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How robustly can you predict the future?
Sean Cox and Matthew Elpers
Abstract. Hardin and Taylor proved that any function on the reals—even a nowhere continuous
one—can be correctly predicted, based solely on its past behavior, at almost every point in time.
They showed that one could even arrange for the predictors to be robust with respect to simple
time shifts, and asked whether they could be robust with respect to other, more complicated time
distortions. This question was partially answered by Bajpai and Velleman, who provided upper and
lower frontiers (in the subgroup lattice of Homeo+(R)) on how robust a predictor can possibly be.
We improve both frontiers, some of which reduce ultimately to consequences of Hölder’s Theorem
(that every Archimedean group is abelian).

1 Introduction

If S is a nonempty set, RS will denote the set of total functions fromR to S, and R
⌣S will

denote the set of all S-valued functions f such that dom( f ) = (−∞, t f ) for some t f ∈
R. An S-predictor will refer to any function P with domain and codomain as follows:

P ∶ R⌣ S → S .(1)

If f ∶ (−∞, t f ) → S is a member of R⌣ S, we could view P( f ) as an attempt to predict
whichmember of S (which “state”) the function f would/should/will pick out at “time”
t f , if t f were in its domain. We gauge how well P makes predictions by asking: for
which F ∈ RS and which t ∈ R doesP correctly predict F(t), based solely on F∣(−∞,t)?
That is, for which F ∶ R→ S and t ∈ R does the equality

P(F∣(−∞,t)) = F(t)(*)

hold?
If we restricted our attention to continuous F ∶ R→ S (with respect to some nice

topology on S), then the problem would trivialize, since P(F∣(−∞,t)) could simply
pick out limz↗t F(z), which depends only on F∣(−∞,t). However, if ∣S∣ ≥ 2, then it
is impossible to find a P such that equation (*) holds for every function F ∶ R→ S
and every t ∈ R. Simply fix any f ∶ (−∞, 0) → S; since ∣S∣ ≥ 2, there is a (possibly
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1494 S. Cox and M. Elpers

non-continuous) function F ∶ R→ S such that F∣(−∞,0) = f and F(0) ≠ P( f ). Then
P(F∣(−∞,0)) = P( f ) ≠ F(0), so P failed to predict F(0).

Hardin and Taylor [5] considered what happens when we require the equality (*)
to merely hold for almost every t. We will say that an S-predictor P is good if, for all
total functions F ∶ R→ S, equation (*) holds for all except measure-zero many t ∈ R
(where the measure zero set of “bad” predictions is allowed to depend on F). They
proved the following.

Theorem 1 (Hardin and Taylor [5]) For every set S, there exists a good S-predictor.

They showed in [6] that the S-predictor could even be arranged to be independent
of time shifts; i.e., to have the property that if f is some horizontal (constant) shift of
g, then P( f ) = P(g). They point out that this result has its roots in a 1965 problem
of Galvin about “infinite hat” puzzles, which appeared in the problems section of the
American Mathematical Monthly [4]. The problem elicited an incorrect solution [7]
and a later correction [8], both of which could be viewed as precursors to the key
ideas in the various Hardin–Taylor results, and to the following question.

Question 2 (Paraphrase of Question 7.8.3 of [6]) How robust can a good predictor
be, with respect to distortions in time?

More precisely, let Homeo+(R) denote the group (under composition) of increas-
ing homeomorphisms of R. Following [6], if U ⊆ Homeo+(R),1 an S-predictor P is
calledU-anonymous2 ifP( f ) = P( f ○ φ) for all φ ∈ U and all f ∈ R

⌣ S. Since dom( f ) =
(−∞, t f ) for some t f ∈ R, the domain of f ○ φ is understood to be ( −∞, φ−1(t f )).
See Figure 1 for an example (with S = R).

So, U-anonymity of Pmeans that P is insensitive to distortions in time caused by
members of U . The larger the set U , the more robust is the predictor P. We already
mentioned thatHardin andTaylor produced goodpredictors thatwere independent of
horizontal shifts; using the terminology above, their theorem can be rephrased as: for
every set S, there is a good S-predictor that is anonymous with respect to the group of
shift functions (i.e., the group of functions of the form x ↦ x + c for some constant c).
This was improved by Bajpai and Velleman.

Theorem 3 (Bajpai and Velleman [1]) For any set S, there is a good S-predictor that is
anonymous with respect to Aff +(R) (the group of affine functions of positive slope).

The Axiom of Choice was used in the proofs of both the Hardin–Taylor Theorem 1
and the Bajpai–VellemanTheorem 3, and in our improvement to be discussed below
(Theorem 5). All of these results can be viewed as yet more strange consequences
of the Axiom of Choice, the most famous of which are the Banach–Tarski Paradox
and the existence of non-Lebesgue-measurable sets of reals. In [5], Hardin and Taylor
state:

1We do not necessarily assumeU is a group; e.g., the setC∞(R) ∩Homeo+(R) in Bajpai–Velleman’s
Theorem 4 is not a group under composition, because it is not closed under inverses.

