemma 2.4, we obtain

$$\int_{M} e^{\tilde{f}_{\omega}} \tilde{\omega}^{n} = \left(\int_{M} e^{f_{\omega}} e^{\psi_{\omega}} \tilde{\omega}^{n} \right) \frac{\int_{M} \tilde{\omega}_{0}^{n}}{\int_{M} \omega_{0}^{n}} = \left(\int_{M} e^{f_{\omega}} \omega^{n} \right) \frac{\int_{M} \tilde{\omega}^{n}}{\int_{M} \omega^{n}} = \int_{M} \tilde{\omega}^{n},$$

as required.

§3. Proof of Theorem A

Let $\omega \in \mathcal{K}_X$. In the definition of $\tilde{\omega}$ in (1.4), replacing σ by 2σ , we consider volume forms $\operatorname{vol}_{\tilde{\omega}}$ and $\operatorname{vol}_{\tilde{\omega}_0}$ on M by setting

$$\operatorname{vol}_{\tilde{\omega}} := \omega^n \exp\{-2\sigma(u_{\omega})\}$$
 and $\operatorname{vol}_{\tilde{\omega}_0} := \omega_0^n \exp\{-2\sigma(u_{\omega_0})\}.$

80 t. mabuchi

Put $V := \int_M \operatorname{vol}_{\tilde{\omega}} = \int_M \operatorname{vol}_{\tilde{\omega_0}}$. Replacing σ again by 2σ in the definition of $\tilde{\square}_{\omega}$ in (1.3), we consider the operators D_{ω} and D_{ω_0} acting on $C^{\infty}(M)_{\mathbb{R}}$ by

(3.1)
$$D_{\omega} := \Box_{\omega} + 2\sqrt{-1}\,\dot{\sigma}(u_{\omega})\bar{X}$$
 and $D_{\omega_0} := \Box_{\omega_0} + 2\sqrt{-1}\,\dot{\sigma}(u_{\omega_0})\bar{X}$.

Note that a smooth function on M is $X_{\mathbb{R}}$ -invariant if and only if it is Q-invariant. Hence, we can write $\omega = \omega_0 + \sqrt{-1} \, \partial \bar{\partial} \varphi$ for some Q-invariant function φ in \mathcal{H}_X . Then we obtain

(3.2)
$$-\Box_{\omega_0} \varphi < n \quad \text{and} \quad -\Box_{\omega} \varphi > -n.$$

Now by (2.5), we have $\sqrt{-1} \bar{X} \varphi = u_{\omega_0} - u_{\omega}$. On the other hand, $\min_M u_{\omega_0} = \min_M u_{\omega} = \alpha_X$ and $\max_M u_{\omega_0} = \max_M u_{\omega} = \beta_X$. In particular,

(3.3)
$$\max_{M} |\bar{X}\varphi| = \max_{M} |X\varphi| \le \max_{M} |u| + \max_{M} |u_0| \le 2C_3,$$

where $C_3 := \max\{|\alpha_X|, |\beta_X|\}$ is a positive constant independent of the choice of ω_0 and ω in \mathcal{K}_X . Put $C_4 := \max_{s \in I_X} |\dot{\sigma}(s)| > 0$. Then (3.1) and (3.2) above imply

$$(3.4) -D_{\omega} \varphi = -\Box_{\omega} \varphi - 2\sqrt{-1} \dot{\sigma}(u_{\omega}) \bar{X} \varphi > -k' := -n - 4C_3C_4,$$

$$(3.5) -D_{\omega_0}\varphi = -\square_{\omega_0}\varphi - 2\sqrt{-1}\,\dot{\sigma}(u_{\omega_0})\bar{X}\varphi \le k'' := n + 4C_3C_4.$$

Let $\operatorname{Re} D_{\omega} := (D_{\omega} + \bar{D}_{\omega})/2$ and $\operatorname{Re} D_{\omega_0} := (D_{\omega_0} + \bar{D}_{\omega_0})/2$ denote respectively the real part of D_{ω} and D_{ω_0} . Moreover, let $G_{\omega}(x,y)$ and $G_{\omega_0}(x,y)$ be the Green functions for the operators $\operatorname{Re} D_{\omega}$ and $\operatorname{Re} D_{\omega_0}$, respectively. More precisely,

$$\begin{cases} h(x) = V^{-1} \int_{M} h(y) \operatorname{vol}_{\tilde{\omega}}(y) + \int_{M} G_{\omega}(x, y) \{ -(\operatorname{Re} D_{\omega})(h) \}(y) \operatorname{vol}_{\tilde{\omega}}(y), \\ \int_{M} G_{\omega}(x, y) \operatorname{vol}_{\tilde{\omega}}(y) = 0, \end{cases}$$

hold for all $x \in M$ and $h \in C^{\infty}(M)_{\mathbb{R}}$, where equalities similar to the above hold also for the Green function $G_{\omega_0}(x,y)$ in terms of $\operatorname{vol}_{\tilde{\omega}_0}$ and $\operatorname{Re} D_{\omega_0}$.

Proof of Theorem A. Assuming $\omega \in \mathcal{K}_X^{(\nu)}$, let $\ddot{\sigma} \geq 0$ on I_X . We further assume that one of the following holds:

- (a) $\dot{\sigma} \leq 0$ on I_X and $\omega \in \mathcal{S}^{\sigma}$;
- (b) or σ is strictly convex.

For the Q-action on M, take the averages $\tilde{G}_{\omega}(x,y)$, $\tilde{G}_{\omega_0}(x,y)$ of the functions $G_{\omega}(x,y)$, $G_{\omega_0}(x,y)$ respectively, i.e.,

$$\begin{cases} \tilde{G}_{\omega}(x,y) := \int_{Q} G_{\omega}(q \cdot x,y) \, d\mu(q) = \int_{Q} G_{\omega}(x,q \cdot y) \, d\mu(q), \\ \tilde{G}_{\omega_{0}}(x,y) := \int_{Q} G_{\omega_{0}}(q \cdot x,y) \, d\mu(q) = \int_{Q} G_{\omega_{0}}(x,q \cdot y) \, d\mu(q), \end{cases}$$

where $d\mu = d\mu(q)$ denotes the Haar measure for the compact group Q of total volume 1. Let K_{ω} , K_{ω_0} be the positive real numbers defined by

$$-K_{\omega} = \inf_{x \neq y} \tilde{G}_{\omega}(x, y)$$
 and $-K_{\omega_0} = \inf_{x \neq y} \tilde{G}_0(x, y),$

where the infimums are taken over all $(x, y) \in M \times M$ such that $x \neq y$. By writing $\omega = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi$ for some Q-invarant function $\varphi \in C^{\infty}(M)_{\mathbb{R}}$ as above, we first of all see the equality $(\operatorname{Re} D_{\omega_0})(\varphi) = D_{\omega_0} \varphi$. Then by (3.5), we obtain

$$(3.6)$$

$$\varphi(x) = V^{-1} \int_{M} \varphi \operatorname{vol}_{\tilde{\omega}_{0}} + \int_{M} \{\tilde{G}_{\omega_{0}}(x, y) + K_{\omega_{0}}\} \{-(\operatorname{Re} D_{\omega_{0}})(\varphi)\}(y) \operatorname{vol}_{\tilde{\omega}_{0}}(y)$$

$$\leq V^{-1} \int_{M} \varphi \operatorname{vol}_{\tilde{\omega}_{0}} + k'' V K_{\omega_{0}}.$$

On the other hand, by $(\operatorname{Re} D_{\omega})(\varphi) = D_{\omega}\varphi$ and (3.4), we also obtain

$$\varphi(x) = V^{-1} \int_{M} \varphi \operatorname{vol}_{\tilde{\omega}} + \int_{M} \{\tilde{G}_{\omega}(x, y) + K_{\omega}\} \{-(\operatorname{Re} D_{\omega})(\varphi)\}(y) \operatorname{vol}_{\tilde{\omega}}(y)$$

$$\geq V^{-1} \int_{M} \varphi \operatorname{vol}_{\tilde{\omega}} - k' V K_{\omega}.$$

Now by (3.6) and (3.7), we see that (cf. (A.1.1) in Appendix 1)

(3.8)
$$\operatorname{Osc}(\varphi) \leq V^{-1} \int_{M} \varphi(\operatorname{vol}_{\tilde{\omega}_{0}} - \operatorname{vol}_{\tilde{\omega}}) + (k'' K_{\omega_{0}} + k' K_{\omega}) V$$
$$\leq V^{-1} \mathcal{I}^{2\sigma}(\omega_{0}, \omega) + (k'' K_{\omega_{0}} + k' K_{\omega}) V,$$

where by [M3], there exist positive real constants C', C'' and C_2 independent of the choice of $\nu > 0$ and ω , such that

(3.9)
$$K_{\omega} \le \nu^{-1} (C' + C'' e^{C_2/\nu})$$

under the assumption (a) above, while under the assumption (b) above, we also have (3.9) with C'' = 0. Now by Lemma A.1.5 and Proposition A.1 in Appendix 1, we have

$$\mathcal{I}^{2\sigma}(\omega_0,\omega) \le (m+2)(\mathcal{I}^{2\sigma} - \mathcal{J}^{2\sigma})(\omega_0,\omega) \le (m+2)e^c(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega_0,\omega),$$

where $m:=n-1+b_{2\sigma}$ by the notation in Lemma A.1.6 in Appendix 1, and we put $c:=\max_{s\in I_X}|\sigma(s)|=\max\{|\alpha_X|,|\beta_X|\}$ as in the introduction. Hence in view of (3.8) and (3.9), by setting $C(\nu):=C_1+C_1'\nu+C_1''e^{C_2/\nu}$, we obtain

$$\operatorname{Osc}(\varphi) \leq C_0(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega_0, \omega) + \frac{C(\nu)}{\nu},$$

where $C_1 := k'C'V$, $C_1' := k''K_{\omega_0}V$, $C_1'' := k'C''V$ and $C_0 := V^{-1}(m+2)e^c$ are positive real constants depending neither on the choice of ω nor on $\nu > 0$, as required.

§4. Proof of Theorem B

In this section, M is not necessarily compact, and we fix a nonconstant real-valued function $\sigma: I_X \to \mathbb{R}$ which is weakly convex, i.e., $\ddot{\sigma} \geq 0$ on I_X . Let zero(X) be the set of all points on M at which the nonzero holomorphic vector field $X = \operatorname{grad}_{\omega}^{\mathbb{C}} u_{\omega}$ vanishes.

DEFINITION 4.1. Under the above assumption of weak convexity of σ , we say that (X, σ) is of Hamiltonian type, if one of the following two conditions is satisfied:

$$(4.1.1) zero(X) \neq \emptyset;$$

(4.1.2)
$$\ddot{\sigma}(s) = 0 \text{ for all } s \in I_X.$$

Remark 4.2. If M is compact, then the assumption $\mathcal{K}_X^{(\nu)} \neq \emptyset$ in Theorem A implies that $c_1(M) > 0$, and in particular G is a linear algebraic group. Hence, in this case (4.1.1) automatically holds.

Proof of Theorem B. The proof is divided into the following three steps:

Step 1. In this step, we apply the arguments in [Mil] to the Kähler manifold (M, ω) . Let $\zeta : [0, \ell] \to M$ be an arclength-parametrized geodesic with $\zeta(0) = p$. Put $\zeta(\ell) = q$, and consider the set $\Omega(M; p, q)$ of all smooth

paths $\gamma:[0,\ell]\to M$ such that $\gamma(0)=p$ and $\gamma(\ell)=q$. Recall that the energy functional $E:\Omega(M;p,q)\to\mathbb{R}$ is defined by

$$E(\gamma) := \int_0^\ell \|\gamma_*(\partial/\partial t)\|_\omega^2 dt, \quad \gamma \in \Omega(M; p, q).$$

Then ζ is a critical point of the functional E. Let $P_k = P_k(t)$, $k = 1, 2, \ldots, 2n$, be parallel vector fields along ζ which are orthonormal everywhere along ζ . Consider the complex structure $J: TM_{\mathbb{R}} \to TM_{\mathbb{R}}$ of the complex manifold M, where $TM_{\mathbb{R}}$ denotes the real tangent bundle of M. Then by $\nabla J = 0$, we may assume that $P_1 = \zeta_*(\partial/\partial t)$ and $P_2 = JP_1$. Put $\hat{P}_k(t) = \sin(\pi t/\ell)P_k(t)$. Let $\operatorname{Hess}_{\zeta} E$ denote the Hessian of E at ζ . Then by setting $\hat{n} := 2n - 1$, we obtain

$$(4.3.1) \quad \frac{1}{2} \sum_{k=2}^{2n} (\operatorname{Hess}_{\zeta} E)(\hat{P}_{k}, \hat{P}_{k}) = \int_{0}^{\ell} \sin^{2}(\pi t/\ell) \left\{ \frac{\hat{n}\pi^{2}}{\ell^{2}} - S_{\omega}(P_{1}, P_{1}) \right\} dt,$$

where S_{ω} denotes the Ricci tensor of the Kähler metric ω , and is related to the Ricci form $\text{Ric}(\omega)$ by $S_{\omega}(P_1, P_1) = \text{Ric}(\omega)(P_1, JP_1)$.

Step 2. Fix an arbitrary $\tau \in [0, \ell]$. In a small open neighbourhood of $\zeta(\tau)$ in M, we choose a system $z = (z^1, z^2, \dots, z^n)$ of holomorphic local coordinates centered at $\zeta(\tau)$ such that

$$P_1(\tau) = \partial/\partial x^1$$
 and $JP_1(\tau) = \partial/\partial y^1$,

where we write each z^{α} as a sum $x^{\alpha} + \sqrt{-1}y^{\alpha}$ of the real part and the imaginary part, and the vector fields $\partial/\partial x^{\alpha}$, $\partial/\partial y^{\alpha}$ are taken in terms of the coordinates system $(x^1, \ldots, x^n, y^1, \ldots, y^n)$. Since

$$\partial/\partial z^{\alpha} = (\partial/\partial x^{\alpha} - \sqrt{-1}\,\partial/\partial y^{\alpha})/2$$
 and $\partial/\partial z^{\bar{\beta}} = (\partial/\partial x^{\beta} + \sqrt{-1}\,\partial/\partial y^{\beta})/2$,

we observe that the coordinates system $z=(z^1,z^2,\ldots,z^n)$ can be chosen in such a way that $g_{\alpha\bar{\beta}}$ in the local expression of ω (cf. Section 1) satisfies

$$(4.3.2) g_{\alpha\bar{\beta}}(\zeta(\tau)) = \frac{1}{2}\delta_{\alpha\beta} \text{ and } dg_{\alpha\bar{\beta}}(\zeta(\tau)) = 0.$$

Let $\exp_{\zeta(\tau)}: (TM_{\mathbb{R}})_{\zeta(\tau)} \to M$ denotes the exponential map at the point $\zeta(\tau)$ of the Kähler manifold (M,ω) , and put $\xi(s) := \exp_{\zeta(\tau)}(sJP_1), \ -\varepsilon \le s \le \varepsilon$,

84 T. Mabuchi

with a sufficiently small positive real number ε . Then in a neighbourhood of $\zeta(\tau)$,

(4.3.3)
$$\begin{cases} P_1(t) = \zeta_*(\partial/\partial t) = \partial/\partial x^1 + O(|t - \tau|^2), \\ \xi_*(\partial/\partial s) = \partial/\partial y^1 + O(|s|^2), \end{cases}$$

where O(w) denotes a function which is bounded by some constant times w. Now by our assumption, $X = \operatorname{grad}_{\omega}^{\mathbb{C}} u_{\omega}$ is a holomorphic vector field on M. Hence by the equality $\bar{\partial}X = 0$ and (4.3.2), we obtain $(\partial/\partial z^{\bar{1}})^2(u_{\omega})_{|\zeta(\tau)} = 0$ at the point $\zeta(\tau)$, and hence

(4.3.4)
$$\begin{cases} (\partial/\partial x^1)^2 (u_\omega)_{|\zeta(\tau)} = (\partial/\partial y^1)^2 (u_\omega)_{|\zeta(\tau)}, \\ (\partial^2/\partial x^1 \partial y^1) (u_\omega)_{|\zeta(\tau)} = 0. \end{cases}$$

We now define a C^{∞} map $F: [-\varepsilon, \varepsilon] \times [0, \ell] \to M$ by sending each $(s, t) \in [-\varepsilon, \varepsilon] \times [0, \ell]$ to $F(s, t) := \exp_{\zeta(t)}(sJP_1) \in M$. Put $\tilde{u} := F^*u_{\omega}$ and $\tilde{\psi} := F^*\psi_{\omega}$ which are functions on $[-\varepsilon, \varepsilon] \times [0, \ell]$. Then by (1.2), we have $\tilde{\psi} = \sigma(\tilde{u})$. Next by (4.3.3),

(4.3.5)
$$\begin{cases} (\partial/\partial t)(\tilde{u})_{|s=0} = \zeta^* \{ (\partial/\partial x^1)(u_\omega) \} + O(|t-\tau|^2), \\ (\partial/\partial s)(\tilde{u})_{|t=\tau} = \xi^* \{ (\partial/\partial y^1)(u_\omega) \} + O(|s|^2), \end{cases}$$

in a neighbourhood of $(s,t)=(0,\tau)$. In view of (4.3.3), we differentiate the first line of (4.3.5) with respect to t at $t=\tau$, while we differentiate the second line of (4.3.5) with respect to s at s=0. Then, since $\tau \in [0,\ell]$ is arbitrary, the first line of (4.3.4) yields

$$(4.3.6) (\partial/\partial t)^2(\tilde{u}) = (\partial/\partial s)^2(\tilde{u}),$$

when restricted to $\{0\} \times [0, \ell]$. Recall that ∇ is the natural Hermitian connection associated to the Kähler metric ω (see Section 1). Since $P_2 = JP_1$ is parallel along the geodesic ζ , and since ξ is a geodesic, we obtain

$$\left(\nabla_{\partial/\partial t}\partial/\partial s\right)_{|(s,t)=(0,\tau)} = \left(\nabla_{\partial/\partial s}\partial/\partial s\right)_{|(s,t)=(0,\tau)} = 0,$$

where the pullback $F^*\nabla$ is denoted also by ∇ for simplicity. By combining this with (4.3.2) and $F_*\partial/\partial s_{|(s,t)=(0,\tau)} = \partial/\partial y^1$, we obtain

$$F_*(\partial/\partial s) = \partial/\partial y^1 + O(|s|^2 + |t - \tau|^2)$$
 for $|s|^2 + |t - \tau|^2 \ll 1$

in a small neighbourhood of $\zeta(\tau) = F(0,\tau)$ in the image of F. Hence, together with the first line of (4.3.3), the second line of (4.3.4) implies

$$(4.3.7) (\partial^2/\partial t\partial s)(\tilde{u}) = 0,$$

when restricted to $\{0\} \times [0,\ell]$. For the time being, until the end of Step 2, we assume that (4.1.1) above holds. Then by $p = \zeta(0) \in \operatorname{Zero}(X)$, the function u_{ω} on M has a critical value at p. In particular, $(\partial \tilde{u}/\partial s)(0,0) = 0$. On the other hand, (4.3.7) shows that $\partial \tilde{u}/\partial s$ is constant along $\{0\} \times [0,\ell]$. Therefore,

(4.3.8)
$$(\partial \tilde{u}/\partial s)(0,t) = 0$$
 for all $t \in [0,\ell]$, if (4.1.1) holds.

