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ABSTRACT

A reinvestigation of the linear perturbation theory is
presented, which examines the hydrostatic readjustment of an
iswlated self-gravitating gas sphere to a redistribution of
energy. The here presented model describes a stellar system
by the common equations of gas in hydrostatic equilibrium but
with the effect of the anisotropic velocity distribution on
the pressure gradient. We take as equilibrium models the
singular isothermal solution with and without anisotropy. The
total variation of the Boltzmann entropy resulting from a
perturbation of the system caused by a redistribution of heat
(i.e. r.m.s. kinetic energy of the stars) is calculated for
anisotropic solutions to first order as well as to second or-
der for the isotropic equilibrium. The extremized eigenfunc-
tions which represent the entropy and anisotropy perturbation
functions, are determined analytically. They exhibit gravothe-
rmal behaviour in the central region where heat is removed.
It is also found that the anisotropy readjusts non-thermally
in the sense that the system departs from isotropy although
the total entropy increases.

1, INTRODUCTION

Momentum models for the evolution of stellar systems
(often called '"gaseous models'") have been used frequently as
a convenient representation of the stellar component in nume-
rical astrophysical simulations as e.g. galaxy formation and
evolution (Larson 1969,1970,1974,1975,1976; Burkert and Hens-
ler 1987, 1988; Dunhuber et al. 1989) or the evolution of
galactic nuclei (Langbein et al, 1990) as well as for isolated
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self -gravitating star clusters (see below). Hydrodynamic
"gaseous' models with momentum equations up to second order
and a zero heat flux closure (cf. e.g. Marochnik 1964 ) were
also used to examine equilibria and stability of self-gravi-
tating collisionless stellar systems (e.g. Kondrat'ev and
Malkov 1986, 1987). Evans and Lynden-Bell (1989) showed that
such "stellar hydrodynamic" equations can be solved by Green's
function methods for Eddington's stellar systems with separ-
able potentials in special coordinates based on principal
velocity surfaces. These examples should illustrate that
even for collisionless stellar systems it is rather common
and convenient to use hydrodynamic models. However, it is not
finally clear, to what extent or under which conditions such
a hydrodynamic model holds as a description of real stellar
systens,

The situation is different in the case of collisional
stellar systems, which are the subject of the remainder of
this paper. Collisions here denote the distant gravitative
two-body encounters, which act on a stellardynamical relaxa-
tion timescale (see e.g. Chandrasekhar 1942), which is large
compared to the dynamical timescale for most astrophysical
star clusters. There is a fair amount of qualitative and qua-
ntitative comparisons between momentum and other models like
the direct solution of the Fokker-Planck equation and direct
N-body calculations. In particular isotropic one-mass (no
stellar mass spectrum) momentum models have been adapted so
as to yield sufficiently congruent results with Fokker-Planck
models (compare results of Cohn 1980, Bettwieser and Sugimoto
1984, Heggie 1984, Heggie and Stephenson 1988, Cohn et al,
1989, Heggie and Ramamani 1989). There is also a quantitative
comparison between an N-body calculation and a momentum model
with heat flux closure (Bettwieser and Sugimoto 1985) which
suffers from statistical noise due to a rather small N-body
particle number (N = 1000), but its results give some evide-
nce in favor of the gaseous models.

In general the stellar velocity distribution, however is
not isotropic (different second order moments for different
space coordinate directions) and depends also on the individ-
ual stellar mass as an additional independent variable. Ani-
sotropic momentum models (called anisotropic ''gaseous'" models,
because their equations at least up to second order still re-
semble very much normal hydrodynamical equations) for the se-
cular evolution of star clusters were presented by e.g.Saito
and Yoshizawa (1976) and Angeletti and Giannone (1977) (both
based on Larson's (X970) hydrodynamical approach) and by
Bettwieser and Spurzem (1986) with a generalized heat flux
closure analogous to the isotropic case, Although the models
of Larson and their decessors according to the analysis in
Louis (1990) do not appropriately close the moment equations,
there still remain different types of heat flux closures and
one different closure in 5th order (Louis 1990)., In the pre-
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collapse models their results are in very good agreement; but

this needs not to be the case in other situations (e.g. post-
collapse, multi-mass models); it is not yet clearly establis-
hed (e.g. by comparison with other methods) how an appropri-

ate anisotropic momentum model looks like.