2“U-invariant” would also be an appropriate name, but we (following [1]) reserve that terminology
for certain functions from R→ S (see Section 3).
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How robustly can you predict the future? 1495

Figure 1: f (x) = sin(1/x) with domain (−∞, 0), and φ(x) = x + ex+5 is a particular member
of Homeo+(R). If φ ∈ U ⊆ Homeo+(R) and P ∶ R⌣R→ R is aU-anonymousR-predictor, then
P( f ) is required to be the same as P( f ○ φ).

“We should emphasize that these results do not give a practical means of predicting the future, just
as the time dilation one would experience standing near the event horizon of a black hole does not
give a practical time machine. Nevertheless, we choose this presentation because we find it the most
interesting, as well as pedagogically useful . . ..”

However, the Axiom of Choice is not a panacea for obtaining anonymous predic-
tors. Even with the Axiom of Choice at their disposal, Bajpai and Velleman showed
there is a limit to how robust predictors can be.

Theorem 4 (Bajpai and Velleman [1]) There is an equivalence relation ∼ on R such
that, letting S ∶= R/ ∼, there is no good S-predictor that is anonymous with respect to
the set

C∞(R) ∩Homeo+(R).
Clearly, if U0 ⊂ U1, then a U1-anonymous predictor is also U0-anonymous. So,

Theorems 3 and 4 provide “frontiers” in the subgroup lattice of Homeo+(R) for how
anonymous we can require predictors to be: the lower frontier is Aff +(R), and the
upper frontier is C∞(R) ∩Homeo+(R).

Of course, this is a large gap, and [1] closed by asking what happens between
those two extremes. Our main results address this problem, thus chipping away at
Question 2. Our new Theorems 5 and 8 are strengthenings of Theorems 3 and 4,
respectively. In order to more flexibly derive examples, we state Theorem 5 in terms
of Homeo+(I) where I is any open interval of real numbers. See Section 3 for the
meaning of good S-predictor in this context, which is the direct generalization of the
definition given above (when I = R).

Theorem 5 Suppose I is an open interval of real numbers, U is a subgroup of
Homeo+(I), and:
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1496 S. Cox and M. Elpers

(1) the commutator subgroup of U acts freely on I;3 and
(2) each nonidentity member of U has at most one fixed point.
Then, for any set S, there is a good U-anonymous S-predictor.

Theproof ofTheorem 5 relies heavily on the ideas of the proofs in Bajpai–Velleman
[1] and Hardin–Taylor [5]. In fact, Theorem 5 is essentially the result of noticing that
the Hardin–Taylor theorem about shift-anonymous predictors was essentially due
to the classic group-theoretic Hölder’s Theorem discussed in Section 2, and that the
Bajpai–Velleman strengthening was essentially about fixed points and commutator
subgroups.

Corollary 6 We list several examples that satisfy the assumptions of Theorem 5.
(A) Bajpai–Velleman’s Theorem 3 is an immediate consequence of Theorem 5 (with

I = R and U = Aff +(R)), since the commutator subgroup of Aff +(R) is exactly
the group of shift functions (which act freely onR), and nonidentity affine functions
have at most one fixed point.

(B) When U ≤ Homeo+(I) and U itself acts freely on I, then U trivially satisfies both
assumptions of Theorem 5. For example, this holds when I = (0, 1) and U is the
group of φ ∈ Homeo+(I) of the form x ↦ xα for some α > 0 (this U acts freely on
(0, 1)).

(C) If U acts transitively on I,4 the commutator subgroup of U acts freely on I, and
each nonidentity member of U has only finitely many fixed points, then in fact each
nonidentity member of U has at most one fixed point (see Lemma 16 in Section 4
for a proof). Hence, Theorem 5 applies.

(D) (Special case of part (C)): suppose U is a group of analytic functions in
Homeo+([0, 1]); then it is well known that, since [0, 1] is compact, each nonidentity
member of U has only finitely many fixed points.5 Note that members of U also act
on the set (0, 1). So, if U acts transitively on (0, 1) and the commutator subgroup
of U acts freely on (0, 1), then we are in the setting of part (C), with I = (0, 1) (and
where we replace U by {φ ↾ (0, 1) ∶ φ ∈ U}).

(E) If φ ∈ Homeo+(I) and φ has onlymeasure zeromany fixed points, then for every set
S, there exists a ⟨φ⟩-invariant, good S-predictor (where ⟨φ⟩ denotes the cyclic group
generated by φ). See Section 4 for why this follows fromTheorem 5. In particular, this
holds whenever φ has only countably many fixed points (e.g., for any nonidentity
analytic function inHomeo+(I)).

Remark 7 Since the assumptions of Theorem 5 are phrased entirely in terms of
continuous group actions, examples of U with those properties transfer via home-
omorphisms. For example, if I = (0, 1) and

U = {x ↦ xα ∶ α > 0}

3A group C ≤ Homeo+(I) is said to act freely on I if for every nonidentity φ ∈ C, φ has no fixed
points. This is a special case of the general notion of a free action of a group.