Step 3. Let σ be as in Definition 4.1, so that either (4.1.1) or (4.1.2) holds. Consider the function $\psi_{\omega} = \sigma(u_{\omega})$. In view of (4.3.3), we see for all $\tau \in [0, \ell]$ the following:

$$(4.3.9) 2\sqrt{-1} (\partial \bar{\partial} \psi_{\omega}) (P_{1}, JP_{1})_{|\zeta(\tau)}$$

$$= 2\sqrt{-1} (\partial \bar{\partial} \psi_{\omega}) (\zeta_{*}(\partial/\partial t), \xi_{*}(\partial/\partial s))_{|\zeta(\tau)}$$

$$= \{ (\partial/\partial x^{1})^{2} (\psi_{\omega}) + (\partial/\partial y^{1})^{2} (\psi_{\omega}) \}_{|\zeta(\tau)}$$

$$= \frac{\partial^{2} \tilde{\psi}}{\partial t^{2}} (0, \tau) + \frac{\partial^{2} \tilde{\psi}}{\partial s^{2}} (0, \tau).$$

Consider the vector fields $Z_1 := (P_1 - \sqrt{-1} J P_1)/2$ and $\bar{Z}_1 := (P_1 + \sqrt{-1} J P_1)/2$ along the geodesic ζ . Since $(2/\sqrt{-1}) \theta(Z_1, \bar{Z}_1)$ equals $\theta(P_1, J P_1)$ along the geodesic for every 2-form θ on M, and since $\text{Ric}(\omega) + \sqrt{-1} \partial \bar{\partial} \psi_{\omega} = \text{Ric}^{\sigma}(\omega) \geq \nu \omega$, it now follows that

$$\operatorname{Ric}(\omega)(P_1, JP_1) + \sqrt{-1} (\partial \bar{\partial} \psi_{\omega})(P_1, JP_1) = \operatorname{Ric}^{\sigma}(\omega)(P_1, JP_1)$$

$$\geq \nu \omega(P_1, JP_1) = (2\nu/\sqrt{-1}) \omega(Z_1, \bar{Z}_1) = \nu.$$

By plugging the expression (4.3.9) of $2\sqrt{-1}(\partial\bar{\partial}\psi_{\omega})(P_1,JP_1)_{|\zeta(\tau)|}$ into the inequality just above, we see that the following inequality holds for all $\tau \in [0,\ell]$:

$$\operatorname{Ric}(\omega)(P_1, JP_1)_{|\zeta(\tau)|} \ge \nu - \frac{1}{2} \frac{\partial^2 \tilde{\psi}}{\partial t^2}(0, \tau) - \frac{1}{2} \frac{\partial^2 \tilde{\psi}}{\partial s^2}(0, \tau).$$

86 T. Mabuchi

By this together with (4.3.1), we obtain

$$\frac{1}{2} \sum_{k=2}^{2n} (\operatorname{Hess}_{\zeta} E)(\hat{P}_{k}, \hat{P}_{k})$$

$$\leq \int_{0}^{\ell} \sin^{2}(\pi t/\ell) \left\{ \frac{\hat{n}\pi^{2}}{\ell^{2}} - \nu + \frac{1}{2} \frac{\partial^{2} \tilde{\psi}}{\partial t^{2}}(0, t) + \frac{1}{2} \frac{\partial^{2} \tilde{\psi}}{\partial s^{2}}(0, t) \right\} dt.$$

If (4.1.1) holds, then by (4.3.6) and (4.3.8), we see from $\tilde{\psi} = \sigma(\tilde{u})$ that

$$\begin{split} \frac{\partial^2 \tilde{\psi}}{\partial s^2}(0,t) &= \left\{ \dot{\sigma}(\tilde{u}) \frac{\partial^2 \tilde{u}}{\partial s^2} + \ddot{\sigma}(\tilde{u}) \left(\frac{\partial \tilde{u}}{\partial s} \right)^2 \right\}_{|(0,t)} = \left\{ \dot{\sigma}(\tilde{u}) \frac{\partial^2 \tilde{u}}{\partial t^2} \right\}_{|(0,t)} \\ &\leq \left\{ \dot{\sigma}(\tilde{u}) \frac{\partial^2 \tilde{u}}{\partial t^2} + \ddot{\sigma}(\tilde{u}) \left(\frac{\partial \tilde{u}}{\partial t} \right)^2 \right\}_{|(0,t)} = \frac{\partial^2 \tilde{\psi}}{\partial t^2}(0,t), \end{split}$$

where the inequality just above follows from the weak convexity of σ . On the other hand, if (4.1.2) holds, then again by (4.3.6)

$$\frac{\partial^2 \tilde{\psi}}{\partial s^2}(0,t) = \dot{\sigma}(\tilde{u}) \frac{\partial^2 \tilde{u}}{\partial s^2}(0,t) = \dot{\sigma}(\tilde{u}) \frac{\partial^2 \tilde{u}}{\partial t^2}(0,t) = \frac{\partial^2 \tilde{\psi}}{\partial t^2}(0,t).$$

In both cases, we obtain

$$\frac{1}{2} \sum_{k=2}^{2n} (\operatorname{Hess}_{\zeta} E)(\hat{P}_k, \hat{P}_k) \le \int_0^{\ell} \sin^2(\pi t/\ell) \left\{ \frac{\hat{n}\pi^2}{\ell^2} - \nu + \frac{\partial^2 \tilde{\psi}}{\partial t^2}(0, t) \right\} dt.$$

Let R.H.S. denote the right-hand side of this inequality. Then by taking integral by parts over and over again, we see that

$$\begin{aligned} \text{R.H.S.} &= \int_{0}^{\ell} \left\{ \left(\frac{\hat{n}\pi^{2}}{\ell^{2}} - \nu \right) \sin^{2}(\pi t/\ell) - \frac{\pi}{\ell} \frac{\partial \tilde{\psi}}{\partial t}(0, t) \sin(2\pi t/\ell) \right\} dt \\ &= \int_{0}^{\ell} \left\{ \left(\frac{\hat{n}\pi^{2}}{\ell^{2}} - \nu \right) \sin^{2}(\pi t/\ell) + \frac{2\pi^{2}}{\ell^{2}} \tilde{\psi}(0, t) \cos(2\pi t/\ell) \right\} dt \\ &\leq \frac{2\pi^{2}c}{\ell} + \int_{0}^{\ell} \left(\frac{\hat{n}\pi^{2}}{\ell^{2}} - \nu \right) \sin^{2}(\pi t/\ell) dt = \frac{(\hat{n} + 4c)\pi^{2}}{2\ell} - \frac{\ell\nu}{2}. \end{aligned}$$

Therefore, if $\ell > \pi \{(\hat{n} + 4c)/\nu\}^{1/2}$, then R.H.S. < 0, and hence

$$\sum_{k=2}^{2n} (\operatorname{Hess}_{\zeta} E)(\hat{P}_k, \hat{P}_k) < 0,$$

which shows that $\zeta:[0,\ell]\to M$ is not an arclength-minimizing geodesic. Thus, we obtain ${\rm dist}_\omega(p,q)\le\pi\{(\hat n+4c)/\nu\}^{1/2}$ for every $q\in M$, as required.

§5. Proof of Theorem C

Fix $0 < \alpha < 1$. Let $\mathcal{H}_{X,0}^{2,\alpha}$ denote the set of all $X_{\mathbb{R}}$ -invariant function $\varphi \in C^{2,\alpha}(M)_{\mathbb{R}}$ such that $\int_M \varphi \tilde{\omega}_0^n = 0$ and that ω_{φ} is positive definite on M. Put

(5.1.1)
$$A(\varphi) := \tilde{\omega}_{\varphi}^{n} / \tilde{\omega}_{0}^{n}, \quad \varphi \in \mathcal{H}_{X,0}^{2,\alpha}.$$

For each $0 \leq k \in \mathbb{Z}$, we consider the space $C_{X,0}^{k,\alpha}(M)_{\mathbb{R}}$ of all $X_{\mathbb{R}}$ -invariant functions φ in $C^{k,\alpha}(M)_{\mathbb{R}}$ such that $\int_M \varphi \tilde{\omega}_0^n = 0$. Define $\Gamma : \mathcal{H}_{X,0}^{2,\alpha} \times \mathbb{R} \to C_{X,0}^{0,\alpha}(M)_{\mathbb{R}}$ by setting (cf. [BM], [S1])

$$(5.1.2) \ \Gamma(\varphi,t) := A(\varphi) - \left\{ \frac{1}{V_0} \int_M \exp(-t\varphi + \tilde{f}_{\omega_0}) \tilde{\omega}_0^n \right\}^{-1} \exp(-t\varphi + \tilde{f}_{\omega_0}),$$

for all $(\varphi, t) \in \mathcal{H}_{X,0}^{2,\alpha} \times \mathbb{R}$, where V_0 is as in (b) of Lemma 2.4. Let T be the set of all $t \in [0,1)$ for which the generalized Aubin's equation

(5.1.3)
$$\Gamma(\varphi, t) = 0$$

admits a solution $\varphi = \varphi_t$ in $\mathcal{H}_{X,0}^{2,\alpha}$. Note that φ automatically belongs to \mathcal{H}_X . For such a solution φ_t , we set $\omega(t) := \omega_{\varphi_t} = \omega_0 + \sqrt{-1} \, \partial \bar{\partial} \varphi_t$ as in (A.2.2) in Appendix 2. Then

(5.1.4)
$$\operatorname{Ric}^{\sigma}(\omega(t)) = \omega_0 + t\sqrt{-1}\,\partial\bar{\partial}\varphi_t = t\omega(t) + (1-t)\omega_0,$$

where $\tilde{\omega}(t)$ is as in (2.3). In particular, $\omega(t)$ sits in $\mathcal{K}_X^{(t')}$ for some t' which exceeds t. Suppose that $\Gamma(\hat{\varphi},\hat{t})=0$ for some $(\hat{\varphi},\hat{t})\in\mathcal{H}_{X,0}^{2,\alpha}\times[0,1)$. Then the Fréchet derivative $D_{\varphi}\Gamma:C_{X,0}^{2,\alpha}(M)_{\mathbb{R}}\to C_{X,0}^{0,\alpha}(M)_{\mathbb{R}}$ of Γ at $(\hat{\varphi},\hat{t})$ with respect to the factor φ is given by

$$(5.1.5) \quad \left\{ D_{\varphi} \Gamma_{|(\varphi,t)=(\hat{\varphi},\hat{t})} \right\}(\eta) := A(\hat{\varphi}) (\tilde{\square}_{\hat{\varphi}} + \hat{t}) (\eta - C_{\eta,\hat{\varphi}}), \quad \eta \in C_{X,0}^{2,\alpha}(M)_{\mathbb{R}},$$

where $C_{\eta,\hat{\varphi}}:=V_0^{-1}\int_M\eta\tilde{\omega}_{\hat{\varphi}}^n$ and $\tilde{\Box}_{\hat{\varphi}}:=\tilde{\Box}_{\omega_{\hat{\varphi}}}$. By (5.1.4) and Fact 2.7, \hat{t} is less than the first positive eigenvalue of $-\tilde{\Box}_{\hat{\varphi}}$. Hence, $D_{\varphi}\Gamma_{|(\varphi,t)}$ is invertible. Then by the implicit function theorem, we obtain

THEOREM 5.1. If $(\hat{\varphi}, \hat{t}) \in \mathcal{H}_{X,0}^{2,\alpha} \times [0,1)$ satisfies $\Gamma(\hat{\varphi}, \hat{t}) = 0$, then there exist $0 < \varepsilon \ll 1$ and a smooth one-parameter family of functions $\{\varphi_t : \hat{t} - \varepsilon < t < \hat{t} + \varepsilon\}$ in $\mathcal{H}_{X,0}^{2,\alpha}$ satisfying $\varphi_{\hat{t}} = \hat{\varphi}$ such that $\varphi = \varphi_t$ is the unique solution of (5.1.3) for each t under the condition $\|\varphi - \hat{\varphi}\|_{C^{2,\alpha}} \leq \varepsilon$. In particular, T is an open subset of [0,1).

Let $0 \le a < b \le 1$, and let φ_t , $a < t \le b$, be a smooth one-parameter family of functions in $\mathcal{H}_{X,0}^{2,\alpha}$ such that, for all $a < t \le b$, we have

(5.2.1)
$$\Gamma(\varphi_t, t) = 0.$$

Then each φ_t automatically belongs to \mathcal{H}_X . By setting $\omega(t) := \omega_{\varphi_t}$ as in the above, we obtain (5.1.4). We further put $\psi_t := \psi_{\omega(t)}$ and $\tilde{f}_t := \tilde{f}_{\omega(t)}$, where on the right-hand sides, we use the notation in the introduction and (2.8). Since $\operatorname{Ric}^{\sigma}(\omega(t)) = \omega(t) + \sqrt{-1} \, \partial \bar{\partial} \tilde{f}_t$, and since $\omega(t) = \omega_0 + \sqrt{-1} \, \partial \bar{\partial} \varphi_t$, the identity (5.1.4) implies

(5.2.2)
$$\tilde{f}_t = -(1-t)\varphi_t + C_t,$$

where C_t is a real constant depending on t. By (5.1.1) and (a) of Lemma 2.4, we have $\partial A(\varphi_t)/\partial t = \{\tilde{\square}_{\omega(t)}\dot{\varphi}_t\}A(\varphi_t)$. By differentiating (5.2.1) with respect to t, we obtain

$$\tilde{\square}_{\omega(t)}\dot{\varphi}_t + t\dot{\varphi}_t + \varphi_t = \hat{C}_t,$$

for some real constant \hat{C}_t depending on t. By (A.1.1) in Appendix 1 and by (b) of Proposition A.2 in Appendix 2, we see from (5.2.2) and (5.2.3) the following:

$$\frac{d}{dt}\mu^{\sigma}(\omega(t)) = \int_{M} (\bar{\partial}\tilde{f}_{t}, \bar{\partial}\dot{\varphi}_{t})_{\omega(t)}\tilde{\omega}(t)^{n} = -(1-t)\int_{M} (\bar{\partial}\varphi_{t}, \bar{\partial}\dot{\varphi}_{t})_{\omega(t)}\tilde{\omega}(t)^{n}$$

$$= -(1-t)\frac{d}{dt}(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega_{0}, \omega(t)) = (1-t)\int_{M} \varphi_{t}\{\tilde{\square}_{\omega(t)}\dot{\varphi}_{t}\}\tilde{\omega}(t)^{n}$$

$$= -(1-t)\int_{M} \{\tilde{\square}_{\omega(t)}\dot{\varphi}_{t} + t\dot{\varphi}_{t}\}\{\tilde{\square}_{\omega(t)}\dot{\varphi}_{t}\}\tilde{\omega}(t)^{n} \leq 0,$$

where in the last inequality, we apply (a) of Fact 2.7 to $\omega(t) \in \mathcal{K}_X^{(t)}$. Thus, for any $0 \le a < b \le 1$, we obtain

THEOREM 5.2. Along any smooth one-parameter family φ_t , $a < t \le b$, of solutions in \mathcal{H}_X of (5.2.1), the corresponding $\omega(t) := \omega_{\varphi_t} = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi_t$ satisfies

$$\frac{d}{dt}\mu^{\sigma}(\omega(t)) = -(1-t)\frac{d}{dt}(\mathcal{I}^{\sigma} - \mathcal{J}_{\sigma})(\omega_0, \omega(t)) \le 0, \quad a < t \le b.$$

Given an element $\theta \in \mathcal{E}_X^{\sigma}$, we consider the set T_{θ} of all $\tau \in [0,1]$ such that there exists a smooth one-parameter family of solutions

(5.3.1)
$$\varphi_t \in \mathcal{H}_{X,0}^{2,\alpha}, \quad \tau \le t \le 1,$$

of (5.2.1) satisfying $\omega_{\varphi_1} = \theta$. Put $\tau_{\infty} := \inf T_{\theta}$. Later in Theorem 5.6, we see that a slight perturbation of ω_0 allows us to assume $\tau_{\infty} < 1$. Under this assumption, we obtain

Lemma 5.3.2. Suppose that σ is convex. Then we have the following:

- (a) $\tau_{\infty} = 0$.
- (b) If σ is furthermore strictly convex, then 0 belongs to T_{θ} .

