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Abstract The Abel and Cesaro summabilities of two alternating gap series are investigated. We prove
that the series SnLoC"-1-)"xU ls summable at x = 1 (in both senses), but that ^2'??=0(—'i-)nx2 is
not. In 1907, Hardy obtained essentially the same result for the latter series; our proof is shorter and
more elementary: we use the Poisson summation formula to derive an explicit estimate for the size of
the oscillations as i —> 1_. This represents an example of a general method for determining the Abel
summability of similar series.
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1. Introduction

Our purpose here is to illustrate some subtleties concerning the summability at x = 1 of
alternating gap series of the form

oo

X^(-l)nzQ(n), (1-1)
n=0

where a(n) is an increasing sequence of non-negative integers. We call such a series Abel
summable to A if

oo

lim ^ ( - l ) n z a ( n ) (1.2)
X~* " n=0

exists and takes the finite value A. For example, when a(n) = n,

(1.3)
n=0

as x -4 1 _, and so the series is Abel summable to A = ^.
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Likewise, writing

n=0 fc=O

where

iffc = a(n),
. (1-5)

otherwise,

and denning the mth partial sum of the coefficients by

fc=0

we call the series (1.1) Cesaro summable to C when x = 1 if

7 1 - 1
1 > t

lim - Y ] s m (1.7)
m=0

exists and takes the finite value C. In the case a(n) = n, S2m = 1 and S2m+i = 0, and
so C = \ (= A).

The summability of gap series has been investigated before, for example by Hardy
[3]. Our main aim in this paper is to re-examine the question of Abel summability
using an approach based on the Poisson summation formula. To motivate this, in § 2
we discuss two gap series that exhibit different summability properties. The first, with
a(n) = n2, is shown to be summable (in both senses). The second has a(n) = 2™ and is
not summable. In §3, we determine its asymptotic form as x -»• 1_ explicitly, using the
Poisson summation formula. This illustrates a general method for dealing with similar
series.

2. Summability

We begin by noting the implications for gap series of two well-known facts about summa-
bility. First, if the series (1.1) is Cesaro summable to S, this implies that it is also Abel
summable to S (see, for example, [3, Theorem 55]). (Note that this covers the example
discussed in § 1, for which a(n) — n.) Second, if the series is Abel summable to S, and if
the partial sums are bounded (i.e. sm = O(l)), this implies that the series is also Cesaro
summable to 5 [3, Theorem 92].

We now consider the following two examples in the light of these general results.

Example 2.1 (a(n) = n 2 ) . In this case,

yn = So + S l + --" + S " - 1 (2.1)
n
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takes alternate maxima and minima at n = fc2. The maxima are

fc2-(fc-l)2 + ( f c - 2 ) 2 - ( f c - 3 ) 2 + --- + l
yk2 = £2 (2-2)

for fc odd. The minima are

-£¥•
for fc even. Therefore, taking the limit as fc —> 00, the series is Cesaro summable with
C = ^. It then follows from the first of the results quoted above that it is also Abel
summable with A = \.

Example 2.2 (a(n) = 2n). In this case, yn takes alternate maxima and minima at
n = 2k. The maxima are

2 k _ 2 k - l + 2 k - 2 _ 2 k - 3 + . . . + 2 _ 1

y2k = ^ (2.6)

for fc odd; and the minima are

2fc-i _ 2*-2 + 2
f c-3 - 2fc"4 + • • • + 2 -

^ 8^

2f e - 1

for fc even. Therefore, the limit as fc -4 00 does not exist: yn has maxima whose heights
tend to I , and minima whose heights tend to 5. Hence the series is not Cesaro summable.
It then follows from the second of the results quoted above that neither can it be Abel
summable (because the partial sums sm are bounded). Hardy gave a direct proof of this
in [2]. The question we address here is: what is the asymptotic form of the gap series
(1.1) in this case a s i - > 1_?

3. Poisson summat ion

The Poisson summation formula for a function f € L1 (M) with Fourier transform

f(u)= f°° eituf(t)dt (3.1)
. / — O O
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is

which is valid if, for example, the sum on the right-hand side is absolutely convergent
and

/(*+*) (3-3)
k=~ oo

converges absolutely and uniformly in x (see [4, p. 129]).
Our main purpose in this paper is to demonstrate how the Poisson summation formula

can be used to investigate the Abel summability of gap series. To do this, we now apply
it to the two examples discussed in the previous section.