4That is, for every x , y ∈ I, there is some φ ∈ U such that φ(x) = y.
5This follows from the compactness of [0, 1] and the fact that the zeros of a nonzero analytic function

form a discrete set.
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are as in part (B) of the corollary, and Ψ ∶ (0, 1) → R is a homeomorphism, then

ΨUΨ−1 = {Ψ ○ φ ○Ψ−1 ∶ φ ∈ U}
is a subgroup of Homeo+(R) that satisfies the assumptions of Theorem 5.

We also strengthen the “upper frontier” from Bajpai–Velleman’s Theorem 4.

Theorem 8 There is an equivalence relation ∼ on R such that, letting S ∶= R/ ∼,
there is no good S-predictor that is anonymous with respect to the group of infinitely
Lipschitz diffeomorphisms. (In fact, we show there is no good “weak” S-predictor that is
anonymous with respect to this class; see Section 5 for the relevant definitions.)

Section 2 provides the relevant background about Hölder’s Theorem, Section 3
proves Theorem 5, Section 4 proves Corollary 6, and Section 5 proves Theorem 8.
The only prerequisites are very basic group theory and real analysis; in particular, no
set-theoretic background whatsoever is assumed of the reader. The only set-theoretic
ingredient is the use of a wellorder in the proof ofTheorem 5 in Section 3. A wellorder
is a linear order with no infinite descending chain. The Axiom of Choice ensures that
every set can be wellordered, which we will use exactly once (on page 1499) to obtain
a wellorder of the set

IS ∶= {F ∶ F is a function from I into S}.
By wellordered set of reals, we will mean a set X ⊂ R such that (X , <) is a wellorder,

where < denotes the usual ordering of R. The following fact is key (see [5, Corollary
3.4]).

Fact 9 Every wellordered set of reals is countable (hence, has Lebesgue measure
zero).

2 Hölder’s Theorem and its consequences

An Archimedean ordered group is a triple (G , ⋅, <) such that (G , ⋅) is a group, < is a
linear order on G, and:
(1) < is both left and right invariant with respect to the group operation, meaning

that for all a, b, c ∈ G:6
a < b �⇒ ca < cb and ac < bc;

(2) whenever 1 < a < b, there is an n ∈ N such that b < an .
We also say that an (un-ordered) group (G , ⋅) is Archimedean if there exists a linear
order < on G such that (G , ⋅, <) is an Archimedean ordered group.

Theorem 10 (Hölder’sTheorem; seeChapter IV,Theorem 1 of [3]) EveryArchimedean
group is abelian.7

6The invariance requirements look more natural when one uses additive instead of multiplicative
notation. However, in applications involving Archimedean orders, one cannot usually know, a priori,
that the group is abelian.

7Hölder actually proved more; namely, that every Archimedean group is isomorphic to a subgroup
of (R,+). We will not need this additional fact, however.
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Hölder’sTheorem is relevant for the study of continuous group actions on the reals.

Theorem 11 (Folklore; special case ofTheorem 4 of [2]) Suppose I is an open interval
of real numbers and V is a subgroup ofHomeo+(I) that acts freely on I.Then the binary
relation ≺ on V defined by

φ ≺ ψ ∶ ⇐⇒ ∀x ∈ I φ(x) < ψ(x)
is an Archimedean order on V. Consequently, by Hölder’s Theorem, V is abelian.

SinceTheorem 11 is so central to the paper (in the key Lemma 13), we give a sketch
of the proof. Fix any x0 ∈ I, and define the relation ≺x0 on V by: φ ≺x0 ψ if φ(x0) <
ψ(x0). The relation ≺x0 is clearly transitive and antisymmetric. It is total, because if
φ,ψ ∈ V and φ(x0) = ψ(x0), thenψ−1 ○ φ fixes x0, and hence (sinceV acts freely on I)
ψ−1 ○ φ = id; i.e., φ = ψ. So≺x0 is a linear order onV .The IntermediateValueTheorem,
together with the assumption that V acts freely on I, ensure that ≺x0 is the same as the
relation ≺ defined in the statement of Theorem 11. This relation is also left and right
invariant with respect to composition (on V ). Finally, to see that ≺x0 is Archimedean,
suppose id ≺x0 φ ≺x0 ψ with φ,ψ ∈ V . Then id ≺ φ, and hence ⟨φn(x0) ∶ n ∈ N⟩ is a
strictly increasing sequence. So it either converges to a point in I, or to “+∞” (the right
endpoint of I). It cannot converge to a point in I, because if it did, that limit would be a
fixed point of the continuous (nonidentity) function φ, contradicting that φ ∈ V andV
acts freely. So limn→∞ φn(x0) = ∞; hence, there is some n such that ψ(x0) < φn(x0).
Then ψ ≺x0 φn , which is equivalent to saying ψ ≺ φn .