Proof. Take a sequence $S := \{\tau_j\}_{j=1}^{\infty}$ of points in the open interval $(\tau_{\infty}, 1]$ such that τ_j converges to τ_{∞} as $j \to \infty$. Let

$$\varphi_{\tau_j} \in \mathcal{H}_{X,0}^{2,\alpha}, \quad j = 1, 2, \dots,$$

be the corresponding solutions of (5.2.1) at $t = \tau_j$. For simplicity, φ_{τ_j} is denoted by φ_j , and we put $\omega^{(j)} := \omega_0 + \sqrt{-1} \, \partial \bar{\partial} \varphi_j$. In view of Theorem 5.1, the proof is reduced to showing that some subsequence of \mathcal{S} is convergent in $C^{2,\alpha}(M)_{\mathbb{R}}$ assuming that either τ_{∞} is positive or σ is strictly convex. By Theorem 5.2,

(5.3.3)
$$(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega_0, \omega^{(j)}) \leq C_3, \quad \text{for all } j = 1, 2, \dots,$$

where $C_3 := (\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega_0, \theta)$. Since $\omega^{(j)}$ belongs to $\mathcal{K}_X^{(\tau_j)}$, and since $\tau_j \leq 1$ for all j, the combination of (1.6) and (5.3.3) implies

$$|\tau_{j} \operatorname{Osc} \varphi_{j}| \leq \tau_{j} C_{0} (\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma}) (\omega_{0}, \omega^{(j)}) + C(\tau_{j})$$

$$\leq C_{0} C_{3} \tau_{j} + C(\tau_{j}) = C_{0} C_{3} \tau_{j} + C_{1} + C_{1}' \tau_{j} + C_{1}'' e^{C_{2}/\tau_{j}}$$

$$\leq C_{0} C_{3} + C_{1} + C_{1}' + C_{1}'' e^{C_{2}/\tau_{j}},$$

where if σ is strictly convex, we can set $C_1''=0$ by Theorem A. Note that the constant C_0 , C_1 , C_1' , C_1'' , C_2 , C_3 are independent of the choice of j, and that $|\tau_j \operatorname{Osc} \varphi_j|$, $j=1,2,\ldots$, are bounded from above by $C_0C_3+C_1+C_1'+C_1''e^{C_2/\tau_\infty}$ or $C_0C_3+C_1+C_1'$ according as τ_∞ is positive or σ is strictly convex. Hence, in both of these cases, we have a positive constant C_4 independent of j such that

$$\|\tau_j \varphi_j\|_{C^0(M)} \le C_4,$$

since we have $\varphi_j(p_j) = 0$ at some point $p_j \in M$ in view of the identity $\int_M \varphi_j \tilde{\omega}_0^n = 0$. Moreover, for all j,

$$\omega_{\varphi_j}^n = A(\varphi_j) \exp\{\psi_{\omega^{(j)}} - \psi_{\omega_0}\} \omega_0^n$$

$$= \left(\frac{1}{V_0} \int_M \exp(-\tau_j \varphi_j + \tilde{f}_{\omega_0}) \tilde{\omega}_0^n\right)^{-1} \exp\{-\tau_j \varphi_j + \tilde{f}_{\omega_0} + \psi_{\omega^{(j)}} - \psi_{\omega_0}\} \omega_0^n,$$

where $|\psi_{\omega^{(j)}}|$, $j=1,2,\ldots$, on M are bounded from above by

$$c := \max_{s \in [\ell_0, \ell_1]} |\sigma(s)|.$$

Therefore, we have a positive constant C_5 independent of j such that

$$\|\varphi_j\|_{C^0(M)} \le C_5$$
, for all j .

Then by standard arguments for complex Monge-Ampère equations (see for instance [M4]), \mathcal{S} is uniformly bounded in $C^{k,\alpha}(M)_{\mathbb{R}}$ for all $0 \leq k \in \mathbb{Z}$, and consequently some subsequence of \mathcal{S} is convergent in $C^{2,\alpha}(M)_{\mathbb{R}}$, as required.

Remark 5.3.4. In (b) of Lemma 5.3.2, even if σ is not strictly convex, we obtain $0 \in T_{\theta}$ just by the convexity of σ . This can be seen as follows: For each $r \in \mathbb{R}$, we put

$$\sigma_r(s) := \sigma(s) - r \log(s - \alpha_X + 1), \quad s \in I_X,$$

where α_X and I_X are as in the introduction. If r is positive, then $\ddot{\sigma}_r(s) > 0$ for all $s \in I_X$, and σ_r is strictly convex. In the arguments above, replacing σ by σ_r , we put $\psi_{\omega}^{[r]} := \sigma_r(u_{\omega})$ and $\tilde{\omega}^{[r]} := \omega \exp(-\psi_{\omega}^{[r]}/n)$ for all $\omega \in \mathcal{K}_X$. For each $\varphi \in \mathcal{H}_{X,0}^{2,\alpha}$, we put

$$\begin{cases} A^{[r]}(\varphi) = \frac{(\tilde{\omega}_{\varphi}^{[r]})^n}{(\tilde{\omega}_0^{[r]})^n} = \frac{\omega_{\varphi}^n \exp(-\psi_{\omega_{\varphi}}^{[r]})}{\omega_0^n \exp(-\psi_{\omega_0}^{[r]})}, \\ \varphi^{[r]} = \varphi - \frac{1}{V_r} \int_M \varphi(\tilde{\omega}_0^{[r]})^n, \end{cases}$$

where $V_r := \int_M (\tilde{\omega}_0^{[r]})^n$. Put $\tilde{f}_{\omega}^{[r]} := f_{\omega} + \psi_{\omega}^{[r]} + \log\{\int_M (\tilde{\omega}_0^{[r]})^n / \int_M \omega_0^n\}$ for all $\omega \in \mathcal{K}_X$. Let us define a mapping $\tilde{\Gamma} : \mathcal{H}_{X,0}^{2,\alpha} \times \mathbb{R}^2 \to C_0^{0,\alpha}(M)_{\mathbb{R}}$ by

$$\tilde{\Gamma}(\varphi, t, r) := \frac{(\tilde{\omega}_0^{[r]})^n}{\tilde{\omega}_0^n} \left\{ A^{[r]}(\varphi) - \left(\frac{1}{V_r} \int_M \exp(-t\varphi^{[r]} + \tilde{f}_{\omega_0}^{[r]})(\tilde{\omega}_0^{[r]})^n \right)^{-1} \exp(-t\varphi^{[r]} + \tilde{f}_{\omega_0}^{[r]}) \right\},$$

where $(\varphi, t, r) \in \mathcal{H}_{X,0}^{2,\alpha} \times \mathbb{R}^2$. Suppose that $\tilde{\Gamma}(\hat{\varphi}, \hat{t}, 0) = 0$ for some $(\hat{\varphi}, \hat{t}) \in \mathcal{H}_{X,0}^{2,\alpha} \times [0,1)$. Then $\Gamma(\hat{\varphi}, \hat{t}) = 0$, and the Fréchet derivative $D_{\varphi}\tilde{\Gamma} : C_{X,0}^{2,\alpha}(M)_{\mathbb{R}} \to C_{X,0}^{0,\alpha}(M)_{\mathbb{R}}$ of $\tilde{\Gamma}$ with respect to φ is written as

$$(5.3.5) D_{\varphi} \tilde{\Gamma}_{|(\varphi,t,r)=(\hat{\varphi},\hat{t},0)} = D_{\varphi} \Gamma_{|(\varphi,t)=(\hat{\varphi},\hat{t})},$$

which is invertible. Hence, in a neighbourhood U of $(\hat{t}, 0)$ in \mathbb{R}^2 , the solution $\hat{\varphi}$ of $\tilde{\Gamma}(\varphi, t, r) = 0$ at $(t, r) = (\hat{t}, 0)$ extends uniquely to

$$\hat{\varphi}_{t,r} \in C^{2,\alpha}_{X,0}(M)_{\mathbb{R}}, \quad (t,r) \in U,$$

depending on (t,r) continuously and satisfying $\tilde{\Gamma}(\hat{\varphi}_{t,r},t,r)=0$ for all $(t,r)\in U$ with $\hat{\varphi}_{\hat{t},0}=\hat{\varphi}$. As in Theorem 5.6 proved later, a slight perturbation of ω_0 (see (5.5.3)) allows us to assume that, for a sufficiently small $\delta>0$, a smooth two-parameter family of functions

(5.3.6)
$$\varphi_{t,r} \in C^{2,\alpha}_{X,0}(M)_{\mathbb{R}}, \quad (t,r) \in [1-\delta,1] \times [0,\delta],$$

exists satisfying $\theta = \omega_0 + \sqrt{-1} \, \partial \bar{\partial} \varphi_{1,0}$ and $\tilde{\Gamma}(\varphi_{t,r},t,r) = 0$ for all $(t,r) \in [1-\delta,1] \times [0,\delta]$. Then by Lemma 5.3.2 and Theorem 5.1, we see that (5.3.6) uniquely extends to a continuous family, denoted by the same notation, of functions

(5.3.7)
$$\varphi_{t,r} \in C^{2,\alpha}_{X,0}(M)_{\mathbb{R}}, \quad (0,0) \neq (t,r) \in [0,1] \times [0,\delta],$$

satisfying $\tilde{\Gamma}(\varphi_{t,r},t,r)=0$ for all $(0,0)\neq(t,r)\in[0,1]\times[0,\delta]$. On the other hand, by Appendix 4, there exists a unique element γ_r of $\mathcal{H}_{X,0}^{2,\alpha}$ such that

$$\operatorname{Ric}^{\sigma_r}(\omega_{\gamma_r}) = \omega_0.$$

Then for each $r \in [0, \delta]$, the equation $\tilde{\Gamma}(\varphi, 0, r) = 0$ in $\varphi \in \mathcal{H}_{X,0}^{2,\alpha}$ has a unique solution $\varphi = \gamma_r$. In view of (5.3.7) above, this implies

$$\varphi_{0,r} = \gamma_r, \quad 0 < r \le \delta.$$

By (5.3.5) applied to $(\hat{\varphi}, \hat{t}) = (\gamma_0, 0)$, letting δ be smaller if necessary, we see from the inverse function theorem that the solution $\varphi = \gamma_r$ of the equation $\tilde{\Gamma}(\varphi, 0, r) = 0$ in $\varphi \in \mathcal{H}^{2,\alpha}_{X,0}$ for $0 \le r \le \delta$ uniquely extends to a continuous family of functions

(5.3.8)
$$\varphi'_{t,r} \in C^{2,\alpha}_{X,0}(M)_{\mathbb{R}}, \quad (t,r) \in [0,\delta] \times [0,\delta],$$

satisfying $\varphi'_{0,r} = \gamma_r$ for $0 \le r \le \delta$ and $\tilde{\Gamma}(\varphi'_{t,r},t,r) = 0$ for all $(t,r) \in [0,\delta] \times [0,\delta]$. Comparing (5.3.7) and (5.3.8), we obtain $\varphi_{t,r} = \varphi'_{t,r}$ for all $(0,0) \ne (t,r) \in [0,\delta] \times [0,\delta]$. In particular, $\varphi_{t,0} (= \varphi'_{t,0})$ converges to $\gamma_0 (= \varphi'_{0,0})$ in $C^{2,\alpha}$ as t tends to 0. Thus, $0 \in T_{\theta}$.

By combining Lemma 5.3.2 and Remark 5.3.4, we obtain

THEOREM 5.3. If σ is convex, then by a slight perturbation of ω_0 as in (5.5.3), we have the situation that 0 belongs to T_{θ} .

Take an arbitrary $Z^0(X)$ -orbit \mathbf{O} in \mathcal{E}_X^{σ} , which is a connected component of \mathcal{E}_X^{σ} by Proposition A.5 in Appendix 5. Define a nonnegative C^{∞} function $\iota: \mathbf{O} \to \mathbb{R}$ by

(5.4.1)
$$\iota(\theta) := (\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega_0, \theta), \quad \theta \in \mathbf{O}.$$

For $\tilde{\mathcal{E}}_X^{\sigma} := \{\lambda \in \mathcal{H}_X : A(\lambda) = \exp(-\lambda + \tilde{f}_0)\}$, we have a natural identification $\tilde{\mathcal{E}}_X^{\sigma} \simeq \mathcal{E}_X^{\sigma}$ by sending each $\lambda \in \tilde{\mathcal{E}}_X^{\sigma}$ to $\omega_{\lambda} \in \mathcal{E}_X^{\sigma}$. Then the preimage, denoted by $\tilde{\mathbf{O}}$, of \mathbf{O} under the identification $\tilde{\mathcal{E}}_X^{\sigma} \simeq \mathcal{E}_X^{\sigma}$ is written as

(5.4.2)
$$\tilde{\mathbf{O}} = \{ \lambda \in C^{2,\alpha}(M)_{\mathbb{R}} ; A(\lambda) = \exp(-\lambda + \tilde{f}_0) \text{ and } \omega_{\lambda} \in \mathbf{O} \}.$$

Moreover, we put $\mathbf{O}^{\Gamma} := \{\lambda \in \mathcal{H}_{X,0}^{2,\alpha} ; \Gamma(\lambda,1) = 0 \text{ and } \omega_{\lambda} \in \mathbf{O} \}$. Then \mathbf{O}^{Γ} , \mathbf{O} and $\tilde{\mathbf{O}}$ are identified by

(5.4.3)
$$\mathbf{O}^{\Gamma} \simeq \mathbf{O} \simeq \tilde{\mathbf{O}}, \quad \lambda \leftrightarrow \omega_{\lambda} \leftrightarrow \lambda + \log \left\{ \frac{1}{V_0} \int_M \exp(-\lambda + \tilde{f}_{\omega_0}) \tilde{\omega}_0^n \right\}.$$

THEOREM 5.4. (a) Assume that σ is convex. Then the function ι : $\mathbf{O} \to \mathbb{R}$ is a proper map, and hence its absolute minimum is always attained at some point of the orbit \mathbf{O} .

- (b) Let \mathfrak{k}^{θ} be as in (A.5.3) of Appendix 5. By (5.4.3), to each $\theta \in \mathbf{O}$, we associate a unique $\lambda_{\theta} \in \tilde{\mathbf{O}}$ such that $\theta = \omega_{\lambda_{\theta}}$. Then the following are equivalent:
 - (i) θ is a critical point for ι ;
 - (ii) $\int_{M} \lambda_{\theta} v \tilde{\theta}^{n} = 0$ for all $v \in \mathfrak{t}^{\theta}$.

Proof of (a). For each positive real number r, we put $\mathbf{O}_r^{\Gamma} := \{\lambda \in \mathbf{O}^{\Gamma} : \iota(\omega_{\lambda}) \leq r\}$. By the same argument as in the proof of Lemma 5.3.2

(see the arguments after (5.3.3)), there exists a constant $C_5 = C_5(r) > 0$ independent of the choice of λ in \mathbf{O}_r^{Γ} such that

$$\|\varphi\|_{C^{2,\alpha}(M)} \le C_5$$

holds for all $\varphi \in \mathbf{O}_r^{\Gamma}$, where in this proof we use the inequality $\iota(\omega_{\varphi}) \leq r$ in place of (5.3.3). Now, (a) is straightforward.

Proof of (b). Let $\lambda = \lambda(t), -\varepsilon < t < \varepsilon$, be a smooth one-parameter family in $\tilde{\mathbf{O}}$ such that $\lambda(0) = \lambda_{\theta}$. Then $\omega_{\lambda(0)} = \theta$. In view of (A.1.1) in Appendix 1,

(5.4.4)
$$\left\{ \frac{d}{dt} \iota(\omega(t)) \right\}_{|t=0} = \int_{M} (\bar{\partial}\lambda(0), \bar{\partial}\dot{\lambda}(0))_{\theta} \tilde{\theta}^{n}$$
$$= -\int_{M} \lambda(0) (\tilde{\Box}_{\theta}\dot{\lambda}(0)) \tilde{\theta}^{n} = \int_{M} \lambda(0)\dot{\lambda}(0) \tilde{\theta}^{n},$$

where we have $\dot{\lambda}(0) \in \mathfrak{k}^{\theta}$ (= $T_{\theta}(\tilde{\mathcal{E}}_{X}^{\sigma}) = T_{\theta}(\tilde{\mathbf{O}})$) by (A.5.6) and (b) of Proposition A.5 of Appendix 5. The equivalence of (i) and (ii) is now immediate.