We note first that it follows from (3.2) that

£ (-l)n/(")= £ f((2n+l)n), (3.4)
n=—oo

and it is this form that we shall make direct use of.

Example 3.1 (a(n) = n2) . Consider the function f(t) = x* = e~xt , where x =
e~x (A > 0). The Fourier transform of f(t) is

/(«) = J°° eitue-At2 dt = y^e"" 2 / 4 A . (3.5)

Applying the Poisson summation formula in the form (3.4) thus gives

validity being assured by the convergence of the series on the right-hand side, and the
uniform convergence over t € K of the series

4>(t)= £ (-l)"e-A<t+< (3.7)
n=—oo

It follows that

n=0 ' n=0

-» h (3-8)
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as x -* 1_, A -¥ 0+ since

n=O " n= l

-)• 0, (3.9)

as A —¥ 0+. Hence, as already proved in §2, in this case the gap series is Abel summable
to A = I , coinciding with the value of the Cesaro summation.

Example 3.2 (a(n) = 2n). Consider the function f(t) = x2'" = e^ 2 ' " . Its Fourier
transform is

/(„) = / eitue-A2'" dt
J—oo

= 2 Re / °° eltue-™' dtf°° Uu -A2'
I G 6 i

Jo
9 1 r°°

iog2n eA-/iog2yA

putting s = A2*. Now, clearly, for all real u ^ O ,

'Jo S

( 3 . n )

where the last equality follows by expanding the exponential in powers of s and integrat-
ing term by term.

Poisson's summation formula (3.4) thus gives

fWr((2n+l)7ri/log2) f . ( - l ) f e A* \
J r ^ V A^+D-i/1^2 ^ fc! ((2n+l)7ri/log2) + fcy' ( '
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and, hence,

" - l Re V
n=0 x

/r((2n+l)7ri/log2)

n=0 ° n=0

Observe, firstly, that

Re
n=0fc=0

:n + l)7ri/log2) + ifc ^ ^ A;! ((2n+ I)7r/log2)2 + k2

0, (3.14)

as A —> 0+ (that is, as a; —> 1_).
Observe, secondly, that if we write A = 2~M, then

r « 2 n + l ) r i / l»g2)e<-«) - . (3.15)
ra=0 6 n=0

is 2-periodic in /x = —(1/ log 2) log log(l/x). Furthermore, using the fact (see, for example,
[1, p. 256]) that

\r(iy)\2 = . I (3.16)

for real y, the first term of (3.15) oscillates with amplitude

2
-|r(7ri/log2)| =

Iog2' v ' ° n
 N/log2sinh(7r2/log2)

= 2.75 x HT3, (3.17)

to three significant figures, and the sum of the rest is bounded in modulus by

2 y .
lOg2"=1

r / (2n +
\ log

l)7ri\

2 J |
2 ^ ,

\Zlog 2 ̂  ^{2n -

\/log 2 ^ 3 sinh(37r
2 1

= 1.04 x 10~9,

1

)-l)sinh((2n+l)7r2/log2)

V log 2 ) , ^ ,

Vlog2)l-e-/.og,

(3.18)

to three significant figures.
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It follows that as x ->• 1_ the series Z ^ o ( ~ l ) n x 2 " oscillates round x = \ with ampli-
tude 2.75 x 10~3, to three significant figures, and is asymptotically 2-periodic in fi =
—(1/ log 2) log log(l/x). Hence, one can choose values of x arbitrarily close to 1 for which

oo

^2(-l)nx2" = \ ± (2.75 x 10-3), (3.19)
71=0

to three significant figures. This is, therefore, a direct proof of the fact that the series is
not Abel summable, as was already deduced in § 2 from the fact that it is not Cesaro
summable. Clearly, the method based on Poisson summation allows one to go further, in
that it provides an answer to the question raised at the end of that section: it gives the
asymptotic form of the gap series as x —>• 1_. Interestingly, in this particular example,
the values of the maxima and minima of the gap series as x -> 1_ do not coincide with
the maxima and minima of the partial Cesaro averages in (1.7) as n —¥ oo.
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