3 Proof of Theorem 5

In this section, we proveTheorem 5. If I is an open interval of real numbers, the lower
and upper endpoints of I will be denoted −∞ and∞, respectively. If S is a nonempty
set, IS denotes the set of total functions from I to S, and I

⌣S denotes the set of functions
of the form f ∶ (−∞, t f ) → S for some t f ∈ I. Uppercase and lowercase letters will be
used for members of IS and I

⌣S, respectively, but note that if F ∈ IS and t ∈ I, then
F∣(−∞,t) is a member of I

⌣S.
The notions of good and anonymous S-predictors in this context are the obvious

generalizations of the definitions given in the introduction (which were for the special
case I = R); i.e., a good S-predictor is a function P ∶ I⌣S → S such that for all F ∈ IS,

{t ∈ I ∶ P(F∣(−∞,t)) ≠ F(t)} has Lebesgue measure zero.

If U ⊆ Homeo+(I), we say that a function P with domain I
⌣S is U-anonymous if

P( f ) = P( f ○ φ) for every f ∈ I
⌣S and every φ ∈ U .

Lowercase Greek letters are reserved for elements of Homeo+(I). If φ ∈
Homeo+(I) and n ∈ Z, φn denotes the n-fold composition of φ if n ≥ 1, idI if n = 0,
and the ∣n∣-fold composition of φ−1 if n < 0.

If F ∶ I → S and φ ∈ Homeo(I), we say that F is φ-invariant if F = F ○ φ, and F is
φ-invariant before t if

F ↾ (−∞, t) = F ○ φ ↾ (−∞, t).
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We say that F is past φ-invariant if there is some t ∈ I such that F is φ-invariant
before t.
Lemma 12 (Analogue of Lemmas 2 and 3 of [1]) Suppose F ∈ IS, φ ∈ Homeo+(I),
and F is φ-invariant before t. Then there is an H ∶ I → S that extends F∣(−∞,t) and is
φ-invariant.
Proof Since φ is invertible, the relation

x ∼ z ∶ ⇐⇒ ∃n ∈ Z φn(x) = z

is an equivalence relation on I. Suppose x ∼ z; without loss of generality, say n ≥ 0
and φn(x) = z. Then, because φ is order-preserving, the sequence (φk(x))

k≥0
is

monotonic (increasing if x ≤ φ(x), and decreasing if x ≥ φ(x)). In particular, if both
x and z are less than t, then so is φk(x) for every integer k between 0 and n. Since F
is φ-invariant before t, it follows that F(x) = F(φk(x)) for each k between 0 and n;
in particular, F(x) = F(z).

Hence, for any equivalence class C, if C ∩ (−∞, t) ≠ ∅, then the restriction of F
to C ∩ (−∞, t) is constant; let sC denote this constant value. Now, fix any s∗ ∈ S, and
define H ∶ I → S by

H(y) =
⎧⎪⎪⎨⎪⎪⎩
s[y] , if [y] ∩ (−∞, t) ≠ ∅,
s∗ , otherwise,

where [y] denotes the equivalence class of y. Then H extends F∣(−∞,t), and, since[y] = [φ(y)] for every y ∈ I, H is φ-invariant. ∎
The next lemma is the key use of free actions and Hölder’s Theorem.

Lemma 13 (Analogue of Lemma 4 of [1]) Suppose V is a subgroup of Homeo+(I)
and V acts freely on I. Suppose F ∶ R→ S is invariant with respect to some nonidentity
member of V.Then, for any φ ∈ V: if F is past φ-invariant, then F is (fully) φ-invariant.
Proof By assumption, there is a ψ ∈ V such that ψ ≠ id and F is ψ-invariant. Now,
suppose φ ∈ V and F is past φ-invariant; recall this means there is some t ∈ I such
that F is φ-invariant before t (i.e., if z < t, then F(φ(z)) = F(z)). Fix any x ∈ I; we
want to show F(φ(x)) = F(x). Since ψ ≠ id and V acts freely, ψ has no fixed points.
Let ≺ be the linear order on V given by Theorem 11. Then either ψ ≺ id or ψ−1 ≺ id.
Without loss of generality,8 we can assume that ψ ≺ id. Then ⟨ψn(x) ∶ n ∈ N⟩ is a
strictly decreasing sequence. Since ψ is continuous and has no fixed points, it follows
that limn→∞ ψn(x) = −∞. So, for some n ∈ N, ψn(x) < t. Then

F(x) = F(ψn(x)) (because F is ψ-invariant)
= F(φ(ψn(x))) (because ψn(x) < t and F is φ-invariant before t)
= F(ψn(φ(x))) (because V is abelian, by Theorem 11)
= F(φ(x)) (because F is ψ-invariant).

∎
8By replacing ψ with ψ−1 if necessary; note that if F is ψ-invariant, then it is also ψ−1-invariant.
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A commutator in a group is an element of the form aba−1b−1. If U is a group,
[U ,U] denotes the commutator subgroup of U, which is the subgroup generated by
the commutators. At one point, we will use the basic group-theoretic fact that

[U ,U] is a normal subgroup of U .