We now consider the Hessian of $\iota: \mathbf{O} \to \mathbb{R}$ at a critical point $\theta = \omega_{\lambda_{\theta}} \in \mathbf{O}$ of ι , where $\lambda_{\theta} \in \tilde{\mathbf{O}}$ is as in (b) of Theorem 5.4. Let $\varphi_{s,t}$, $(s,t) \in [-\varepsilon, \varepsilon] \times [-\varepsilon, \varepsilon]$, be a smooth two-parameter family of functions in $\tilde{\mathbf{O}}$ such that $\lambda_{\theta} = \varphi_{0,0}$. Put $\omega_{s,t} := \omega_{\varphi_{s,t}}$. Then

$$\varphi' := \frac{\partial \varphi_{s,t}}{\partial s}_{|(s,t)=(0,0)}$$
 and $\varphi'' := \frac{\partial \varphi_{s,t}}{\partial t}_{|(s,t)=(0,0)}$

are regarded as elements in $T_{\theta}(\mathbf{O})$ (= $T_{\theta}(\mathcal{E}_X^{\sigma})$) by the isomorphism $T_{\theta}(\mathcal{E}_X^{\sigma}) \cong \mathfrak{t}^{\theta}$ in (A.5.6) of Appendix 5. By differentiating $A(\varphi_{s,t}) = \exp(-\varphi_{s,t} + \tilde{f}_{\omega_0})$ with respect to t, we obtain

(5.5.1)
$$\tilde{\Box}_{s,t} \left(\frac{\partial \varphi_{s,t}}{\partial t} \right) = -\frac{\partial \varphi_{s,t}}{\partial t},$$

where we put $\psi_{s,t} := \psi_{\omega_{s,t}}$, $u_{s,t} := u_{\omega_{s,t}}$, $\square_{s,t} := \square_{\omega_{s,t}}$, $\tilde{\square}_{s,t} := \tilde{\square}_{\omega_{s,t}}$ for simplicity. Differentiating (5.5.1) with respect to s at the origin (s,t) = (0,0), we obtain

$$(5.5.2) \qquad (\partial \bar{\partial} \varphi', \partial \bar{\partial} \varphi'')_{\theta} - \ddot{\sigma}(u_{\theta})(\bar{X}\varphi')(\bar{X}\varphi'') = (\tilde{\square}_{\theta} + 1)\partial_{s}\partial_{t}\varphi(0).$$

94 T. Mabuchi

Here, we used the identities $\tilde{\Box}_{s,t} = \Box_{s,t} + \sqrt{-1}\dot{\sigma}(u_{s,t})\bar{X}$, $u_{s,t} = u_{\omega_0} - \sqrt{-1}\bar{X}\varphi_{s,t}$ (see (1.3) and (2.5)) and we put

$$\partial_s \partial_t \varphi(0) := \left(\frac{\partial^2 \varphi_{s,t}}{\partial s \partial t}\right)_{|(s,t)=(0,0)}.$$

Since $\tilde{\Box}_{\theta}\varphi' = -\varphi'$, by comparing the identity (5.5.2) with (A.3.1) in Appendix 3 applied to $(\omega, \zeta, v) = (\theta, \varphi', \varphi'')$, we obtain

$$(5.5.3) \qquad (\tilde{\square}_{\theta} + 1)(\partial \varphi', \partial \varphi'')_{\theta} = (\tilde{\square}_{\theta} + 1)\partial_{s}\partial_{t}\varphi(0).$$

Next, we put $\iota_{s,t} := \iota(\omega_{s,t})$ for simplicity. Then by the same computation as in (5.4.4), we obtain the identity

$$\frac{\partial \iota_{s,t}}{\partial t} = \int_{M} \varphi_{s,t} \frac{\partial \varphi_{s,t}}{\partial t} \tilde{\omega}_{s,t}^{n}.$$

In view of $\lambda_{\theta} = \varphi_{0,0}$ and (a) of Lemma 2.4, we further differentiate this with respect to s at the origin (s,t) = (0,0). Then the Hessian $(\text{Hess }\iota)_{\theta}$ of ι at θ is given by

(5.5.4)
$$(\operatorname{Hess}\iota)_{\theta}(\varphi',\varphi'') = \frac{\partial^{2}\iota_{s,t}}{\partial s \partial t}_{|(s,t)=(0,0)}$$

$$= \int_{M} \{\varphi'\varphi'' + \lambda_{\theta}\partial_{s}\partial_{t}\varphi(0) + \lambda_{\theta}\varphi''(\tilde{\square}_{\theta}\varphi')\}\tilde{\theta}^{n}$$

$$= \int_{M} \{\varphi'\varphi''(1-\lambda_{\theta}) + \lambda_{\theta}\partial_{s}\partial_{t}\varphi(0)\}\tilde{\theta}^{n}.$$

By (b) of Theorem 5.4 together with (A.5.3) of Appendix 5, we have an $X_{\mathbb{R}}$ -invariant function $\xi \in C^{\infty}(M)_{\mathbb{R}}$ such that $\lambda_{\theta} = (\tilde{\square}_{\theta} + 1)\xi$. As in [BM, (6.7)], (5.5.4) is rewritten as

$$(5.5.5) \quad (\operatorname{Hess} \iota)_{\theta}(\varphi', \varphi'') = \int_{M} \left\{ \varphi' \varphi'' (1 - \lambda_{\theta}) + \xi(\tilde{\square}_{\theta} + 1) \partial_{s} \partial_{t} \varphi(0) \right\} \tilde{\theta}^{n}$$

$$= \int_{M} \left\{ \varphi' \varphi'' (1 - \lambda_{\theta}) + \xi(\tilde{\square}_{\theta} + 1) (\partial \varphi', \partial \varphi'')_{\theta} \right\} \tilde{\theta}^{n} \quad (\text{cf. } (5.5.3))$$

$$= \int_{M} \varphi' \varphi'' \tilde{\theta}^{n} + \frac{1}{2} \int_{M} \lambda_{\theta} \left\{ (\tilde{\square}_{\theta} \varphi') \varphi'' + \varphi'(\tilde{\square}_{\theta} \varphi'') \right\} \tilde{\theta}^{n}$$

$$+ \int_{M} \lambda_{\theta} (\partial \varphi', \partial \varphi'')_{\theta} \tilde{\theta}^{n}$$

$$= \int_{M} \varphi' \varphi'' \tilde{\theta}^{n} + \frac{1}{2} \int_{M} \lambda_{\theta} \tilde{\square}_{\theta} (\varphi' \varphi'') \tilde{\theta}^{n}$$
$$= \int_{M} \varphi' \varphi'' \left(1 + \frac{1}{2} \tilde{\square}_{\theta} \lambda_{\theta} \right) \tilde{\theta}^{n}.$$

We now follows the arguments in [BM, Section 7]. Let $0 < t \le 1$ and $0 < \alpha < 1$. For each nonnegative integer k, let $C_X^{k,\alpha}(M)_{\mathbb{R}}$ be the space of all $X_{\mathbb{R}}$ -invariant functions in $C^{k,\alpha}(M)_{\mathbb{R}}$, and consider the set $\mathcal{H}_X^{2,\alpha}$ of all $\varphi \in C_X^{2,\alpha}(M)_{\mathbb{R}}$ such that $\omega_{\varphi} := \omega_0 + \sqrt{-1} \, \partial \bar{\partial} \varphi$ is a positive definite $C^{0,\alpha}$ form on M. Put

$$(\mathfrak{k}_k^{\theta})^{\perp} := \left\{ w \in C_X^{k,\alpha}(M)_{\mathbb{R}} ; \int_M wv\tilde{\theta}^n = 0 \text{ for all } v \in \mathfrak{k}^{\theta} \right\}.$$

We here observe that $\mathfrak{z}^{\theta}(X) = \mathfrak{t}^{\theta}_{\mathbb{C}}$ by Proposition A.5 in Appendix 5. In order to solve the equation $\Gamma(\varphi,t) = 0$ in $\varphi \in \mathcal{H}^{2,\alpha}_{X,0}$, it suffices to solve the following equation in $\gamma \in \mathcal{H}^{2,\alpha}_{X}$:

(5.5.6)
$$A(\gamma) = \exp(-t\gamma + \tilde{f}_{\omega_0}).$$

Because any solution $\gamma \in \mathcal{H}_X^{k,\alpha}$ of (5.5.6) allows us to obtain a solution $\varphi \in \mathcal{H}_{X,0}^{k,\alpha}$ of the equation $\Gamma(\varphi,t)=0$ by setting $\varphi:=\gamma-(1/V_0)\int_M\gamma\tilde{\omega}_0^n$. Next, we see that (5.5.6) is further reduced to the equation

$$(5.5.7) \Phi(t,\gamma) = 0,$$

where $\Phi(t,\gamma) := t\gamma - \tilde{f}_{\omega_0} + \log A(\gamma)$. Note that $(\mathfrak{k}_2^{\theta})^{\perp} \subset (\mathfrak{k}_0^{\theta})^{\perp}$. Let $P : C_X^{0,\alpha}(M)_{\mathbb{R}} \ (\cong \mathfrak{k}^{\theta} \oplus (\mathfrak{k}_0^{\theta})^{\perp}) \to \mathfrak{k}^{\theta}$ be the projection to the first factor. For each $\gamma \in \mathcal{H}_X^{2,\alpha}$, write

$$\gamma = \lambda_{\theta} + x + y$$
,

with $x := P(\gamma - \lambda_{\theta}) \in \mathfrak{k}^{\theta}$ and $y := (1 - P)(\gamma - \lambda_{\theta}) \in (\mathfrak{k}_{2}^{\theta})^{\perp}$. Now, the equation (5.5.7) is written in the form

$$P\Phi(t, \lambda_{\theta} + x + y) = 0$$
 and $\Psi(t, x, y) = 0$,

where $\Psi: \mathbb{R} \times \mathfrak{k}^{\theta} \times (\mathfrak{k}_{2}^{\theta})^{\perp} \to (\mathfrak{k}_{0}^{\theta})^{\perp}$ is the mapping defined by

$$\Psi(t,x,y) := (1-P)\Phi(t,\lambda_{\theta} + x + y), \quad (t,x,y) \in \mathbb{R} \times \mathfrak{k}^{\theta} \times (\mathfrak{k}_{2}^{\theta})^{\perp}.$$

Then $\Psi(1,0,0) = 0$ and the Fréchet derivative $D_y \Psi_{|(1,0,0)}$ of Ψ with respect to y at (t,x,y) = (1,0,0) is

$$(\mathfrak{k}_2^{\theta})^{\perp} \ni y' \longmapsto D_y \Psi_{|(1,0,0)}(y') = (\tilde{\square}_{\theta} + 1)y' \in (\mathfrak{k}_0^{\theta})^{\perp},$$

96 T. Mabuchi

which is invertible. Hence, the implicit function theorem enables us to obtain a smooth mapping $V \ni (t,x) \mapsto y_{t,x} \in (\mathfrak{k}_2^{\theta})^{\perp}$ of a small neighbourhood V of (1,0) in $\mathbb{R} \times \mathfrak{k}^{\theta}$ to the Banach space $(\mathfrak{k}_2^{\theta})^{\perp}$ such that

- i) $y_{1,0} = 0$,
- ii) $||y_{t,x}||_{C^{2,\alpha}} \leq \delta$ on V for some $\delta > 0$, and
- iii) $\Psi(t,x,y) = 0$ (where $||y||_{C^{2,\alpha}} \leq \delta$) is, as an equation in $y \in (\mathfrak{t}_2^{\theta})^{\perp}$, uniquely solvable in the form $y = y_{t,x}$ on U.

The derivative $(\partial/\partial t)y_{t,x}$ is denoted by $\dot{y}_{t,x}$ for simplicity. Then by differentiating the identity $\Psi(t,x,y_{t,x})=0$ at (t,x)=(1,0), we obtain

$$\begin{aligned} (5.5.8) \qquad & \begin{cases} (\tilde{\square}_{\theta}+1)(\dot{y}_{t,x\mid(1,0)}) = -\lambda_{\theta}, \\ (D_{x}y_{t,x})_{\mid(1,0)}(\varphi') &= 0 \quad \text{ for all } \varphi' \in \mathfrak{k}^{\theta}, \end{cases}$$

where $(D_x y_{t,x})_{|(1,0)}: \mathfrak{k}^{\theta} \to (\mathfrak{k}_2^{\theta})^{\perp}$ denotes the Fréchet derivative of the smooth mapping $V \ni (t,x) \mapsto y_{t,x} \in (\mathfrak{k}_2^{\theta})^{\perp}$ with respect to x at (t,x) = (1,0). Then the equation (5.5.7), on a small neighbourhood of $(t,\gamma) = (1,\lambda_{\theta})$, reduces to

$$\Phi_0(t,x) = 0 \quad \text{(with } \gamma = \lambda_\theta + x + y_{t,x}),$$

where we put $\Phi_0(t,x) := P\Phi(t,\lambda_\theta + x + y_{t,x})$ for $(t,x) \in V$. Since $\Phi(1,x) = 0$ for all $x \in \tilde{\mathbf{O}}$, we have $\Phi_0 = 0$ on $\{t = 1\}$, and hence the mapping

$$V_{|\{t\neq 1\}\}} \ni (t,x) \longmapsto \Phi_1(t,x) := \Phi_0(t,x)/(t-1) \in \mathfrak{k}^{\theta}$$

naturally extends to a smooth map, denoted by the same Φ_1 , of V to \mathfrak{t}^{θ} . In view of the first identity of (5.5.8), we obtain

$$\Phi_1(1,0) = (\partial \Phi_0 / \partial t)(1,0) = 0.$$

Then the Fréchet derivative $D_x\Phi_{1|(1,0)}:\mathfrak{k}^{\theta}\to\mathfrak{k}^{\theta}$ of Φ_1 with respect to x at (t,x)=(1,0) is given by the following:

Theorem 5.5. By using the notation in Section 2 on the left-hand side, we have

$$\langle\!\langle D_x \Phi_{1|(1,0)}(\varphi'), \varphi'' \rangle\!\rangle_{\tilde{\theta}} = (\operatorname{Hess} \iota)_{\theta}(\varphi', \varphi''), \quad \varphi', \varphi'' \in \mathfrak{k}^{\theta}.$$

Proof. Since $P(\tilde{\square}_{\theta} + 1) = 0$ on $(\mathfrak{t}_{2}^{\theta})^{\perp}$, the latter identity of (5.5.8) above together with (1.3) and (2.5) implies

$$D_x \Phi_{1|(1,0)}(\varphi') = \{ D_x(\partial \Phi_0/\partial t) \}_{|(1,0)}(\varphi')$$

= $\varphi' - P(\partial \bar{\partial} \dot{y}_{t,x|(1,0)}, \partial \bar{\partial} \varphi')_{\theta} + P\{ \ddot{\sigma}(u_{\theta})(\bar{X}\varphi')\bar{X}\dot{y}_{t,x|(1,0)} \}.$

Moreover, we observe the first identity of (5.5.8). Then by (A.3.2) in Appendix 3 applied to $(\omega, v_1, v_2, \zeta) = (\theta, \varphi'', \varphi', \dot{y}_{t,x|(1.0)})$, we obtain

$$\begin{split} &\langle\!\langle D_x \Phi_{1|(1,0)}(\varphi'), \varphi'' \rangle\!\rangle_{\tilde{\theta}} \\ &= \int_M \left(\varphi' - P(\partial \bar{\partial} \dot{y}_{t,x|(1,0)}, \partial \bar{\partial} \varphi')_{\theta} + P\{ \ddot{\sigma}(u_{\theta})(\bar{X}\varphi')\bar{X}\dot{y}_{t,x|(1,0)} \} \right) \varphi'' \tilde{\theta}^n \\ &= \int_M \left(\varphi' \varphi'' - \varphi'' (\partial \bar{\partial} \dot{y}_{t,x|(1,0)}, \partial \bar{\partial} \varphi')_{\theta} + \varphi'' \{ \ddot{\sigma}(u_{\theta})(\bar{X}\varphi')\bar{X}\dot{y}_{t,x|(1,0)} \} \right) \tilde{\theta}^n \\ &= \int_M \{ \varphi' \varphi'' - \varphi'' \varphi' \lambda_{\theta} + (\partial \varphi'', \partial \varphi')_{\theta} \lambda_{\theta} \} \tilde{\theta}^n \\ &= \int_M \{ \varphi' \varphi'' (1 - \lambda_{\theta}) + (\partial \varphi', \partial \varphi'')_{\theta} \lambda_{\theta} \} \tilde{\theta}^n. \end{split}$$

This together with the second equality of (5.5.5) implies the required identity.

