Pseudomonas aeruginosa Outbreak in a Neonatal Intensive Care Unit Attributed to Hospital Tap Water: Methodological and Statistical Issues to Avoid Misinterpretation

To the Editor—We were interested to read the May 2017 article by Bicking Kinsey et al.1 The authors investigated an outbreak of Pseudomonas aeruginosa infections. They found that compared with controls, case patients had higher odds of being in a room without a point-of-use filter (odds ratio [OR], 37.55; 95% confidence interval [CI], 7.16–∞).1

Although these results are interesting, some methodological and statistical issues should be considered. The estimated effect size for some risk factors such as unfiltered water is biased due to sparse data bias. In other words, the data are inadequate to estimate a valid and precise OR. The main indicators of sparse data bias are a huge effect-size estimate and a remarkably wide and even infinite confidence interval limit.2 The most common strategy to adjust sparse data bias is a correction of one-half, a conventional method in which one-half is added to each level of exposure–outcome combination prior to statistical analysis.2 The problem with the conventional method is that it can lead to implausible ratio estimates.2 Greenland and Mansournia proposed an advanced method, namely, penalization via data augmentation to adjust and minimize sparse data bias.2,3 In this method, the effect-size estimate is assumed to falls in an acceptable and possible range, such 1/40 to 40. Using penalization, the effect-size estimates are reduced to the range specified.2 We analyzed the presented data in the study conducted by Bicking Kinsey using the penalization method to test how the results can be influenced by sparse data bias. We found that the unfiltered water in univariable model had an estimated OR of 17.23 (95% CI, 3.56–83.19). Thus, we think the true and valid estimated OR for unfiltered water is biased due to sparse data bias.

The take-home message for readers is that sparse data bias is a common bias in biomedical research; however, it is rarely addressed in analyses. Furthermore, sparse data bias can be minimized using efficient statistical methods.

Saeid Safiri, PhD1
Erfan Ayubi, MSc, PhDc2,3

Affiliations: 1. Managerial Epidemiology Research Center, Department of Public Health, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran; 2. Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 3. Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Address correspondence to Erfan Ayubi, MSc, PhD, Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran (aubi65@gmail.com).

Infect Control Hosp Epidemiol 2017;38:1126–1127 © 2017 by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2017/3809-0024. DOI: 10.1017/ice.2017.149

REFERENCES

Long-Term Care Facility (LTCF) Residents Colonized With Multidrug-Resistant (MDR) Klebsiella pneumoniae Lineages Frequently Causing Infections in Portuguese Clinical Institutions

To the Editor—The recent increase of extended-spectrum β-lactamase (ESBL)—producing Klebsiella pneumoniae (Kp) and the emergence of carbapenemase-producing Kp in Portuguese clinical settings parallels epidemiological trends described in other countries. Moreover, Kp isolates causing hospital infection often correspond to the patient’s own colonizing strains, stressing the need to survey fecal carriage of multidrug-resistant (MDR) Kp in patients from different clinical settings. Long-term care facilities (LTCFs) are fundamental institutions in contemporary healthcare services, mainly assisting elderly people who, due to frequent hospitalizations, recurrent antibiotic consumption, and communal living, are at a high risk of infection by MDR bacteria. Different studies among European LTCFs residents have reported high rates of colonization by Enterobacteriaceae fecal carriage with ESBL producers of 81% (data not shown). ESBL carriage was significantly associated with the gender, length of stay, and residents of shared rooms, whereas plasmid-mediated AmpC carriage was only significantly associated with consumption of β-lactams in the previous 3 months (Online Supplemental Table S1). Air quality was within the established standards only at LTCF 1, although in both institutions no growth was detected on selective media. The colonization rates by ESBL-producing non-Ec Enterobacteriaceae (29.8%) were significantly higher than those observed in these species among LTCFs and nursing home residents years ago in Portugal in 2008–2012 (~6%) or in LTCFs in other European countries in 2012–2013 (~8%). Despite the low sample size, this extraordinary increase (~5-fold) is worrisome in this at-risk population; it is probably influenced by the recent global expansion of MDR Kp isolates in Portuguese clinical institutions.

Carbapenemase-producing Enterobacteriaceae were not