We now commence with the proof of Theorem 5. Fix any nonempty set S for the
remainder of this section. Assume that I is an open interval of real numbers and U is
a subgroup of Homeo+(I) such that:
(1) [U ,U] acts freely on I, and
(2) each nonidentity member of U has at most one fixed point.

Define the following subsets of IS:
• Inv[U ,U] ∶= the set of functions in IS that are invariant with respect to some
nonidentity member of [U ,U].

• InvU ∶= the set of functions in IS that are invariant with respect to some nonidentity
member of U .
By the Axiom of Choice, there exists a wellordering ◁ of IS such that Inv[U ,U]

functions are listed first, then functions in InvU/Inv[U ,U], then the rest of IS.9 The
reason for these requirements will become apparent in the proof of Claim 14.

Recall from the discussion of anonymity in Section 1 that if f ∈ I
⌣S and φ ∈

Homeo+(I), f ○ φ is understood to have domain ( −∞, φ−1(t f )). Define f ○U to be
the set of functions of the form f ○ φ, where φ ∈ U . Let f ○U denote the collection of
all (total) F ∶ I → S such that F extends at least onemember of f ○U . Note that a given
F ∈ f ○U may possibly extendmore than onemember of f ○U ;10 in fact, dealing with
this issue is the heart of the argument. Let F f ○U denote the◁-least member of the set
f ○U .

Part (2) of the following claim is the key use of Lemma 13, whichwas a consequence
of Hölder’s Theorem.

Claim 14 Suppose f ∶ (−∞, t f ) → S, φ ∈ U , and F f ○U extends f ○ φ. Suppose γ ∈ U ,
γ ≠ idI , and F f ○U is γ-invariant before φ−1(t f ) (i.e., for inputs that come from the
domain of f ○ φ). Then:
(1) F f ○U ∈ InvU (i.e., F f ○U is fully invariant with respect to some nonidentitymember

of U , though not necessarily with respect to γ).
(2) If γ ∈ [U ,U], then F f ○U is fully γ-invariant.

Proof By Lemma 12, there is an H ∶ R→ S that extends F f ○U ∣(−∞,φ−1(t f )) (= f ○ φ)
and is γ-invariant.ThenH ∈ f ○U ∩ InvU . Since F f ○U is the◁-least member of f ○U ,
F f ○U ⊴ H. And since H ∈ InvU and ◁ lists members of InvU before members of
IS/InvU , it follows that F f ○U ∈ InvU . This proves part (1).

9The Axiom of Choice directly provides wellorders◁0,◁1 , and◁2 for the (pairwise disjoint) sets
Inv[U ,U], InvU/Inv[U ,U], and I S/InvU , respectively. Stacking these three wellorders yields the desired
wellorder◁ of I S.

10For example (in the case dealt with by Bajpai–Velleman): if F happens to extend f and F is periodic
with period p, then F also extends f ○ φk where φk(x) = x + kp for any k ∈ N.
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If γwas an element of [U ,U], thenH ∈ f ○U ∩ Inv[U ,U], and since◁ listsmembers
of Inv[U ,U] before members of InvU/Inv[U ,U], it follows that F f ○U ∈ Inv[U ,U]. So F f ○U
is invariant with respect to some nonidentity member of [U ,U]. By Lemma 13 and
our assumption that [U ,U] acts freely on I, F f ○U is fully γ-invariant. ∎

Define

P ∶ I⌣S → S

by

P( f ) ∶= F f ○U( φ−1(t f )-........../.........0
Right end-
point of

dom( f ○φ)

),(2)

where φ is any member of U witnessing that F f ○U is an element of f ○U , i.e., where
φ is anymember of U such that F f ○U extends f ○ φ. The next claim says that P is well
defined, in the sense that the expression above does not depend on the choice of the φ.

Claim 15 The definition of P( f ) in (2) does not depend which φ ∈ U we choose to
witness F f ○U ∈ f ○U .That is, if φ1 and φ2 are both inU , and F f ○U extends both f ○ φ1
and f ○ φ2, then

F f ○U(φ−11 (t f )) = F f ○U(φ−12 (t f )).
Proof We follow the proof in [1, Theorem 5] very closely (which was for the special
case where I = R and U was the group of increasing affine functions).

For the remainder of the proof of the claim, we abbreviate F f ○U by F, and omit the
“○” symbol in compositions. Let x1 = φ−11 (t f ) and x2 = φ−12 (t f ); so the domain of f φ1
is (−∞, x1), the domain of f φ2 is (−∞, x2), and F extends both of them. We must
show that F(x1) = F(x2). Clearly, this holds if x1 = x2, so suppose from now on that
x1 ≠ x2. In particular,

φ−11 φ2 is a nonidentity member of U ,(3)

because it moves x2 to x1. Since F extends f φ1 before x1 and extends f φ2 before x2, it
follows that:11

F is φ−11 φ2-invariant before x2, and φ−12 φ1-invariant before x1 .(4)

Since F = F f ○U extends f ○ φ2, F is φ−11 φ2-invariant before φ−12 (t f ) = x2, and both
φ2 and φ−11 φ2 are in U , part (1) of Claim 14 implies