Regarding ω_0 as a function in ε , we write

(5.5.1)
$$\omega_0 = \omega_0(\varepsilon), \quad \varepsilon \in [0, 1].$$

Hence, the corresponding $\omega_{\varphi} := \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi$, \tilde{f}_{ω_0} , ι , $A(\varphi)$, $\Gamma(t,\gamma)$, μ^{σ} and $\mathcal{H}_{X,0}^{2,\alpha}$ will be written respectively as $\omega_{\varphi}(\varepsilon)$, $\tilde{f}_{\omega_0(\varepsilon)}$, ι_{ε} , $A_{\varepsilon}(\varphi)$, $\Gamma_{\varepsilon}(t,\gamma)$, $\mu_{\varepsilon}^{\sigma}$ and $\mathcal{H}_{X,0}^{2,\alpha}(\varepsilon)$. For ι_{ε} at $\varepsilon = 0$, we see by (a) of Theorem 5.4 that the functional $\iota_0 : \mathbf{O} \to \mathbb{R}$ takes its absolute minimum at some point $\theta \in \mathbf{O}$. Then we have a unique function $\lambda_{\theta;0} \in C^{\infty}(M)_{\mathbb{R}}$ such that $\theta = \omega_{\lambda_{\theta;0}}(0)$ and that $A_0(\lambda_{\theta;0}) = \exp(-\lambda_{\theta;0} + \tilde{f}_{\omega_0(0)})$. Then by (b) of Theorem 5.4,

(5.5.2)
$$\int_{M} \lambda_{\theta;0} v \tilde{\theta}^{n} = 0 for all v \in \mathfrak{k}^{\theta},$$

and the bilinear form $(\operatorname{Hess}\iota_0)_{\theta}:\mathfrak{k}^{\theta}\times\mathfrak{k}^{\theta}\to\mathbb{R}$ is positive semidefinite. Let us now perturb $\omega_0(0)$ by setting

$$(5.5.3) \quad \omega_0(\varepsilon) := (1 - \varepsilon)\omega_0(0) + \varepsilon\theta = \omega_0(0) + \sqrt{-1}\,\partial\bar{\partial}(\varepsilon\lambda_{\theta;0}), \quad 0 \le \varepsilon \le 1.$$

Let $\lambda_{\theta;\varepsilon} \in C^{\infty}(M)_{\mathbb{R}}$ be the unique function satisfying $\theta = \omega_{\lambda_{\theta;\varepsilon}}(\varepsilon)$ and $A_{\varepsilon}(\lambda_{\theta;\varepsilon}) = -\lambda_{\theta;\varepsilon} + \tilde{f}_{\omega_0(\varepsilon)}$. By $\omega_{\lambda_{\theta;0}}(0) = \theta = \omega_{\lambda_{\theta;\varepsilon}}(\varepsilon) = \omega_0(0) + \sqrt{-1} \partial \bar{\partial}(\varepsilon \lambda_{\theta;0}) + \sqrt{-1} \partial \bar{\partial}\lambda_{\theta;\varepsilon}$, we have

(5.5.4)
$$\lambda_{\theta:\varepsilon} = (1 - \varepsilon)\lambda_{\theta:0} + C_{\varepsilon} \quad \text{for some } C_{\varepsilon} \in \mathbb{R}.$$

Since $\int_M v\tilde{\theta}^n = 0$ for all $v \in \mathfrak{k}^{\theta}$, (5.5.2) and (5.5.4) aboved imply $\int_M \lambda_{\theta;\varepsilon} v\tilde{\theta}^n = 0$ for all $v \in \mathfrak{k}^{\theta}$. Hence by (b) of Theorem 5.4, it follows that

(5.5.5)
$$\theta$$
 is a critical point for $\iota_{\varepsilon}: \mathbf{O} \to \mathbb{R}$.

Let $0 < \varepsilon \ll 1$. For all $0 \neq v \in \mathfrak{k}^{\theta}$,

$$(\operatorname{Hess} \iota_{\varepsilon})_{\theta}(v, v) = \int_{M} v^{2} \left(1 + \frac{1}{2} \tilde{\square}_{\theta} \lambda_{\theta; \varepsilon} \right) \tilde{\theta}^{n} \qquad (\text{cf. } (5.5.5))$$

$$= (1 - \varepsilon) \int_{M} v^{2} \left(1 + \frac{1}{2} \tilde{\square}_{\theta} \lambda_{\theta; 0} \right) \tilde{\theta}^{n} + \varepsilon \int_{M} v^{2} \tilde{\theta}^{n} \qquad (\text{cf. } (5.5.4))$$

$$= (1 - \varepsilon) (\operatorname{Hess} \iota_{0})_{\theta}(v, v) + \varepsilon \int_{M} v^{2} \tilde{\theta}^{n} > 0.$$

Then for such a $\omega_0 = \omega_0(\varepsilon)$ with ε fixed, Theorem 5.5 shows that $D_x \Phi_{1|(1,0)}$: $\mathfrak{k}^{\theta} \to \mathfrak{k}^{\theta}$ is invertible. Now by the implicit function theorem, the equation $\Phi_1(t,x) = 0$ in $x \in \mathfrak{k}^{\theta}$ is uniquely solvable in a small neighbourhood of (t,x) = (1,0) to produce a smooth curve x(t), $1-\delta \le t \le 1$, in \mathfrak{k}^{θ} for some $0 < \delta \ll 1$ such that

$$x(1) = 0$$
 and $\Phi_1(t, x(t)) = 0$ $(1 - \delta \le t \le 1)$.

Replacing $\delta > 0$ by a smaller number if necessary, we obtain $\Phi(t, \lambda_{\theta;\varepsilon} + x(t) + y_{t,x(t)}) = 0$ for $1 - \delta \le t \le 1$. In view of the reduction to (5.5.6) and (5.5.7), we obtain

THEOREM 5.6. For each $Z^0(X)$ -orbit \mathbf{O} in \mathcal{E}_X^{σ} , let θ be a point on \mathbf{O} at which ι in (5.4.1) takes its absolute minimum. Then replacing ω_0 by $(1-\varepsilon)\omega_0 + \varepsilon\theta$ for some $0 < \varepsilon \ll 1$, we have a $0 < \delta \ll 1$ such that there exists a smooth one-parameter family of functions $\{\varphi_t : 1 - \delta \leq t \leq 1\}$ in $\mathcal{H}_{X,0}^{2,\alpha}$ satisfying $\omega_{\varphi_1} = \theta$ and $\Gamma(t,\varphi_t) = 0$ for all $t \in [1-\delta,1]$.

Proof of Theorem C. Let \mathbf{O}' and \mathbf{O}'' be $Z^0(X)$ -orbits in \mathcal{E}_X^{σ} . We consider the nonnegative function $\iota: \mathcal{K}_X \to \mathbb{R}$ defined by

$$\iota(\omega) := (\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega_0, \omega), \quad \omega \in \mathcal{K}_X.$$

The restrictions of ι to \mathbf{O}' and \mathbf{O}'' are denoted by $\iota': \mathbf{O}' \to \mathbb{R}$ and $\iota'': \mathbf{O}'' \to \mathbb{R}$, respectively. We follow the arguments in [BM, (8.2)]. The proof is divided into three steps.

Step 1. In view of Theorem 5.6, by perturbing ω_0 if necessary, we may assume that the function ι' is critical at some $\theta' \in \mathbf{O}'$ with positive definite Hessian. Next by (a) of Theorem 5.4, the function ι'' takes its absolute minimum at some point $\theta'' \in \mathbf{O}''$. For $0 < \varepsilon \ll 1$, we define a nonnegative function ι_{ε} on \mathcal{K}_X by

$$\iota_{\varepsilon}(\omega) := (\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega_0(\varepsilon), \omega), \quad \omega \in \mathcal{K}_X.$$

Let $\iota_{\varepsilon}': \mathbf{O}' \to \mathbb{R}$ and $\iota_{\varepsilon}'': \mathbf{O}'' \to \mathbb{R}$ be the restrictions of the function ι_{ε} to \mathbf{O}' and \mathbf{O}'' , respectively. Put $\omega_0(\varepsilon) := (1 - \varepsilon)\omega_0 + \varepsilon\theta''$. Then by (5.5.5), the function ι_{ε}'' is critical at θ'' with positive definite Hessian. Moreover, by $\varepsilon \ll 1$, the restriction ι_{ε}' takes its local minimum with positive definite Hessian at some point θ_{ε}' of \mathbf{O}' near θ' . Hence, replacing ω_0 by $\omega_0(\varepsilon)$, we may assume from the begining that both $\iota': \mathbf{O}' \to \mathbb{R}$ and $\iota'': \mathbf{O}'' \to \mathbb{R}$ have critical points with positive definite Hessian. Therefore by Theorem 5.6, for some $0 < \delta \ll 1$, we have smooth one-parameter families of functions $\{\varphi_t': 1 - \delta \leq t \leq 1\}$ and $\{\varphi_t'': 1 - \delta \leq t \leq 1\}$ in $\mathcal{H}_{X,0}^{2,\alpha}$ satisfying the following conditions:

(5.7.1)
$$\Gamma(t, \varphi_t') = \Gamma(t, \varphi_t'') = 0 \quad \text{for all } t \in [1 - \delta, 1];$$

(5.7.2)
$$\lim_{t \to 1} \omega_{\varphi'_t} = \omega_{\varphi'_1} \in \mathbf{O}' \quad \text{and} \quad \lim_{t \to 1} \omega_{\varphi''_t} = \omega_{\varphi''_1} \in \mathbf{O}''.$$

Then by Theorem 5.3, these extend to smooth one-parameter families of functions $\{\varphi'_t : 0 \le t \le 1\}$ and $\{\varphi''_t : 0 \le t \le 1\}$ in $\mathcal{H}^{2,\alpha}_{X,0}$ satisfying the equalities in (5.7.1) for all $t \in [0,1]$.

Step 2. Appendix 4 shows that $\varphi_0 \in \mathcal{H}^{2,\alpha}_{X,0}$ satisfying the equation $\Gamma(\varphi_0,0)=0$ is unique. Hence, by Theorem 5.3 together with Step 1, the local uniqueness in Theorem 5.1 implies the uniqueness of a smooth one-parameter family of functions

$$\{\varphi_t \; ; \; 0 \le t < 1\}$$

in $\mathcal{H}_{X,0}^{2,\alpha}$ satisfying $\Gamma(\varphi_t,t)=0$ for all $0\leq t<1$. In particular, we obtain $\varphi_t'=\varphi_t''$ for all $0\leq t<1$. This together with (5.7.2) implies $\mathbf{O}'=\mathbf{O}''$, as required.

§6. Corollaries of Theorem C

Throughout this section, we assume that σ is convex. Let $\mu^{\sigma}: \mathcal{K}_X \to \mathbb{R}$ be the function defined in Appendix 2. Then by the arguments in [BM] and [Ba], we obtain the following corollaries of Theorem C:

COROLLARY D. If $\mathcal{E}_X^{\sigma} \neq \emptyset$, then the function $\mu^{\sigma} : \mathcal{K}_X \to \mathbb{R}$ takes its absolute minimum exactly on \mathcal{E}_X^{σ} .

COROLLARY E. If $\mathcal{E}_X^{\sigma} \neq \emptyset$, then for any, possibly non-connected, compact subgroup H of Z(X), there exists an H-invariant metric ω in \mathcal{E}_X^{σ} .

Proof of Corollary D. For an arbitrary element η of \mathcal{K}_X , we have a unique element η' of \mathcal{K}_X such that $\eta = \operatorname{Ric}^{\sigma}(\eta')$ (see for instance [M4] and Appendix 4). Put

$$\omega_0(0) = \eta$$

by the notation in (5.5.1). Choosing a $Z^0(X)$ -orbit \mathbf{O} in \mathcal{E}_X^{σ} , let θ be a point at which $\iota: \mathbf{O} \to \mathbb{R}$ in (5.4.1) takes its absolute minimum. For $0 < \varepsilon \ll 1$, we perturb $\eta = \omega_0(0)$ by

$$\omega_0(\varepsilon) := (1 - \varepsilon)\eta + \varepsilon\theta$$

as in (5.5.3). Then by Theorem 5.3 together with Theorem 5.6, we have a smooth one-parameter family of functions $\{\varphi_{t;\varepsilon} : 0 \le t \le 1\}$ in $\mathcal{H}_{X,0}^{2,\alpha}(\varepsilon)$ satisfying

$$\omega(1;\varepsilon) = \theta$$
 and $\Gamma_{\varepsilon}(t,\varphi_{t;\varepsilon}) = 0$, $0 \le t \le 1$,

where Γ_{ε} and $\mathcal{H}_{X,0}^{2,\alpha}(\varepsilon)$ are as in the arguments immediately after (5.5.1), and for simplicity we put $\omega(t;\varepsilon) := \omega_{\varphi_{t,\varepsilon}}$ for all $0 \le t \le 1$. Now by Theorem 5.2,

(6.1)
$$M^{\sigma}(\omega(0;\varepsilon),\theta) \leq 0,$$

where M^{σ} is as in Appendix 2. We next observe that $\operatorname{Ric}^{\sigma}(\eta') = \eta = \omega_0(0)$, and that $\operatorname{Ric}^{\sigma}(\omega(0;\varepsilon)) = \omega_0(\varepsilon)$. Let $\varepsilon \to 0$. Since $\omega_0(\varepsilon) \to \omega_0(0)$ in $C^{0,\alpha}$, it follows that $\omega(0;\varepsilon) \to \eta'$ in $C^{2,\alpha}$. Hence, (6.1) implies

(6.2)
$$M^{\sigma}(\eta', \theta) \leq 0$$
, i.e., $B_{\sigma} \leq \mu^{\sigma}(\eta')$ for all $\eta \in \mathcal{K}_X$,

where we put $B_{\sigma} := \mu^{\sigma}(\theta)$. On the other hand, by Theorem C and (a) of Proposition A.2 in Appendix 2, the function μ^{σ} takes a constant value B_{σ} on \mathcal{E}_{X}^{σ} . Then by Lemma 6.3 below, we have the inequality $B_{\sigma} \leq \mu^{\sigma}(\eta') \leq \mu^{\sigma}(\eta)$, and the equality $B_{\sigma} = \mu^{\sigma}(\eta)$ holds if and only if $\eta \in \mathcal{E}_{X}^{\sigma}$, as required.

LEMMA 6.3. (cf. [Ba] for Kähler-Einstein cases) For each $\omega \in \mathcal{K}_X$, let ω' be the element of \mathcal{K}_X such that $\mathrm{Ric}^{\sigma}(\omega') = \omega$. Then the inequality $\mu^{\sigma}(\omega') \leq \mu^{\sigma}(\omega)$ holds, and the equality $\mu^{\sigma}(\omega') = \mu^{\sigma}(\omega)$ holds if and only if $\omega' = \omega$, i.e., $\omega \in \mathcal{E}_X^{\sigma}$.

Proof. Put $\omega_0 := \omega$. For $c_t := \log V_0 - \log \{ \int_M \exp(t\tilde{f}_{\omega_0}) \tilde{\omega}_0^n \}$, let $\varphi_t \in \mathcal{H}_{X,0}^{2,\alpha}$ denote the solution (see for instance [M4]) of the equation:

(6.4)
$$A(\varphi_t) = \exp(t\tilde{f}_{\omega_0} + c_t), \quad 0 \le t \le 1.$$

For simplicity, we put $\omega(t) := \omega_{\varphi_t}$ and $\tilde{\Box}_t := \tilde{\Box}_{\omega(t)}$. Then $\omega(0) = \omega_0 = \omega$. Differentiating (6.4) with respect to t, we obtain $\tilde{\Box}_t \dot{\varphi}_t = \tilde{f}_{\omega_0} + \dot{c}_t$. Next by taking $\bar{\partial}\partial$ of both sides of (6.4), we see that $\mathrm{Ric}^{\sigma}(\omega(t)) - \omega(t) = \sqrt{-1}\,\partial\bar{\partial}\{(1-t)\tilde{f}_{\omega_0} - \varphi_t\}$. Therefore,

$$\frac{d}{dt}\mu^{\sigma}(\omega(t)) = -\int_{M} \dot{\varphi}_{t} \tilde{\Box}_{t} \{ (1-t)\tilde{f}_{\omega_{0}} - \varphi_{t} \} \tilde{\omega}(t)^{n}
= -(1-t) \int_{M} (\tilde{\Box}_{t} \dot{\varphi}_{t})^{2} \tilde{\omega}(t)^{n} + \int_{M} \dot{\varphi}_{t} (\tilde{\Box}_{t} \varphi_{t}) \tilde{\omega}(t)^{n}
\leq -\frac{d}{dt} \{ (\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega(0), \omega(t)) \},$$

where $\tilde{\omega}(t)$ is as in (2.3). Thus, by $\omega(0) = \omega$ and $\omega(1) = \omega'$ (cf. Appendix 4), we obtain $\mu^{\sigma}(\omega') - \mu^{\sigma}(\omega) \leq -(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega, \omega') \leq 0$, and $\mu^{\sigma}(\omega') = \mu^{\sigma}(\omega)$ if and only if $\omega' = \omega$.

We consider an arbitrary smooth path $\Lambda = \{\omega_{\lambda_t} : a \leq t \leq b\}$ sitting in \mathcal{E}_X^{σ} , where $\{\lambda_t : a \leq t \leq b\}$ is the corresponding smooth path in $C^{\infty}(M)_{\mathbb{R}}$ such that $\int_M \dot{\lambda}_t \tilde{\omega}_{\lambda_t}^n = 0$ for all t. Then the length $\mathcal{L}(\Lambda)$ of the path Λ in \mathcal{E}_X^{σ} is defined by

$$\mathcal{L}(\Lambda) := \int_a^b \left(\int_M \dot{\lambda}_t^2 \tilde{\omega}_{\lambda_t}^n \right)^{1/2} dt.$$

This naturally defines a Riemannian metric on \mathcal{E}_X^{σ} . Let $\theta \in \mathcal{E}_X^{\sigma}$. Then by the notation in Appendix 5, the identity component $Z^0(X)$ of Z(X) (see

also Section 1) is nothing but the complexification $K_{\mathbb{C}}$ of K in G (cf. (a) of Proposition A.5). Then we have:

PROPOSITION 6.5. If $\mathcal{E}_X^{\sigma} \neq \emptyset$, then Z(X) acts isometrically on \mathcal{E}_X^{σ} , and in particular, \mathcal{E}_X^{σ} is isometric to the Riemannian symmetric space $K_{\mathbb{C}}/K$ endowed with a suitable metric.