A drastic change of the evolution of star clusters oc-
curs with a stellar mass spectrum compared to the single mass
case, The evolution is accelerated by the competing effects
of mass segregation and the tendency towards equipartition;
recently there have been published already rather sophisti-
cated Fokker-Planck models including a mass spectrum as well
as dissipative effects and binary formation and evolution
(Murphy et al. 1990, Quinlan and Shapiro 1990). Since the de-
tection of serious discrepancies between Fokker-Planck and
gaseous multi-mass models (Bettwieser and Inagaki 1985) there
has not been reported another attempt to improve the hydrody-
namical models,

The general advantage of hydordynamical models is that
any additional physical processes like e.g. binary formation
and evolution or interaction with interstellar matter can be
implemented in a straightforward way. Experiences with the
numerical solution of the equations for hydrodynamical flows
can be applied to the stellar dynamical problem. Therefore
it is stressed that it is worth while to develop also the
hydrodynamical models further and to study their consequences.
Two basic approaches are possible: first to improve the quan-
titative comparisons between the numerical time-dependent
solutions of the various methods, e.g. for anisotropic and
multi-mass pre- and post-collapse evolution of star clusters.
Another way would be to study the consequences of generalized
thermodynamic concepts for self-gravitating gaseous spheres
including the effects of anisotropy (anisotropy here and in
the following always means a difference between the second-
order moments, centered to the bulk mass motion, in different
spatial directions; in other words, there is a direction de-
pendent temperature). The results could be related to what
one would expect in real stellar systems.

The latter approach led to the gravothermal instability
picture (Antonov 1962, Lynden-Bell and Wood 1968, Hachisu and
Sugimoto 1978 (henceforth HS), Nakada 1978, Hachisu et al.
1978) and was also applied for the examination of star clus-
ters with rotation (Hachisu 1979) or with different mass
groups (Yoshizawa et al. 1978, Inagaki and Wiyanto 1984,
Wiyanto 1989), The concept is to study the consequence of the
assumption that there is an H-functional which increases dur-~
ing the system's evolution. According to Yoshizawa et al.
(1978 ) and references therein the usual Boltzmann entropy

S=-kIJf 1n fid3 vadr @)

1
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(where k denotes kltzmann's constant, i different mass groups,
and fi the single particle distribution function) is such a
H-functional, provided the system's evolution is described by
a Fokker-Planck equation of the type of Rosenbluth et al.
(1957). A linear perturbation analysis is performed and those
perturbation functions are searched by a variational proced-
ure which extremize the entropy variation; if there are such
functions for positive entropy variation the system is consi-
dered to be unstable. Such method is generdlized here for the
case of anisotropic hydrostatic equilibria as well as aniso-
tropy perturbations even in the case of initially isotropic
equilibrium solutions.

HS introduced the concept of inverse specific heat ten-
sors; the core region of a self-gravitating system has a ne-
gative specific heat, since after the removal of heat (i.e.
r.m.s. kinetic energy of the stars) the readjustment of hyd-
rostatic equilibrium yields an increase of the central velo-
city dispersion (i.e. temperature). The halo, however,always
has a positive specific heat. The total heat capacity of the
core compared to the one of the halo decreases with increas-
ing density contrast D. The unstable systems with D > 709
have the property, that the increase of temperature due to
removal of heat in the centre is larger than the temperature
increase due to the input of that same amount of heat into
the halé. Thus an initially small temperature gradient will
be enhanced by this readjustment and the gravothermal run-
away starts. Such simple qualitative discussion demonstrates
how the concepts of thermodynamics and specific heat tensors
give physical insight into how the mechanism of gravothermal
contraction and catastrophe works (for a review compare
Sugimoto 1985).

Bettwieser and Sugimoto (1984, henceforth BS) presented
such perturbation analysis for a singular isotropic and iso-
thermal equilibrium solution (SIS). They found SIS to be
gravothermally unstable, as is expected for the limiting case
of a series of regular models with increasing density cont-
rast. The advantage of taking SIS as equilibrium solution was
the complete analytic trac¢tability of the problem. In this
paper the question how the linear perturbation analysis of
gravothermal instability is changed by the possible anisot -~
ropy generation in comparison to the work of HS and BS is
addressed. The method is analogous to HS and BS, i.e. to
perturb hydrostatic equilibrium solutions to first order and
to extremize thereafter the total variation of the Bbltzmann
entropy. Method and results are discussed in more detail in
Spurzem (1991).