F ∈ InvU .(5)

11To see φ−11 φ2-invariance before x2, suppose z < x2 = φ−12 (t f ). Since φ2(z) < φ2(x2) = t f , apply-
ing the order-preserving φ−11 yields that φ−11 φ2(z) < φ−11 (t f ) = x1 . Since F extends f ○ φ1 before x1 ,
Fφ−11 φ2(z) = f φ1φ−11 φ2(z), but the latter is just f φ2(z), which (since z < x2 and F extends f φ2 before
x2) is the same as F(z). The proof of φ−12 ○ φ1-invariance of F before x1 is similar.
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So there is someψ ∈ U such that idI ≠ ψ and F = Fψ.Without loss of generality—since
both ψ and ψ−1 are both order-preserving and F is invariant with respect to both—we
can assume that

ψ(x1) ≤ x1 .(6)

Still following the proof of [1, Theorem 5], we consider two cases. The assumption
that nonidentity members ofU have at most one fixed point is used in Case 1, and the
assumption that [U ,U] acts freely on I is used in Case 2.

Case 1: ψ commutes with φ−12 φ1. We first claim that ψ(x1) < x1. If not, then by (6),
x1 is a fixed point of ψ. Then

ψ( x21
φ−12 φ1(x1)

) = ψφ−12 φ1(x1) by case= φ−12 φ1 ψ(x1)2
x1

= x2 ,

so x2 is another fixed point of ψ.This contradicts that nonidentity members ofU have
at most one fixed point.

So ψ(x1) < x1. Then

F(x1) = Fψ(x1) (because F is ψ-invariant)
= Fφ−12 φ1ψ(x1) (because ψ(x1) < x1 and (4))
= Fψφ−12 φ1(x1) (ψ commutes with φ−12 φ1 by the Case)
= Fψ(x2)
= F(x2) (because F is ψ-invariant).

Case 2: ψ does not commute with φ−12 φ1. Let τ ∶= φ−12 φ1, and consider the commu-
tator ψ−1τψτ−1. By our case,

β ∶= ψ−1τψτ−1 is a nonidentity member of [U ,U].(7)

First, we show that

F is β-invariant before x2 .(8)

To see this, first observe that τ(x1) = x2. Suppose z < x2.Then τ−1(z) < x1, and by (6),
ψτ−1(z) < x1, and hence (since τ(x1) = x2) τψτ−1(z) < x2. Then

Fβ(z) = Fψ−1τψτ−1(z)
= Fτψτ−1(z) (F is ψ-invariant)
= F φ−11 φ22

τ−1

τψτ−1(z) (by (4) and since τψτ−1(z) < x2)

= Fψτ−1(z)
= Fτ−1(z) (F is ψ-invariant)
= Fφ−11 φ2(z)
= F(z) (by (4) and z < x2),
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which concludes the proof of (8). By (7), (8), and part (2) of Claim 14,

F is (fully) β-invariant.(9)

Since id ≠ β ∈ [U ,U] and [U ,U] acts freely on I, in particular, x2 is not a fixed
point of β. Let α denote whichever one of β, β−1 sends x2 to an output strictly less
than x2. Then:

α ∈ [U ,U], α(x2) < x2 , and F is α-invariant.(10)

Next, we claim that

F is τ−1ατ-invariant before x1 .(11)

Suppose z < x1. Then

Fτ−1ατ(z) = Fφ−11 φ2 α

<x23...............4..............5
φ−12 φ1(z)-...................../.....................0
<x2 because
α(x2)≤x2

= Fαφ−12 φ1(z) by (4)
= Fφ−12 φ1(z) (F is α-invariant)
= F(z) by (4) and z < x1 ,

which concludes the proof of (11).
Recall that commutator subgroups are always normal; hence, τ−1ατ is an element of

[U ,U].Then, by (11), the fact that F extends f φ1, and since φ1 ∈ U and τ−1ατ ∈ [U ,U],
part (2) of Claim 14 ensures that

F is (fully) τ−1ατ-invariant.(12)

Finally,

F(x1) = Fτ−1 α

x26
τ(x1)-.........../...........0

<x2 by (10)

by (12)

= Fατ(x1) by (4)
= Fτ(x1) F is α-invariant
= F(x2). ∎

With Claim 15 in hand, we can now finish the proof of Theorem 5. To see the U-
anonymity of P, suppose f , g ∈ I

⌣S, τ ∈ U , τ(tg) = t f , and g = f ○ τ. Then g ∈ f ○U ,
and it follows that f ○U = g ○U and hence

F f ○U = Fg○U .(13)

Let F denote this common function. Let φ ∈ U witness that F ∈ g ○U ; i.e., F extends
g ○ φ = f ○ τ ○ φ. So F = F f ○U extends f ○ (τ ○ φ), and since τ ○ φ ∈ U , Claim 15
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ensures that P( f ) = F((τ ○ φ)−1(t f )). Then

P(g) = F(φ−1( tg1
τ−1(t f )

)) = F((τ ○ φ)−1(t f )) = P( f ).(14)

To see that P is good (this argument first appeared in Hardin–Taylor [5]), suppose
H ∶ I → S. Let

B ∶= {t ∈ R ∶ P (H∣(−∞,t)) ≠ H(t)} .
By Fact 9 (from page 1497), to see that B has measure zero—in fact, is countable and
nowhere dense—it suffices to show that B is a wellordered subset ofR under the usual
ordering < on R; and for that it suffices to find an order-preserving embedding from
(B, <) into (IS ,◁).12 Define

e ∶ (B, <) → (IS ,◁) , t ↦ FH∣(−∞,t)○U .