Proof. Note that $\mathcal{E}_X^{\sigma} \cong Z^0(X)/K = K^{\mathbb{C}}/K$ by Theorem C. Then it suffices to show that Z(M) acts isometrically on \mathcal{E}_X^{σ} . Let $g \in Z(M)$, and we can write $g^*\omega_0 = \omega_{\varphi_g}$ for some $\varphi_g \in C^{\infty}(M)_{\mathbb{R}}$. For a smooth path Λ in \mathcal{E}_X^{σ} as above, we have $g^*\omega_{\lambda_t} = \omega_{\xi_t}$ for all t, where $\xi_t := \varphi_g + g^*\lambda_t$. In view of $g^*\tilde{\omega}_{\lambda_t} = \tilde{\omega}_{\xi_t}$, we obtain

$$\mathcal{L}(g^*\Lambda) = \int_a^b \left(\int_M \dot{\xi}_t^2 \tilde{\omega}_{\xi_t}^n \right)^{1/2} dt = \int_a^b \left(\int_M g^* \dot{\lambda}_t^2 g^* \tilde{\omega}_{\lambda_t}^n \right)^{1/2} dt = \mathcal{L}(\Lambda),$$
 as required.

Proof of Corollary E. We follow the arguments in [BM]. By Proposition 6.5, \mathcal{E}_X^{σ} is isometric to the Riemannian symmetric space $K^{\mathbb{C}}/K$ without compact factors. Hence, \mathcal{E}_X^{σ} is a simply connected Riemannian manifold with nonpositive sectional curvature. Since the compact group H acts isometrically on \mathcal{E}_X^{σ} , the action has a fixed point in \mathcal{E}_X^{σ} , as required.

Appendix 1. Inequalities between Aubin's functionals

For $\sigma \in C^{\infty}(I_X)_{\mathbb{R}}$ as in the introduction, the purpose of this appendix is to establish inequalities between multiplier Hermitian analogues \mathcal{I}^{σ} : $\mathcal{K}_X \times \mathcal{K}_X \to \mathbb{R}$ and $\mathcal{J}^{\sigma} : \mathcal{K}_X \times \mathcal{K}_X \to \mathbb{R}$ of Aubin's functionals (cf. [A1], [BM], [T1]). Let ω' , $\omega'' \in \mathcal{K}_X$. In view of (1.1), we can write $\omega' := \omega_{\varphi'}$ and $\omega'' := \omega_{\varphi''}$ for some φ' , $\varphi'' \in \mathcal{H}_X$. Then by using the notation in (1.4), we define \mathcal{I}^{σ} and the difference $\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma}$ by

(A.1.1)
$$\left\{ \begin{aligned} &\mathcal{I}^{\sigma}(\omega', \omega'') := \int_{M} (\varphi'' - \varphi') \left\{ (\tilde{\omega}')^{n} - (\tilde{\omega}'')^{n} \right\}, \\ &\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega', \omega'') := \int_{a}^{b} \left\{ \int_{M} (\bar{\partial}\varphi_{t}, \bar{\partial}\dot{\varphi}_{t})_{\omega(t)} \tilde{\omega}(t)^{n} \right\} dt, \end{aligned} \right.$$

where $\phi := \{ \varphi_t : a \leq t \leq b \}$ is an arbitrary smooth path in \mathcal{H}_X satisfying the equalities $\varphi_a = 0$, $\varphi_b = \varphi'' - \varphi'$ and $\omega(t) = \omega' + \sqrt{-1} \, \partial \bar{\partial} \varphi_t$ for all t with $a \leq t \leq b$.

CLAIM. $(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega', \omega'')$ defined in the second line of (A.1.1) depends only on (ω', ω'') , and is independent of the choice of the path ϕ .

Proof. In view of (a) of Lemma 2.4 and the first line of (A.1.1), by using the notation in (2.3), we obtain

$$(A.1.2) \quad \frac{d}{dt} \mathcal{I}^{\sigma}(\omega', \omega(t)) = \int_{M} \dot{\varphi}_{t} \{ (\tilde{\omega}')^{n} - \tilde{\omega}(t)^{n} \} + \int_{M} (\bar{\partial}\varphi_{t}, \bar{\partial}\dot{\varphi}_{t})_{\omega(t)} \tilde{\omega}(t)^{n},$$

Hence, it suffices to show that the integral $\int_a^b \left(\int_M \dot{\varphi}_t \{ (\tilde{\omega}')^n - \tilde{\omega}(t)^n \} \right) dt$ is independent of the choice of the path ϕ above. Let

$$[0,1] \times [a,b] \ni (s,t) \longmapsto \varphi_{s,t} \in C^{\infty}(M)_{\mathbb{R}}$$

be a smooth 2-parameter family of functions in $C^{\infty}(M)_{\mathbb{R}}$ such that $\omega_{\varphi_{s,t}} \in \mathcal{K}_X$ for all (s,t). For such a family $\varphi = \varphi_{s,t}$ of functions, we consider the 1-form

$$\Theta := \left(\int_{M} \frac{\partial \varphi}{\partial s} \left\{ (\tilde{\omega}')^{n} - \tilde{\omega}_{\varphi}^{n} \right\} \right) ds + \left(\int_{M} \frac{\partial \varphi}{\partial t} \left\{ (\tilde{\omega}')^{n} - \tilde{\omega}_{\varphi}^{n} \right\} \right) dt$$

on $[0,1] \times [a,b]$. In view of (2.2) and (2.5),

$$d\Theta = ds \wedge dt \int_{M} \left\{ \frac{\partial \varphi}{\partial s} \frac{\partial}{\partial t} \left(\tilde{\omega}_{\varphi}^{n} \right) - \frac{\partial \varphi}{\partial t} \frac{\partial}{\partial s} \left(\tilde{\omega}_{\varphi}^{n} \right) \right\}$$
$$= ds \wedge dt \int_{M} \left\{ \frac{\partial \varphi}{\partial s} \left(\tilde{\square}_{\omega_{\varphi}} \frac{\partial \varphi}{\partial t} \right) - \frac{\partial \varphi}{\partial t} \left(\tilde{\square}_{\omega_{\varphi}} \frac{\partial \varphi}{\partial s} \right) \right\} \tilde{\omega}_{\varphi}^{n} = 0,$$

and this implies the required independence.

Next, take the infinitesimal form of the second line of (A.1.1) with respect to t, and subtract it from (A.1.2). Then by integration,

(A.1.3)
$$\mathcal{J}^{\sigma}(\omega', \omega'') = \int_{a}^{b} \left(\int_{M} \dot{\varphi}_{t} \left\{ (\tilde{\omega}')^{n} - \tilde{\omega}(t)^{n} \right\} \right) dt$$

for $\omega(t)$ and ϕ as above. In (A.1.1) and (A.1.3), we choose ϕ such that $\varphi_t := t\hat{\varphi}, \ 0 \le t \le 1$, where $a = 0, \ b = 1$ and $\hat{\varphi} := \varphi'' - \varphi'$. Then

$$\begin{aligned} & \left\{ \mathcal{I}^{\sigma}(\omega',\omega'') = f(1), \quad \mathcal{J}^{\sigma}(\omega',\omega'') = \int_{0}^{1} f(t) \, dt, \\ & \left(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega',\omega'') = \int_{0}^{1} \left\{ f(1) - f(t) \right\} dt, \\ & \left(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega',\omega'') = \int_{0}^{1} \left\{ \int_{M} t(\bar{\partial}\hat{\varphi},\bar{\partial}\hat{\varphi})_{\omega(t)} \tilde{\omega}(t)^{n} \right\} dt \geq 0, \end{aligned}$$

where f = f(t) is defined by

$$f(t) := \int_{M} \hat{\varphi} \{ (\tilde{\omega}')^{n} - \tilde{\omega}(t)^{n} \} = t^{-1} \mathcal{I}^{\sigma}(\omega', \omega(t))$$
$$= t^{-1} \mathcal{I}^{\sigma}(\omega', \omega' + t(\omega'' - \omega')).$$

In the last inequality of (A.1.4), we easily see that $(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega', \omega'') = 0$ if and only if ω' coincides with ω'' . Let k be a nonnegative real number. Replacing $\sigma \in C^{\infty}(I_X)_{\mathbb{R}}$ by $k\sigma \in C^{\infty}(I_X)_{\mathbb{R}}$, we have functionals $\mathcal{J}^{k\sigma}$: $\mathcal{K}_X \times \mathcal{K}_X \to \mathbb{R}$ and $\mathcal{I}^{k\sigma} : \mathcal{K}_X \times \mathcal{K}_X \to \mathbb{R}$. For instance, if k = 0, then $\mathcal{I}^{k\sigma}$ and $\mathcal{J}^{k\sigma}$ are nothing but the restriction to $\mathcal{K}_X \times \mathcal{K}_X$ of the ordinary Aubin's functional \mathcal{I} and \mathcal{J} . Put $c := \max_{s \in I_X} |\sigma(s)|$ as in the introduction. Then by the last line of (A.1.4), we can easily compare $\mathcal{I}^{k\sigma} - \mathcal{J}^{k\sigma}$ and $\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma}$ as follows:

LEMMA A.1.5. For all $\omega', \omega'' \in \mathcal{K}_X$, using the notation in (1.2), we have the inequalities $e^{-|k-1|c}(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega', \omega'') \leq (\mathcal{I}^{k\sigma} - \mathcal{J}^{k\sigma})(\omega', \omega'') \leq e^{|k-1|c}(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega', \omega'')$.

Put $b_{\sigma} := (\beta_X - \alpha_X) \max_{s \in I_X} |\dot{\sigma}(s)| > 0$. To each positive real number m > 0, we associate a function $q_m = q_m(t)$ on the closed interval [0,1] by setting

$$q_m(t) := 1 - (1 - t)^{m+1}, \quad 0 \le t \le 1.$$

LEMMA A.1.6. If $m:=n-1+b_{\sigma}$, then $f(t)\leq f(1)q_m(t)$ for all $0\leq t\leq 1$,

Proof. We may assume that $\hat{\varphi}$ is nonconstant. For $\omega(t) = \omega' + t\sqrt{-1}\,\partial\bar{\partial}\hat{\varphi}$, we write the function $\psi_{\omega(t)}$ just as $\psi(t)$ for simplicity. By differentiation, the definition of f(t) yields

$$\dot{f}(t) = -\int_{M} \hat{\varphi} \left(\tilde{\square}_{\omega(t)} \, \hat{\varphi} \right) \tilde{\omega}(t)^{n} = \int_{M} (\bar{\partial} \hat{\varphi}, \bar{\partial} \hat{\varphi})_{\omega(t)} \tilde{\omega}(t)^{n}$$
$$= n\sqrt{-1} \int_{M} (\partial \hat{\varphi} \wedge \bar{\partial} \hat{\varphi}) e^{-\psi(t)} \omega(t)^{n-1} > 0,$$

and by f(0) = 0, we have f(t) > 0 for all $0 < t \le 1$. Differentiate the equality just above with respect to t. Then by $u_{\omega(t)} = u_{\omega'} + t\sqrt{-1} X\hat{\varphi}$ and $\dot{\psi}(t) = \sqrt{-1} \dot{\sigma}(u_{\omega}) X\hat{\varphi}$,

$$\ddot{f}(t) = n\sqrt{-1} \int_{M} \partial \hat{\varphi} \wedge \bar{\partial} \hat{\varphi} \left\{ -\omega(t)\dot{\psi}(t) + (n-1)\sqrt{-1} \,\partial \bar{\partial} \hat{\varphi} \right\} e^{-\psi(t)} \omega(t)^{n-2}$$

$$= n\sqrt{-1} \int_{M} \partial \hat{\varphi} \wedge \bar{\partial} \hat{\varphi}$$
$$\wedge \left\{ -\sqrt{-1} \,\omega(t) \dot{\sigma}(u_{\omega(t)}) X \hat{\varphi} + (n-1)\sqrt{-1} \,\partial \bar{\partial} \hat{\varphi} \right\} e^{-\psi(t)} \omega(t)^{n-2}.$$

Now by $\max_M |X\hat{\varphi}| \leq \max_M |u_{\omega(1)} - u_{\omega(0)}| \leq \beta_X - \alpha_X$, we have

$$\max_{M} |\dot{\sigma}(u_{\omega(t)}) X \hat{\varphi}| \le b_{\sigma}$$

for all $0 \le t \le 1$. By $(1-t)\sqrt{-1}\,\partial\bar{\partial}\hat{\varphi} + \omega(t) = \omega'' > 0$, we further obtain

$$(1-t)\left\{-\sqrt{-1}\,\omega(t)\dot{\sigma}(u_{\omega(t)})X\hat{\varphi}+(n-1)\sqrt{-1}\,\partial\bar{\partial}\hat{\varphi}\right\}+m\omega(t)>0$$

for all $0 \le t \le 1$. Hence,

$$(1-t)\ddot{f}(t) + m\dot{f}(t) > 0, \quad 0 \le t \le 1.$$

This implies $(d/dt)(\log \dot{f}(t)) > -m/(1-t) = (d/dt)(\log \dot{q}(t))$ for $0 \le t < 1$, where we put $q(t) := f(1)q_m(t)$ for simplicity. Hence, $\dot{f}(t)/\dot{q}(t)$ is monotone increasing for $0 \le t < 1$, while we have both $\dot{f}(1) > 0 = \dot{q}(1)$ and f(1) = q(1). Therefore, if there were $t_0 \in (0,1)$ such that $f(t_0) = q(t_0)$, then in view of the behaviour of the curve $\{(f(t),q(t)); 0 \le t \le 1\}$, it would follow that $\dot{f}(t_0) < \dot{q}(t_0)$ in contradiction to f(0) = 0 = q(0). We now conclude that $f(t) \le q(t)$ for all $0 \le t \le 1$, as required.

Remark A.1.7. If $\sigma(s) = -\log(s+C)$, $s \in I_X$, for some real constant $C > -\alpha_X$, then we obtain $f(t) \leq f(1)q_n(t)$ for all $0 \leq t \leq 1$ as follows: For such a function σ , we have

$$e^{-\psi_{\omega(t)}} = u_{\omega'} + t\sqrt{-1}X\hat{\varphi} + C$$
 and $-\dot{\sigma}(u_{\omega(t)})e^{-\psi_{\omega(t)}} = 1$,

and $-(1-t)\sqrt{-1}\dot{\sigma}(u_{\omega(t)})e^{-\psi_{\omega(t)}}X\hat{\varphi} + e^{-\psi_{\omega(t)}} = u_{\omega'} + \sqrt{-1}X\hat{\varphi} + C = e^{-\psi_{\omega''}} > 0$ follows. Hence, in view of $(1-t)\sqrt{-1}\partial\bar{\partial}\hat{\varphi} + \omega(t) = \omega'' > 0$, we obtain

$$(1-t)\left\{-\sqrt{-1}\,\omega(t)\dot{\sigma}(u_{\omega(t)})X\hat{\varphi}+(n-1)\sqrt{-1}\,\partial\bar{\partial}\hat{\varphi}\right\}+n\omega(t)>0.$$

Then $(1-t)\ddot{f}(t) + n\dot{f}(t) > 0$ for all $0 \le t \le 1$. Finally, the same argument as in the above proof of Lemma A.1.6 yields the required inequality.

In the definition of f(t), since $\omega(1) = \omega''$, we obtain

$$f(1) - f(t) = \int_{M} (-\hat{\varphi}) \{ (\tilde{\omega}'')^n - \tilde{\omega}(t)^n \},$$

where $\omega(t) = \omega'' + (1-t)\partial\bar{\partial}(-\hat{\varphi})$. Replace 1-t by t. Then by (A.1.3), the right-hand side of the middle line of (A.1.4) is regarded as $\mathcal{J}^{\sigma}(\omega'', \omega')$. Hence,

(A.1.8)
$$\mathcal{J}^{\sigma}(\omega', \omega'') + \mathcal{J}^{\sigma}(\omega'', \omega') = \mathcal{I}^{\sigma}(\omega', \omega'') = \mathcal{I}^{\sigma}(\omega'', \omega'), \quad \omega', \omega'' \in \mathcal{K}_X.$$

By Lemma A.1.6, we have $f(1) - f(t) \ge f(1)(1 - q_m(t))$ for all $0 \le t \le 1$. Integrating this inequality over [0,1], we see that

$$(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega', \omega'') \ge f(1) \int_0^1 (1 - q_m(t)) dt$$

= $(m+2)^{-1} f(1) = (m+2)^{-1} \mathcal{I}^{\sigma}(\omega', \omega'').$

Hence, by (A.1.8), we obtain the following fundamental inequalities between the multiplier Hermitian analogues of Aubin's functionals:

PROPOSITION A.1.
$$0 \leq \mathcal{I}^{\sigma}(\omega', \omega'') \leq (m+2)(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega', \omega'') \leq (m+1)\mathcal{I}^{\sigma}(\omega', \omega'')$$
 for all ω' , $\omega'' \in \mathcal{K}_X$, where $m := n-1+b_{\sigma}$.