Within the next section the anisotropic hydrostatic
equilibrium solutions are discussed and their first order
perturbation., Section 3 outlines the extremization of the en-
tropy functional and some results; the last section contains
concluding remarks.
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2. LINEAR PERTURBATION OF ANISOTROPIC HYDROSTATIC EQUILI-
ER IUM

Let M and R denote the total mass and radius of an iso-
lated self-gravitating gas sphere. Then one defines approp-
riate normalized quantities

PP b

Mr r t t
¢ =g X=F PP = gt A= 2 - =
M R t au?/ @mr?) p
2 2
p . - %%
= 3 )ggt_ (2)

M/ (47R™) - GM/R

where Mr’ r,e, P,Pt,o2 and oi denote the mass contained

within a sphere of radius r, the mean mass density, the rad-
ial and tangential component of pressure and of the velocity
dispersion, respectively, and A measures the degree of aniso-
tropy of the velocity distribution of the particles of the
gas. The equations of state are analogous to an ideal gas

p = y0, Py = wot. The quantity ch: = (@ + et)/s is intro-

duced as thermodynamical temperature such that a caloric
equation of state € = Sch/Z results for the energy density,

where all quantities are normalized according to Eq.(2).

The Boltzmann entropy is (ignoring a "zero shift" due
to constant summands):

s=1n(23_/3%‘_AL%)_) (3)
¥e consider the equations of anisotropic hydrostatic equili-
br ium

alg‘bp= _I_Ji?_ﬁ_g_; alg‘bx___‘;i_g 4)
A solution of these equations is
x=¢; ¥=15; 0=350; A@) =comst.;  (5)

which is referred to as the anisotropic singular isothermal
solution (ASIS, Bettwieser and Spurzem 1986). BS discussed
the gravothermal stability of the isotropic singular isothe-
rmal solution (SIS); such a solution occurs for example in
the post-collapse evolution of globular clusters (Inagaki
and Lynden-Bell 1983 ); it may be regarded as a model of a
regular solution with an infinitely small homogeneous core;
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Figure 1: Series of isotropic hydrostatic equilibrium solu-
tions from Hachisu and Sugimoto (1978 );plotted are
the dimensionless values of internal, gravitatio-
nal and total energy versu:s the density contrast D
between centre and outer boundary. The rightmost
value of D belongs to solutions almost equivalent
to a singular equilibrium solution (SIS) with in-
finite density contrast. Crosses mark the corres-
ponding values for the anisotropic SIS (A +- «)
and circles for A =1,

similarly ASIS could be regarded as such a solution with an
anisotropic halo, Fig. 1 depicts how the ASIFS solutions are
related to the family of isothermal gas spheres; the values
of the thermal (cth), gravitational (eg), and total energy

(Etot) per unit mass are in our normalization
— 1 1 . = -] b - l. -—1
een =3 QY 3Tm )5 g = L Eior 7 -5 ) (6)
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The linearly perturbed Egs. (3) to (5) take the form

Lg88 = L 61n x- L,6A , with ™)
2

_s.2dd L2 4 _ o

Lx - 3—4) ;;2‘+3 (5+A)¢ d¢ (2 A)s
=249 _2 o

Lg= 3¢ 5 - % e, ®)
o2 a1

Ly*s5@g5y%as *3

By multiplication with an integrating function yx = ¢2A/5 t he
operator Lx becomes of Sturm-Liouville type and can bé inver-

ted analytically by computing a Green's function Gx(¢,¢') for
the boundary conditions ¢8 lnx = 0 at ¢ =1 and ¢ = 0; it
follows

S1n % = [ G, (6,6 )X (6 ILge')ESW') + Ly(6')8A(4") Mo’

(9)
3. HYDROSTATIC READJUSTMENT
The entropy perturbation results from Eq.(3) as:
§€ = 2 sln O, , ~ &lnp - A sA (10)
2 th 2(2-2Y@3-3)

The first order perturbation in total energy S6E including
thermal and potential energy is expressed as 6E =/6q d¢ with

- A Ay _
60 = 8y, 65 + srmayeaTry Oy A + 6ln x( g - AGy
3
X dA
- 9-3— C &) 1)

The quantity 8g(¢) may be interpreted as the net amount of
"heat'" shifted to or from the zone between ¢ and ¢+ d¢. In
case of isotropy the well known equation 8g = ©,,8S is recove-
red. The second term in Eq.(11]) is due to the anisotropy depe-
ndent entropy and the éln x terms are parts of terms related
to pdV work and potential energy variation, which do cancel
each other only in isotropic gaseous spheres.