To see that e is order-preserving, suppose s < t are both in B; we will show that e(s) ◁
e(t) by showing e(s) ⊴ e(t) and e(s) ≠ e(t). We first prove the nonstrict inequality,
i.e., that

FH∣(−∞,s)○U ⊴ FH∣(−∞,t)○U .

Since FH∣(−∞,s)○U is, by definition, the ◁-least member of H∣(−∞,s) ○U , it suffices to
show that

FH∣(−∞,t)○U ∈ H∣(−∞,s) ○U .(15)

Now, FH∣(−∞,t)○U , being a member of H∣(−∞,t) ○U , extends H∣(−∞,t) ○ φ for some φ ∈
U . However, since s < t (and φ is order-preserving), it also extends H∣(−∞,s) ○ φ. This
verifies (15).

To prove that

FH∣(−∞,s)○U ≠ FH∣(−∞,t)○U ,

suppose toward a contradiction that they are equal; let F denote the common function.
Let φ ∈ U witness that F ∈ H∣(−∞,t) ○U ; so F extends H∣(−∞,t) ○ φ. Since s < t and φ
is order-preserving, F also extends H∣(−∞,s) ○ φ. Then, by Claim 15 and the fact that
F = FH∣(−∞,s)○U ,

P(H∣(−∞,s)) = F(φ−1(s)).(16)

Now, the left side of (16) is not equal to H(s), because s ∈ B. So,
F(φ−1(s)) ≠ H(s).(17)

12Since any descending chain from (B, <) would get carried by the order-preserving embedding to
a descending chain in (I S,◁), and hence would have to terminate at some finite stage because ◁ is a
wellorder.
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On the other hand, F extends H∣(−∞,t) ○ φ, whose domain is (−∞, φ−1(t)); and
since s < t and φ (and hence φ−1) is order-preserving, φ−1(s) < φ−1(t). So F and
H∣(−∞,t) ○ φ agree on the input φ−1(s). Then F(φ−1(s)) = H∣(−∞,t) ○ φ(φ−1(s)) =
H(φ(φ−1(s))) = H(s), contradicting (17).

This concludes the proof of Theorem 5.

4 Proof of Corollary 6

In this section, we prove parts (C) and (E) of Corollary 6.The remaining parts should
be clear. The following lemma proves part (C).

Lemma 16 Suppose U is a subgroup of Homeo+(I), U acts transitively on I, [U ,U]
acts freely on I, and each nonidentity member of U has only finitely many fixed points.
Then, in fact, each nonidentity member of U has at most one fixed point.

Proof Suppose toward a contradiction that there is some nonidentity φ ∈ I and some
x1 < x2 in I such that both x1 and x2 are fixed points of φ. Since U acts transitively on
I, there is some τ ∈ U such that τ(x1) = x2. Then x2 is a fixed point of τφτ−1φ−1. We
claim that τφτ−1φ−1 ≠ idI , whichwill contradict the assumption that [U ,U] acts freely
on I.

Suppose toward a contradiction that τφτ−1φ−1 = idI ; i.e., that

τφτ−1 = φ.(18)

For n ≥ 3, set xn ∶= τ(xn−1). Since τ is increasing and τ(x1) = x2, the sequence (xn)n
is a strictly increasing sequence in I. We prove by induction that each xn is a fixed
point of φ, which will contradict that φ has only finitely many fixed points. That x1
and x2 are fixed points is by assumption. Now, if xn is a fixed point of φ, then

φ(xn+1) = τφτ−1(xn+1) by (18)
= τφτ−1(τ(xn)) definition of xn+1
= τφ(xn)
= τ(xn) Induction Hypothesis
= xn+1 . ∎

The “at most one” in the conclusion of Lemma 16 is best possible, since when I = R

andU is the group of increasing affine functions, the commutator subgroup [U ,U] is
exactly the group of shift functions (i.e., affine functions of slope 1). And in that case,U
acts transitively onR, [U ,U] acts freely onR, andmembers ofU/[U ,U] have exactly
one fixed point.