Remark A.1.9. Suppose that $\sigma(s) = -\log(s+C)$, $s \in I_X$, for some real constant $C > -\alpha_X$. Then by Remark A.1.7, we can improve the estimate as follows:

$$0 \le \mathcal{I}^{\sigma}(\omega', \omega'') \le (n+2)(\mathcal{I}^{\sigma} - \mathcal{J}^{\sigma})(\omega', \omega'') \le (n+1)\mathcal{I}^{\sigma}(\omega', \omega'').$$

Appendix 2. K-energy maps for multiplier Hermitian metrics

In this appendix, we shall define a multiplier Hermitian analogue μ^{σ} : $\mathcal{K}_X \to \mathbb{R}$ of the K-energy map, where the Kähler class of \mathcal{K} is assumed to be $2\pi c_1(M)_{\mathbb{R}}$. As in (2.8) in Section 2, we have functions $\tilde{f}_{\omega} \in \mathcal{K}_X$, $\omega \in \mathcal{K}_X$, such that

(A.2.1)
$$\begin{cases} \operatorname{Ric}^{\sigma}(\omega) - \omega = \sqrt{-1} \, \partial \bar{\partial} \tilde{f}_{\omega}; \\ \tilde{f}_{\omega} := f_{\omega} + \psi_{\omega} + \log \left(\frac{\int_{M} \tilde{\omega}_{0}^{n}}{\int_{M} \omega_{0}^{n}} \right) = f_{\omega} + \sigma(u_{\omega}) + \log \left(\frac{\int_{M} \tilde{\omega}_{0}^{n}}{\int_{M} \omega_{0}^{n}} \right), \end{cases}$$

where f_{ω} is as in (2.8). For ω' and ω'' in \mathcal{K}_X , let $\{\varphi_t : a \leq t \leq b\}$ be an arbitrary smooth path in \mathcal{H}_X such that $\omega(a) = \omega'$ and $\omega(b) = \omega''$, where we put

(A.2.2)
$$\omega(t) := \omega_{\varphi_t} = \omega_0 + \sqrt{-1} \, \partial \bar{\partial} \varphi_t, \quad a \le t \le b.$$

LEMMA A.2.3. In the below, we use the notation (1.4), and in particular, $\tilde{\omega}(t)$ is as in (2.3). Then the integral $M^{\sigma}(\omega', \omega'')$ defined below depends only on the pair (ω', ω'') , and is independent of the choice of the path $\{\varphi_t : a \leq t \leq b\}$ in \mathcal{H}_X :

$$\begin{split} M^{\sigma}(\omega',\omega'') &:= \int_{a}^{b} \biggl\{ \int_{M} (\bar{\partial} \tilde{f}_{\omega(t)}, \bar{\partial} \dot{\varphi}_{t})_{\omega(t)} \tilde{\omega}(t)^{n} \biggr\} \\ &= - \int_{a}^{b} \biggl\{ \int_{M} \tilde{f}_{\eta_{t}} \bigl(\tilde{\Box}_{\omega(t)} \dot{\varphi}_{t} \bigr) \tilde{\omega}(t)^{n} \biggr\}. \end{split}$$

Proof. Let $[0,1] \times [a,b] \ni (s,t) \mapsto \varphi_{s,t} \in \mathcal{H}_X$ be a smooth 2-parameter family of functions in \mathcal{H}_X . Then $\eta_{s,t} := \omega_{\varphi_{s,t}}$ sits in \mathcal{K}_X for all (s,t). For simplicity, $f_{\eta_{s,t}}$, $\tilde{f}_{\eta_{s,t}}$, $\psi_{\eta_{s,t}}$, $u_{\eta_{s,t}}$, $\square_{\eta_{s,t}}$, $\tilde{\square}_{\eta_{s,t}}$ are denoted by $f_{s,t}$, $\tilde{f}_{s,t}$, $\psi_{s,t}$, $u_{s,t}$,

$$\Theta := \left\{ \int_{M} \tilde{f}_{s,t} (\tilde{\square}_{s,t} \partial_{s} \varphi) \tilde{\omega}_{s,t}^{n} \right\} ds + \left\{ \int_{M} \tilde{f}_{s,t} (\tilde{\square}_{s,t} \partial_{t} \varphi) \tilde{\omega}_{s,t}^{n} \right\} dt,$$

where $\partial_s \varphi := \partial \varphi_{s,t}/\partial s$ and $\partial_t \varphi := \partial \varphi_{s,t}/\partial t$. Then the proof is reduced to showing $d\Theta = 0$ on $[0,1] \times [a,b]$. By $\tilde{\Box}_{s,t} = \Box_{s,t} + \sqrt{-1} \dot{\sigma}(u_{s,t}) \bar{X}$ and [M5, (2.6.1)],

$$\begin{split} \frac{\partial}{\partial t} \left(\tilde{\square}_{s,t} \partial_s \varphi \right) &- \frac{\partial}{\partial s} \left(\tilde{\square}_{s,t} \partial_t \varphi \right) \\ &= \sqrt{-1} \frac{\partial}{\partial t} \left\{ \dot{\sigma}(u_{s,t}) \bar{X}(\partial_s \varphi) \right\} - \sqrt{-1} \frac{\partial}{\partial s} \left\{ \dot{\sigma}(u_{s,t}) \bar{X}(\partial_t \varphi) \right\} \\ &= \sqrt{-1} \, \ddot{\sigma}(u_{s,t}) \frac{\partial u_{s,t}}{\partial t} \bar{X}(\partial_s \varphi) - \sqrt{-1} \, \ddot{\sigma}(u_{s,t}) \frac{\partial u_{s,t}}{\partial s} \bar{X}(\partial_t \varphi) \\ &= \ddot{\sigma}(u_{s,t}) \bar{X}(\partial_t \varphi) \bar{X}(\partial_s \varphi) - \ddot{\sigma}(u_{s,t}) \bar{X}(\partial_s \varphi) \bar{X}(\partial_t \varphi) = 0, \end{split}$$

where we used the equality $u_{s,t} = u_{\omega_0} - \sqrt{-1} \bar{X} \varphi_{s,t}$ (see Section 2). Hence, by $(\partial/\partial t)(\tilde{\omega}_{s,t}^n) = (\tilde{\square}_{s,t}\partial_t\varphi)\tilde{\omega}_{s,t}^n$ and $(\partial/\partial s)(\tilde{\omega}_{s,t}^n) = (\tilde{\square}_{s,t}\partial_s\varphi)\tilde{\omega}_{s,t}^n$, we obtain

$$(A.2.4) d\Theta = ds \wedge dt \int_{M} \left\{ -\frac{\partial \tilde{f}_{s,t}}{\partial t} (\tilde{\square}_{s,t} \partial_{s} \varphi) + \frac{\partial \tilde{f}_{s,t}}{\partial s} (\tilde{\square}_{s,t} \partial_{t} \varphi) \right\} \tilde{\omega}_{s,t}^{n}.$$

On the other hand,

$$\frac{\partial f_{s,t}}{\partial t} = -(\Box_{s,t} + 1)\partial_t \varphi + C'_{s,t} \quad \text{and} \quad \frac{\partial f_{s,t}}{\partial s} = -(\Box_{s,t} + 1)\partial_s \varphi + C''_{s,t}$$

for some real constants $C'_{s,t}$ and $C''_{s,t}$ depending only on s and t. Hence, by $\psi_{s,t} = \sigma(u_{s,t}) = \sigma(u_{\omega_0} - \sqrt{-1} \bar{X} \varphi_{s,t})$, we see that

(A.2.5)

$$\begin{cases} \frac{\partial \tilde{f}_{s,t}}{\partial t} = -(\Box_{s,t}+1)\partial_t\varphi + \frac{\partial \psi_{s,t}}{\partial t} + C'_{s,t} = -(\tilde{\Box}_{s,t}+1)\partial_t\varphi + C'_{s,t}, \\ \frac{\partial \tilde{f}_{s,t}}{\partial s} = -(\Box_{s,t}+1)\partial_s\varphi + \frac{\partial \psi_{s,t}}{\partial s} + C''_{s,t} = -(\tilde{\Box}_{s,t}+1)\partial_s\varphi + C''_{s,t}. \end{cases}$$

By (A.2.4) and (A.2.5), we finally obtain the following required identity:

$$d\Theta = ds \wedge dt \int_{M} \{ \partial_{t} \varphi (\tilde{\square}_{s,t} \partial_{s} \varphi) - \partial_{s} \varphi (\tilde{\square}_{s,t} \partial_{t} \varphi) \} \tilde{\omega}_{s,t}^{n} = 0.$$

By Lemma A.2.3 above, for all ω , ω' , $\omega'' \in \mathcal{K}_X$, it is easily seen that M^{σ} satisfies the 1-cocycle conditions

П

$$\begin{cases} M^{\sigma}(\omega, \omega') + M^{\sigma}(\omega', \omega) = 0, \\ M^{\sigma}(\omega, \omega') + M^{\sigma}(\omega', \omega'') + M^{\sigma}(\omega'', \omega) = 0. \end{cases}$$

As a multiplier Hermitian analogue of a K-energy map, we can now define $\mu^{\sigma}: \mathcal{K}_{X} \to \mathbb{R}$ by setting $\mu^{\sigma}(\omega) := M^{\sigma}(\omega_{0}, \omega)$ for all $\omega \in \mathcal{K}_{X}$. As in the introduction, let \mathcal{E}_{X}^{σ} denote the set of all ω in \mathcal{K}_{X} such that $\mathrm{Ric}^{\sigma}(\omega) = \omega$. Then by (A.2.1) and Lemma A.2.3 together with (b) of Lemma 2.9, we obtain

PROPOSITION A.2. (a) An element ω in \mathcal{K}_X is a critical point of μ_{σ} : $\mathcal{K}_X \to \mathbb{R}$ if and only if $\omega \in \mathcal{E}_X^{\sigma}$, i.e., the function \tilde{f}_{ω} defined in (A.2.1) is zero everywhere on M.

(b) For an arbitrary smooth path $\{\varphi_t : a \leq t \leq b\}$ in \mathcal{H}_X , the one-parameter family of Kähler forms $\omega(t)$, $a \leq t \leq b$, in \mathcal{K}_X defined by (A.2.2) satisfies

$$\frac{d}{dt}\mu^{\sigma}(\omega(t)) = \int_{M} (\bar{\partial}\tilde{f}_{\omega(t)}, \bar{\partial}\dot{\varphi}_{t})_{\omega(t)}\tilde{\omega}(t)^{n}, \quad a \leq t \leq b.$$

Appendix 3. Technical equalities related to the operator $\tilde{\square}_{\omega}$

In this appendix, related to the operator $\tilde{\square}_{\omega}$, some technical equalities analogous to those in [BM, Lemma 2.3] will be given. Note that, by the notation in (2.6) and Appendix 5, we have the inclusion $\operatorname{Ker}_{\mathbb{R}}(\tilde{\square}_{\omega}+1) \subset \mathfrak{g}^{\omega}$ for all $\omega \in \mathcal{E}_X^{\sigma}$. Now, we have:

PROPOSITION A.3. Let $\omega \in \mathcal{E}_X^{\sigma}$ and $\zeta \in C^{\infty}(M)_{\mathbb{R}}$. Then for all $v, v_1, v_2 \in \operatorname{Ker}_{\mathbb{R}}(\tilde{\square}_{\omega} + 1)$,

$$(A.3.1) \quad \tilde{\square}_{\omega}(\partial \zeta, \partial v)_{\omega} = (\partial \bar{\partial} \zeta, \partial \bar{\partial} v)_{\omega} + (\partial (\tilde{\square}_{\omega} \zeta), \partial v)_{\omega} - \ddot{\sigma}(u_{\omega})(\bar{X}\zeta)(\bar{X}v).$$

In particular, $(\tilde{\square}_{\omega} + 1)(\partial v_1, \partial v_2)_{\omega} = (\partial \bar{\partial} v_1, \partial \bar{\partial} v_2)_{\omega} - \ddot{\sigma}(u_{\omega})(\bar{X}v_1)(\bar{X}v_2) = (\tilde{\square}_{\omega} + 1)(\partial v_2, \partial v_1)_{\omega}$, and

$$\begin{split} (\mathrm{A}.3.2) \qquad & \int_{M} \{ v_{1}v_{2} - (\partial v_{1}, \partial v_{2})_{\omega} \} \{ (\tilde{\square}_{\omega} + 1)\zeta \} \tilde{\omega}^{n} \\ & = - \int_{M} v_{1} (\partial \bar{\partial} \zeta, \partial \bar{\partial} v_{2})_{\omega} \tilde{\omega}^{n} + \int_{M} \ddot{\sigma}(u_{\omega}) v_{1}(\bar{X}\zeta) (\bar{X}v_{2}) \tilde{\omega}^{n}. \end{split}$$

Proof. (A.3.1) follows from (1.3) and [BM, (2.3.1)] in view of the following identities:

$$(\partial \{\sqrt{-1}\,\dot{\sigma}(u_{\omega})\bar{X}\zeta\},\partial v)_{\omega} - \sqrt{-1}\,\dot{\sigma}(u_{\omega})\bar{X}(\partial \zeta,\partial v)_{\omega} = (\bar{X}\zeta)\ddot{\sigma}(u_{\omega})\sqrt{-1}\,(\partial u_{\omega},\partial v)_{\omega} = \ddot{\sigma}(u_{\omega})(\bar{X}\zeta)(\bar{X}v).$$

For (A.3.2), put $\xi := (\tilde{\square}_{\omega} + 1)\zeta$. Then following [BM, p. 21], by (1.3) and (1.4), we obtain

$$\begin{split} \int_{M} \{v_{1}v_{2} - (\partial v_{1}, \partial v_{2})_{\omega}\}\xi\tilde{\omega}^{n} &= -\int_{M} \{v_{1}(\tilde{\square}_{\omega}v_{2}) + (\partial v_{1}, \partial v_{2})_{\omega}\}\xi\tilde{\omega}^{n} \\ &= -\sqrt{-1}\int_{M} (v_{1}\partial\bar{\partial}v_{2} + \partial v_{1}\wedge\bar{\partial}v_{2})\xi\wedge ne^{-\psi_{\omega}}\omega^{n-1} \\ &\quad + \int_{M} v_{1}(\partial\psi_{\omega}, \partial v_{2})_{\omega}\xi e^{-\psi_{\omega}}\omega^{n} \\ &= -\sqrt{-1}\int_{M} \partial(v_{1}\bar{\partial}v_{2})\xi\wedge ne^{-\psi_{\omega}}\omega^{n-1} \\ &\quad + \sqrt{-1}\int_{M} v_{1}(\partial\psi_{\omega}\wedge\bar{\partial}v_{2})\xi\wedge ne^{-\psi_{\omega}}\omega^{n-1} \\ &= \sqrt{-1}\int_{M} v_{1}\partial\xi\wedge\bar{\partial}v_{2}\wedge ne^{-\psi_{\omega}}\omega^{n-1} = \int_{M} v_{1}(\partial\xi, \partial v_{2})_{\omega}\tilde{\omega}^{n} \end{split}$$

$$= \int_{M} v_{1}(\partial(\tilde{\square}_{\omega}\zeta), \partial v_{2})_{\omega}\tilde{\omega}^{n} + \int_{M} v_{1}(\partial\zeta, \partial v_{2})_{\omega}\tilde{\omega}^{n}.$$

This together with (A.3.1) above implies the required identity (A.3.2) as follows:

$$\begin{split} &\int_{M} \{v_{1}v_{2} - (\partial v_{1}, \partial v_{2})_{\omega}\}\xi\tilde{\omega}^{n} + \int_{M} (\partial\bar{\partial}\zeta, \partial\bar{\partial}v_{2})_{\omega}v_{1}\tilde{\omega}^{n} \\ &= \int_{M} \{\tilde{\Box}_{\omega}(\partial\zeta, \partial v_{2})_{\omega} + \ddot{\sigma}(u_{\omega})(\bar{X}\zeta)(\bar{X}v_{2})\}v_{1}\tilde{\omega}^{n} + \int_{M} v_{1}(\partial\zeta, \partial v_{2})_{\omega}\tilde{\omega}^{n} \\ &= \int_{M} (\partial\zeta, \partial v_{2})_{\omega} \overline{\{(\tilde{\Box}_{\omega} + 1)v_{1}\}}\tilde{\omega}^{n} + \int_{M} \ddot{\sigma}(u_{\omega})v_{1}(\bar{X}\zeta)(\bar{X}v_{2})\tilde{\omega}^{n} \\ &= \int_{M} \ddot{\sigma}(u_{\omega})v_{1}(\bar{X}\zeta)(\bar{X}v_{2})\tilde{\omega}^{n}. \end{split}$$

Appendix 4. Uniqueness of solutions for equations of Calabi-Yau's type

П

Fix $\omega_0 \in \mathcal{K}_X$ and $\sigma \in C^{\infty}(I_X)_{\mathbb{R}}$ as in the introduction, and let V_0 be as in Lemma 2.4. In this appendix, we discuss the following equation of Calabi-Yau's type:

(A.4.1)
$$\operatorname{Ric}^{\sigma}(\omega) = \omega_0.$$

Here, any solution ω of (A.4.1) is required to belong to \mathcal{K}_X . The purpose of this appendix is to show the following uniqueness:

PROPOSITION A.4. The equation (A.4.1) has a unique solution ω in \mathcal{K}_X .