With the condition that the system is enclosed in an adi-
abatic wall (SE = O0) and using the isotropic SIS solution the
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total variation of entropy 62I is correct to second order

2. _ ! 1 2,1 1 o
§°L = {)’ daof - 3 (Gsth) 3 ‘SsthéA*'(‘SSthf 5 SA).
1.d 1 d
(1+ g(b a? )8lnx - 3 A a$— 8lnx}, (12)
Here the convenient quantity 68 , = 6S+ A/ (2-A) was introdu-

ced; the index "th" (= "thermalt'sl is chosen in order to re-
mind that Gsth contains what would be the entropy perturba-

tions in absence of anisotropy perturbations., Let for brevity
be f = 5Sth and g = S8A; as subsidiary conditions are imposed

SE = 0 (Lagrangian parameter u) and the square integrability
of f and g (Lagrangian parameters )\1,)\2). Thus a functional
J({f,g) turns out:

1 1
J(f,g) = GZZ(f,g)-Al{ ! f2d¢—f§} -2l g g2d¢—g§ }

1
+ 2u{ (f- g— g)do. 13)

In order to compute those perturbation functions belonging
to maximum entropy variation the variational prolblem AJ(f,g)= 0
can be solved analytically. For the extremizing functions the
total entropy variation takes a very simple form:

§25 = £21, + g2\

o'l o 2 14)

Note the analogy of this formula to the corresponding result
of HS and BS for A = 0, 8A = 0.

There are only certain combinations of the Lagrangian
parameters which l1ead to physical (i.e. real) particular solu-
tions, which fulfil the subsidiary conditions. Whereas u can
be chosen freely, there are only certain couples of >‘1')‘2

allowed. The areas covered by such 'good" )‘1')\2 values are
depicted in a kl—kz—plane in Fig. 2 and labelled with '"L" and

"2", Area '"1" contains the region with entirely real solutions,
whereas in area "2'" a solution containing two complex conju-
gate summands occurs. Area '"l1" corresponds in the isotropic
calculation of BS to the range 1/3 > X; > 7/29, and area "2"
to the range 7/29 > >‘1 > -1/5. The singularities of our cri-

tical lines occur just at the critical values A, = -1/5,7/29,
1/3 of the isotropic BS problem. Note that due tO0 the presence
of anisotropy perturbations as an additional degree of free-
dom we have now a two-parameter family of solutions. Since
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Figure 2: A = 0: Critical lines in the Al-xz plane for the

both areas cover partly the first quadrant (A

existence of particular solutions of the variatio-
nal problem. The areas denoted by "1" and "2" with-
in the critical lines allow for real ('1') and com-
plex conjugate ("2") solutions of the variational
problem; those parts lying in the first quadrant
(xl,xz > 0) belong to positive total entropy varia-

tion. Outside of those two regions no solution of
the variational problem can be found.

1,A2 > 0) one

concludes from Eq.(14) that 622 > 0 and thus SIS is gravo-
thermally unstable.

As an example the particular solution for Al = Az = 0.4

is plotted in Figs. 3ab. In contrast to the isotropic analysis
of BS, where they found an upper limit for the admitted A-
values, we have here an unbound spectrum of modes for Al’

X

“+ o
.

2

Characteristic results visible in the Figs. 3ab are sum-
marized as follows:

i) the perturbations belonging to maximal entropy production
have a contracting and an expanding region (8lnx < 0 and v.v);
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Figure 3ab: Second order perturbation amalysis; plots of the perturba-
tion functions belonging to maximum total entropy variation;
imtropic equilibrium model; A = >‘2 = 0.4. Upper figure 3a:
entropy 4&S(s0lid line), anisotropy gA (slort dashes), heat
exchange 6q (dash-dotted line). Lower figure (1b): density