Before getting into the proof, we give some remark. Let $0 < \alpha < 1$, and we consider the mapping $\Gamma : \mathcal{H}_{X,0}^{2,\alpha} \times \mathbb{R} \to C_0^{0,\alpha}(M)_{\mathbb{R}}$ defined in (5.1.2) by

$$\Gamma(\varphi,t) := A(\varphi) - \left\{ \frac{1}{V_0} \int_M \exp(-t\varphi + \tilde{f}_{\omega_0}) \tilde{\omega}_0^n \right\}^{-1} \exp(-t\varphi + \tilde{f}_{\omega_0}),$$

where $V_0 := \int_M \tilde{\omega}^n$ and $A(\varphi) := \tilde{\omega}_{\varphi}^n / \tilde{\omega}_0^n$. Note that, if $(\varphi, t) \in \mathcal{H}_{X,0}^{2,\alpha} \times \mathbb{R}$ satisfies $\Gamma(\varphi, t) = 0$, then φ automatically belongs to $C^{\infty}(M)_{\mathbb{R}}$. Hence, it is easily seen that the set of the solutions of (A.4.1) and the set of the solutions of $\Gamma(\varphi, 0) = 0$ are identified by

(A.4.2)
$$\{\varphi \in \mathcal{H}_{X,0}^{2,\alpha} : \Gamma(\varphi,0) = 0\} \simeq \{\omega \in \mathcal{K}_X : \operatorname{Ric}^{\sigma}(\omega) = \omega_0\}, \quad \varphi \leftrightarrow \omega_{\varphi}.$$

Proof of Proposition A.4. By (A.4.2), it suffices to show that $\varphi \in \mathcal{H}_{X,0}^{2,\alpha}$ satisfying $\Gamma(\varphi,0) = 0$ is unique. Suppose that φ' , φ'' in $\mathcal{H}_{X,0}^{2,\alpha}$ satisfy

$$\Gamma(\varphi', 0) = 0 = \Gamma(\varphi'', 0).$$

Since the Fréchet derivatives $D_{\varphi}\Gamma_{|(\varphi',0)}$, $D_{\varphi}\Gamma_{|(\varphi'',0)}$ are invertible (cf. (5.1.5)), we have smooth one-parameter families $\{\varphi'_t : -\varepsilon < t \leq 0\}$, $\{\varphi''_t : -\varepsilon < t \leq 0\}$ (where $0 < \varepsilon \ll 1$) of functions in $\mathcal{H}^{k,\alpha}_{X,0}$ satisfying $\varphi'_0 = \varphi'$ and $\varphi''_0 = \varphi''$ such that $\Gamma(\varphi'_t, t) = 0 = \Gamma(\varphi''_t, t)$ for all t with $-\varepsilon < t < 0$. Put

$$e_t' := \frac{1}{V_0} \int_M \exp(-t\varphi_t' + \tilde{f}_{\omega_0}) \tilde{\omega}_0^n \quad \text{and} \quad e_t'' := \frac{1}{V_0} \int_M \exp(-t\varphi_t'' + \tilde{f}_{\omega_0}) \tilde{\omega}_0^n.$$

For t = 0, (b) of Lemma 2.9 yields $e'_0 = 1$ and $e''_0 = 1$, and hence we can find c'_t , $c''_t \in \mathbb{R}$, $-\varepsilon < t \le 0$, depending on t continuously such that $e'_t = \exp(tc'_t)$ and $e''_t = \exp(tc'_t)$ for all t with $-\varepsilon < t \le 0$. Then by setting $\xi'_t := \varphi'_t + c'_t$ and $\xi''_t := \varphi''_t + c''_t$, we have

(A.4.3)
$$A(\xi_t') = \exp(-t\xi_t' + \tilde{f}_{\omega_0})$$
 and $A(\xi_t'') = \exp(-t\xi_t'' + \tilde{f}_{\omega_0})$.

For simplicity, we put $\omega_t' := \omega_{\xi_t'}$ and $\omega_t'' := \omega_{\xi_t''}$ $(-\varepsilon < t \le 0)$. Note that, by (2.5), $\psi_{\omega_t'} = \sigma(u_{\omega_t'}) = \sigma(u_{\omega_0} - \sqrt{-1}\,\bar{X}\xi_t')$ and $\psi_{\omega_t''} = \sigma(u_{\omega_0} - \sqrt{-1}\,\bar{X}\xi_t'') = \sigma(u_{\omega_0'} - \sqrt{-1}\,\bar{X}(\xi_t'' - \xi_t'))$, while $A(\xi_t'')/A(\xi_t') = \{e^{-\psi_{\omega_t''}}(\omega_t'')^n\}/\{e^{-\psi_{\omega_t'}}(\omega_t')^n\}$. For each t with $-\varepsilon < t < 0$, let p_t be the point on M at which the function $\xi_t'' - \xi_t'$ on M takes its maximum. Then by (A.4.3), the maximum principle shows that

$$1 \ge \{A(\xi_t'')/A(\xi_t')\}(p_t) = \exp\{-t(\xi_t'' - \xi_t')(p_t)\}.$$

Then $(\xi_t'' - \xi_t')(p) \leq (\xi_t'' - \xi_t')(p_t) \leq 0$ for all $p \in M$, i.e., $\xi_t'' \leq \xi_t'$ on M. By exactly the same argument, we have $\xi_t' \leq \xi_t''$ on M. Hence, $\xi_t'' = \xi_t'$ on M for all t with $-\varepsilon < t < 0$. Let t tend to 0. By passing to the limit, we see that $\xi_0'' = \xi_0'$, i.e., $\varphi'' - \varphi'$ is a constant on M. Then by $\varphi', \varphi'' \in \mathcal{H}_{X,0}^{2,\alpha}$, we immediately obtain $\varphi'' = \varphi'$ on M, as required.

Appendix 5. A multiplier Hermitian analogue of Matsushima's obstruction

In this appendix, Matsushima's obstruction [Mat] will be generalized for multiplier Hermitian metrics of type σ , where σ is an arbitrary real-valued function on I_X . Assuming $\mathcal{E}_X^{\sigma} \neq \emptyset$, let $\theta \in \mathcal{E}_X^{\sigma}$. Write

$$\theta = \sqrt{-1} \sum_{\alpha,\beta} g(\theta)_{\alpha\bar{\beta}} dz^{\alpha} \wedge dz^{\bar{\beta}},$$

in terms of a system $(z^1, z^2, ..., z^n)$ of holomorphic local coordinates on M. Since $\operatorname{Ric}^{\sigma}(\theta) = \theta$, the Kähler class of \mathcal{K}_X is $2\pi c_1(M)_{\mathbb{R}}$. Then by (2.8) and (a) of Lemma 2.9,

$$(A.5.1) f_{\theta} = -\psi_{\theta} + C_0$$

for some real constant C_0 . By [F1, p. 41], \mathfrak{g}^{θ} in (2.6) coincides with the kernel $\operatorname{Ker}_{\mathbb{C}}(\tilde{\square}_{\theta}+1)$ of the operator $\tilde{\square}_{\theta}+1$ on $C^{\infty}(M)_{\mathbb{C}}$, since by (A.5.1), $\tilde{\square}_{\theta}$ is written in the form

$$\tilde{\Box}_{\theta} = \Box_{\theta} + \sum_{\alpha,\beta} g(\theta)^{\bar{\beta}\alpha} \frac{\partial f_{\theta}}{\partial z^{\alpha}} \frac{\partial}{\partial z^{\bar{\beta}}}.$$

Lemma A.5.2. The vector space \mathfrak{g}^{θ} in (2.6) forms a complex Lie algebra in terms of the Poisson bracket by θ , and in particular the \mathbb{C} -linear isomorphism $\mathfrak{g}^{\theta} \cong \mathfrak{g}$ in (2.6) is an isomorphism of complex Lie algebras.

Proof. For each $v_1, v_2 \in C^{\infty}(M)_{\mathbb{C}}$, we consider their Poisson bracket $[v_1, v_2] \in C^{\infty}(M)_{\mathbb{C}}$ on the Kähler manifold (M, θ) as in [FM]. Let $u_1, u_2 \in \mathfrak{g}^{\theta}$. Then by $\operatorname{grad}_{\theta}^{\mathbb{C}}[u_1, u_2] = [\operatorname{grad}_{\theta}^{\mathbb{C}} u_1, \operatorname{grad}_{\theta}^{\mathbb{C}} u_2]$, we see that $[u_1, u_2] + k_0$ belongs to \mathfrak{g}^{θ} for some constant $k_0 \in \mathbb{C}$. Hence it suffices to show $k_0 = 0$, i.e.,

$$\int_{M} [u_1, u_2] \tilde{\theta}^n = 0.$$

Let $F: \mathfrak{g} \to \mathbb{C}$ be the Futaki character. Then by [FM, (2.1)] and [M1, Theorem 2.1], we see that $\int_M (1-e^{f_\theta})[u_1,u_2]\theta^n = F([\operatorname{grad}_{\theta}^{\mathbb{C}} u_1,\operatorname{grad}_{\theta}^{\mathbb{C}} u_2]) = 0$. Therefore, in view of (A.5.1), we obtain

$$\int_{M} [u_1, u_2] \tilde{\theta}^n = \exp(-C_0) \int_{M} [u_1, u_2] e^{f_{\theta}} \theta^n = \exp(-C_0) \int_{M} [u_1, u_2] \theta^n = 0,$$
 as required.

For the centralizer $\mathfrak{z}(X)$ of X in \mathfrak{g} , the group $Z^0(X)$ in the introduction is exactly the complex Lie group generated by $\mathfrak{z}(X)$ in G. Consider the Lie subalgebra \mathfrak{k} of $\mathfrak{z}(X)$ associated to the group K of all isometries in $Z^0(X)$ on the Kähler manifold (M,θ) . Let $\mathfrak{k}_{\mathbb{C}}$ be the complexification of \mathfrak{k} in the complex Lie algebra \mathfrak{g} . Put

$$\text{(A.5.3)} \qquad \begin{cases} \mathfrak{z}^{\theta}(X) := \{u \in \operatorname{Ker}_{\mathbb{C}}(\tilde{\square}_{\theta} + 1) \; ; \; X_{\mathbb{R}}u = 0\}, \\ \mathfrak{t}^{\theta} \; := \{u \in \operatorname{Ker}_{\mathbb{R}}(\tilde{\square}_{\theta} + 1) \; ; \; X_{\mathbb{R}}u = 0\}, \end{cases}$$

where $\operatorname{Ker}_{\mathbb{R}}(\tilde{\square}_{\theta}+1)$ denotes the kernel of the operator $(\tilde{\square}_{\theta}+1)$ on $C^{\infty}(M)_{\mathbb{R}}$. Put $\mathfrak{k}^{\theta}_{\mathbb{C}}:=\mathfrak{k}^{\theta}+\sqrt{-1}\,\mathfrak{k}^{\theta}$ in $C^{\infty}(M)_{\mathbb{C}}$. Then by $\mathfrak{k}^{\theta}_{\mathbb{C}}\subset\mathfrak{z}^{\theta}(X)\subset\mathfrak{g}^{\theta}$ and $\mathfrak{g}^{\theta}\cong\mathfrak{g}$, we obtain

$$(A.5.4) \mathfrak{t}_{\mathbb{C}} \subset \mathfrak{z}(X).$$

Note that Z(X) acts on \mathcal{E}_X^{σ} by $Z(X) \times \mathcal{E}_X^{\sigma} \ni (g, \theta) \mapsto (g^{-1})^* \theta \in \mathcal{E}_X^{\sigma}$. Since the isotropy subgroup of $Z^0(X)$ at θ is K, we can write the $Z^0(X)$ -orbit \mathbf{O} through θ as

$$\mathbf{O} \cong Z^0(X)/K,$$

Let $T_{\theta}(\mathcal{E}_{X}^{\sigma})$ and $T_{\theta}(\mathbf{O})$ denote the tangent spaces at θ of \mathcal{E}_{X}^{σ} and \mathbf{O} , respectively. In view of the homeomorphism $\tilde{\mathcal{E}}_{X}^{\sigma} \simeq \mathcal{E}_{X}^{\sigma}$ immediately after (5.4.1) in Section 5, the differentiation of the equation $A(\varphi) = \exp(-\varphi + \tilde{f}_{0})$ with respect to φ yields

$$(A.5.6) T_{\theta}(\mathcal{E}_{X}^{\sigma}) \cong \mathfrak{k}_{\mathbb{C}}/\mathfrak{k} \cong \mathfrak{k}^{\theta} (= T_{\theta}(\tilde{\mathcal{E}}_{X}^{\sigma}))$$

$$\sqrt{-1} \, \partial \bar{\partial} v \leftrightarrow [\sqrt{-1} \operatorname{grad}_{\theta}^{\mathbb{C}} v/2] \leftrightarrow v,$$

where for every γ in $\mathfrak{k}_{\mathbb{C}}$, we mean by $[\gamma]$ the natural image of γ under the projection of $\mathfrak{k}_{\mathbb{C}}$ onto $\mathfrak{k}_{\mathbb{C}}/\mathfrak{k}$. On the other hand, by (A.5.5), we have the isomorphism

(A.5.7)
$$T_{\theta}(\mathbf{O}) \cong \mathfrak{z}(X)/\mathfrak{k}.$$

Since $\mathbf{O} \subset \mathcal{E}_X^{\sigma}$, we have $T_{\theta}(\mathbf{O}) \subset T_{\theta}(\mathcal{E}_X^{\sigma})$. This together with (A.5.4), (A.5.6) and (A.5.7) implies that $\mathfrak{z}(X) = \mathfrak{k}_{\mathbb{C}}$, i.e., $T_{\theta}(\mathbf{O}) = T_{\theta}(\mathcal{E}_X^{\sigma})$. Thus, we obtain

PROPOSITION A.5. (a) If $\mathcal{E}_X^{\sigma} \neq \emptyset$, then $Z^0(X)$ is a reductive algebraic group. Actually for an arbitrary $\theta \in \mathcal{E}_X^{\sigma}$, we have $\mathfrak{z}(X) = \mathfrak{k}_{\mathbb{C}}$, i.e., $\mathfrak{z}^{\theta}(X) = \mathfrak{k}_{\mathbb{C}}^{\theta}$ by the above notation.

(b) If $\mathcal{E}_X^{\sigma} \neq \emptyset$, then each connected component of \mathcal{E}_X^{σ} is a single $Z^0(X)$ -orbit under the natural action of $Z^0(X)$ on \mathcal{E}_X^{σ} .

Remark A.5.8. The above arguments are valid also for X = 0. If X = 0, then (a) of Proposition A.5 is nothing but Matsushima's theorem [Mat].

References

- [A1] T. Aubin, Réduction du cas positif de l'équation de Monge-Ampère sur les variété Kählériennes compactes à la démonstration d'une inégualité, J. Funct. Anal., 57 (1984), 143–153.
- [B1] J. P. Bourguignon et al., Preuve de la conjecture de Calabi, Astérisque 58, Soc. Math. France, 1978.
- [Ba] S. Bando, The K-energy map, almost Einstein-Kähler metrics and an inequality of the Miyaoka-Yau type, **39** (1987), Tohoku Math. J., 231–235.
- [BM] S. Bando and T. Mabuchi, Uniqueness of Einstein K\u00fchler metrics modulo connected group actions, Algebraic Geometry, Sendai, 1985, Adv. Stud. in Pure Math. 10, Kinokuniya and North-Holland, Tokyo and Amsterdam (1987), pp. 11–40.
- [F1] A. Futaki, Kähler-Einstein metrics and integral invariants, Lect. Notes in Math. 1314, Springer-Verlag, Heidelberg, 1988.
- [FM] A. Futaki and T. Mabuchi, Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann., **301** (1995), 199–210.
- [K1] S. Kobayashi, Transformation groups in differential geometry, Erg. der Math. 70, Springer-Verlag, Heidelberg, 1972.
- [L1] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
- [L2] A. Lichnerowicz, Variétés kählériennes et première classe de Chern, J. Diff. Geom., 1 (1967), 195–224.
- [LY] P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153–201.
- [M1] T. Mabuchi, Kähler-Einstein metrics for manifolds with nonvanishing Futaki character, Tôhoku Math. J., 53 (2000), 171–182.
- [M2] T. Mabuchi, Vector field energies and critical metrics on Kähler manifolds, Nagoya Math. J., 162 (2001), 41–63.
- [M3] T. Mabuchi, Heat kernel estimates and the Green functions on multiplier Hermitian manifolds, Tôhoku Math. J., **54** (2002), 259–275.
- [M4] T. Mabuchi, A multiplier Hermitian manifold with a Hamiltonian holomorphic vector field, in preparation.
- [M5] T. Mabuchi, A Theorem of Calabi-Matsushima's type, Osaka J. Math., 39 (2002), 49–57.
- [Mat] Y. Matsushima, Holomorphic vector fields on compact Kähler manifolds, Conf. Board Math. Sci. Regional Conf. Ser. in Math. 7, Amer. Math. Soc., 1971.
- [Mil] J. Milnor, Morse Theory, Ann. of Math. Stud. 51, Princeton University Press, Princeton, 1963.
- [N1] Y. Nakagawa, An isoperimetric inequality for orbifolds, Osaka J. Math., 30 (1993), 733–739.
- [S1] Y.-T. Siu, Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics, DMV seminar 8, Birkhäuser, Basel Boston, 1987.
- [T1] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M) > 0$, Invent. Math., 89 (1987), 225–246.
- [TZ1] G. Tian and X. H. Zhu, Uniqueness of Kähler-Ricci solitons on compact Kähler

- manifolds, C. R. Acad. Sci. Paris, 329 (1999), 991-995.
- [TZ2] G. Tian and X. H. Zhu, *Uniqueness of Kähler-Ricci solitons*, Acta Math., **184** (2000), 271–305.
- [TZ3] G. Tian and X. H. Zhu, A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comm. Math. Helv., 77 (2002), 297–325.
- [Y1] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the Monge-Ampère equation I, Comm. Pure Appl. Math., 31 (1978), 339–441.

Department of Mathematics
Osaka University
Toyonaka
Osaka, 560-0043
Japan
mabuchi@math.sci.osaka-u.ac.jp