§1np (s0lid line), radial pressure §6ln p (slort dashes),
thermodynamic temperature 6&ln gth (dashed-dotted line), and

radius 6&ln x (dotted line).
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note that by taking another sign of y this behaviour can be
exchanged; it does not alter, however the general feature
that 6lnx has a non-trivial zero point (compare Figure 3b);

ii) there is negative specific heat observed in the centre;
heat and entropy are removed from the central part §8q < O, but
the temperature increases thereof §1n eth > 0; again the opp-

osite, but also gravothermal result could be found by chang-
ing the sign of u(with d&q > 0, but &ln eth < 0 in the
centre),

iii) there is anisotropy generation with positive sign (i.e.
02> 03/2) in the central regions and of negative sign outwards
This illustrates that an initially isotropic self-gravitating
"gas'" sphere can increase its total entropy in connection
with anisotropy generation, This is a difference to the find-
ings in the first order theory, where the global tendency of
the anisotropy perturbation behaved in accord with thermody-
namic expectations,

4, DISCUSSION AND CONCLUSIONS

The main result here is that the singular equilibrium
solution is gravothermally unstable under inclusion of the
effect of anisotropy perturbations. There can be found pertu-
rbation functions belonging to arbitrarily large entropy pro-
duction. This is due to the lack of an equation restricting
the anisotropy in hydrostatic equilibrium. However, in reality
or in time-dependent numerical evolution calculations the
anisotropy is determined by a separate second order moment
equation,

Including anisotropy perturbations and anisotropic equi-
librium models does not alter the general picture of gravo-
thermal instability: if heat is transferred outwards, the ne-
gative specific heat in the centre of a self-gravitating sys-
tem yields a temperature increase there (gravothermal contra-
ction), or v.v. (gravothermal expansion). Initially isotropic
models can increase their entropy further by generation of
anisotropy. As the phenomenon of negative specific heat this
result is from a thermodynamic viewpoint counterintuitive and
can be explained by the presence of self-gravity.

At the present stage of the anisotropic perturbation
analysis one should be very careful in conclusion about the
behaviour of real stellar systems, because the singular equi-
librium solution, which was taken here to keep the problem
analytically tractable, is rather artificial, and also beca-
use this linear perturbation theory certainly will not des-
cribe evolutionary effects due to the full non-linear stellar
dynamical evolution equations, What here is interesting to
conclude is that the generation of anisotropy in stellar
systems can be understood from thermodynamic principles; this
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gives some evidence in favour of a hydrodynamical (moment)
description even of anisotropic stellar systems.

More realistic regular, but isotropic equilibrium solu-
tions were analyzed in the isotropic case by HS. They had a
discrete spectrum of modes, i.e, there exist only discrete
values of )¢, which lead to physical solutions of the varia-
tional problem, in contrast to the singular solution, which
has a continuous spectrum (BS). Below the critical density
constrat of Dcrit = 709 there is no hydrostatic readjustment

with positive total entropy variation at all. It would be
interesting to calculate the hydrostatic readjustment of re-
gular anisotropic equilibrium solutions. The general proce-
dure should be along the way outlined in this paper, and the
result could reveal whether the critical density contrast it-
self is a function of the equilibrium anisotropy profile.Pos-
sibly by this way the peculiarity of the number 709 can be
removed; to get the correct limit of 709 for A + 0, however,
the second order perturbation theory should be applied also
for the anisotropic equilibrium solutions, in order to get
the correct limit for A +» O.

I thank Dr. D.C.Heggie for enlightening and very helpful
discussion. This work has been partly supported by the 'Deut-
sche Forschungsgemeinschaft',

REFERENCES

[1] Angeletti,L.,Giannone,P.: 1977, Astrophys. Space Sci.50,
311.

[2] Antonov, V.A.: 1962, Vest. Leningrad Univ, 7,135, trans-
lated in '"Dynamics of Star Clusters'", IAU-Symp.No.113,
1985 eds. J.Goodman and P,Hut, Dordrecht,Reidel, p.525.

[3] Bettwieser, E.: 1983, Monthly MNotices Roy.Astron.Soc.203,
811.

[4] Bettwieser, E,, Inagaki, S.: 1985, Monthly Notices Roy.
Astron, Soc. 213,473.

{5] Bettwieser,E., Spurzem,R.: 1986, Astron Astrophys.l6l,
102.

[6] Bettwieser,E., Sugimoto,D.: 1984, Monthly Notices Roy.
Astron, Soc. 208,493,

[7] Bettwieser, E,, Sugimot, D.: 1985, Monthly Notices Roy.
Astron. Soc, 212,189,

[8] Burkert, A.,Hensler, G.: 1987, Monthly Notices Roy.Astron
Soc. 225,21p.

[9] Burkert, A., Hensler, G.: 1988, Astron. Astrophys.199,
131.

[10] Chandrasekhar,S.: 1942, "Principles of Stellar Dynamics",
Univ., Chicago, Press, Chicago, USA.

[11] Cobhn,H.: 1980, Astrophys. J.242,765.

252

https://doi.org/10.1017/50252921100066136 Published online by Cambridge University Press


http://IAU-Symp.No.113
https://doi.org/10.1017/S0252921100066136

[12] Cohn, H., Hut,P., Wise,M.: 1989, Astrophys.J.342,814.

{13] Dunhuber,H., Theis, Ch., Burkert, A., Hensler,G.:1989,
Astrophys. J.4,61.

[14]1 Hachisu, I.,:1979, Publ., astr.Soc. Jap. 31,523.

151 #Hachisu,I., Sugimoto, D.: 1978, Prog.Theor. Phys.60,123,
HS.

{161 Hachisu,I., Nakada,Y., Nomoto,K., Sugimoto,D.:1978,Prog.
theor.Phys. 60,393.

[17] Heggie, D.C.: 1984, Monthly Notices Roy.Astron. Soc.206,
179.

{181 Heggie,D.C.,Stephenson,D.: 1988, Monthly Notices Roy.
Astron. Soc. 230,223.

f19] Heggie, D.C.,Ramamani,N,.: 1989, Monthly Notices Roy.
Astron, Soc. 237,757.

{201 1Inagaki, S., Lynden-Bell,D.: 1983, Monthly Notices Roy,
Astron, Soc. 205, 913.

[21] 1Inagaki,S., Wiyanto,P.: 1984, Publ.astr.Soc.Jap.36,391.

[22] Kondrat'ev,B.P., Malkov,E.A.:1986, Astrofizika 25,587,

[23] Kondrat'ev, B,P.,Malkov,E.A.: 1987, Astrofizika 26,511.

[ 241 Langbein,T., Spurzem,R.,Fricke,K.J., Yorke, H.W.: 1990,
Astron.Astrophys. 227,333.

[25] Larson,R.B.: 1969, Monthly Notices Roy.Astron. Soc.145,

[ 261 igi.son,R.B.: 1970, Monthly Notices Roy.Astron. Soc.147,
[27] iii'son,R.B.: 1974, Montbly Notices Roy.Astron. Soc.166,
{2813 Is,g.i.son, R.B.:1975, Monthly Notices Roy.Astron. Soc.173,
[29] g:}'éon, R.B.: 1976, Monthly Notices Roy.Astron. Soc.

[30] ggizl,'p.n.: 1990, Monthly Notices Roy.Astron. Soc.244,

[31] Lynden-Bell,D.:Wood,R.:1968, Monthly Notices Roy.
Astron.Soc. 138,495,

[32] Marochnik, L.S.: 1964, Soviet Astron 8,202.

[331 Murphy, B.W.,Cohn, H.,Hut,P.: 1990, Monthly Notices
Roy.Astron, Soc. 245,335.

[341 Nakada,Y.: 1978, Publ.astr.Soc. Jap. 30,57.

[351] Quinlan,G.D., Shapiro,S.L.: 1990, Astrophys.J.356,483.

[36] Rosenbluth,M.N., McDonald, W.M., Judd,D.L.: 1957,Phys.
Rev., 107,1.

(371 Saito,M., Yoshizawa ,M.:1976,Astrophys. Space Sci.41,63.

[38] Sugimoto,D.:1985,in '"Dynamics of Star Clusters', IAU
Symp.No.113,eds.J .Goodman and P, Hut,Dordrecht,Reidel,
p.207.

[39] Spurzem,R.:1991 ,Monthly Notices Roy.Astron. Soc.subm.

[40] Wiyanto,P.: 1989, Astrophys.Space Sci. 159,219.

[41] Yoshizawa,M., Inagaki, S., Nishida,M.T.,Kato,S.,
Tanaka,Y., Watanabe,Y.: 1978, Publ, astr. Soc.Jap.30,
279,

1253

https://doi.org/10.1017/50252921100066136 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100066136