Next, we prove part (E) of Corollary 6. Suppose φ ∈ Homeo+(I), and that the set
C of fixed points of φ has Lebesgue measure zero. Since φ is continuous, C is closed.
For t ∈ I/C, let a(t) denote the largest member of C ∩ (−∞, t) if that intersection
is nonempty; otherwise, set a(t) = −∞. Closure of C, together with the assumption
that t ∉ C, ensures a(t) is well defined. Similarly, let b(t) be the smallest element of
C ∩ (t,∞) if that intersection is nonempty, and b(t) = +∞ otherwise. Finally, if t ∈
I/C, set J(t) ∶= (a(t), b(t)).
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Let

J ∶= {J(t) ∶ t ∈ I/C},
and notice J is a pairwise disjoint collection of open intervals; hence,

J is countable.(19)

Furthermore, for each J ∈ J, φ∣J is an element of Homeo+(J), and moreover is fixed-
point-free, since J = (a(t), b(t)) for some t ∈ I/C, and C ∩ (a(t), b(t)) is empty.The
following claim is a basic application of the Intermediate ValueTheorem.

Claim 17 Each nonidentity member of ⟨φ⟩ has the same fixed points as φ.

Proof Suppose τ is a nonidentity member of ⟨φ⟩; then τ = φn for some nonzero
n ∈ Z. Clearly, every fixed point of φ is also a fixed point of τ. Now, suppose t ∈ I is
not a fixed point of φ. Consider the interval J ∶= (a(t), b(t)) and the restriction φ∣J .
Since φ∣J has no fixed points in J, the Intermediate ValueTheorem implies that either
φ(x) < x for all x ∈ J, or φ(x) > x for all x ∈ J. In the former case, since φ is order-
preserving, it follows by induction that φn(x) < x and φ−n(x) > x for all n ∈ N and
all x ∈ J (and similarly for the latter case, with inequalities reversed). In particular, t is
not a fixed point of τ. ∎

Suppose J ∈ J. Since φ∣J is fixed-point-free, Claim 17 ensures that the cyclic sub-
group ⟨φ∣J⟩ generated by φ∣J in Homeo+(J) acts freely on J. So, by Theorem 5, there
exists a good, ⟨φ∣J⟩-anonymous predictor PJ for functions in JS. Define

Q ∶ I⌣S → S

as follows: fix any s0 ∈ S. Given f ∶ (−∞, t f ) → S, consider cases:
• If t f ∈ C, let Q( f ) ∶= s0.
• If t f ∉ C, define Q( f ) ∶= PJ(t f )( f ∣J(t f )); note that the domain of f ∣J(t f ) is J(t f ) ∩
(−∞, t f ) = (a(t f ), t f ).
To see that Q is ⟨φ⟩-anonymous, consider any f ∶ (−∞, t f ) → S and any noniden-

tity τ ∈ ⟨φ⟩. We need to show that Q( f ) = Q( f τ). If t f ∈ C, then by the claim, t f is a
fixed point of both φ and τ, and hence t f = τ−1(t f ) is the right endpoint of the domain
of f τ. So, by definition of Q, Q( f ) = s0 = Q( f τ). If t f ∉ C, then since a(t f ) and b(t f )
are fixed points of τ, τ−1(t f ) is an element of J(t f ). In particular,

τ−1(t f ) ∉ C , J (τ−1(t f )) = J(t f ) =∶ J , and ( f τ)∣J = f ∣J τ∣J .(20)

Then

Q( f ) = PJ( f ∣J) (definition of Q)
= PJ( f ∣J τ∣J) (by ⟨φ∣J⟩-anonymity of PJ)
= PJ(( f τ)J) (by (20))
= Q( f τ) (by definition of Q, since τ−1(t f ) ∉ C).
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To see that Q is good, fix any H ∶ I → S, and let

B ∶= {t ∈ I ∶ Q (H∣(∞,t)) ≠ H(t)}.
Now, B = (B ∩ C) ∪ (B/C), so it suffices to show that each set in the union is null.
Since C is null by assumption, B ∩ C is null; so it remains to show that B/C is also
null. Now,

B/C ⊆ ⋃
J∈J
(B ∩ J).(21)

Moreover, by the way we defined Q, B ∩ J is exactly the set of t ∈ J where
PJ(H∣J∩(−∞,t)) ≠ H(t), which has measure zero because PJ is good. Together with
(19), this implies that the right side of (21) has measure zero.

Remark 18 SupposeU ≤ Homeo+(I), and there is aC ⊂ I such thatC is closed (in I),
C has measure zero, and each member of C is a fixed point of every member of U .
Closure of C ensures that we can define J = {(a(t), b(t)) ∶ t ∈ I/C} as in the proof
above.Then, for each J ∈ J and φ ∈ U , φ∣J is amember ofHomeo+(J), andUJ ∶= {φ∣J ∶
φ ∈ U} is a subgroup of Homeo+(J). If there exists a good, UJ-anonymous predictor
for every J ∈ J, then an argument similar to the one above allows us to amalgamate
them to yield a good, U-anonymous predictor for functions on I.

5 Proof of Theorem 8

In this section, we proveTheorem 8, which strengthens Bajpai–Velleman’sTheorem 4.
We remark that their proof actually showed something a bit stronger than is stated in
Theorem 4 (or in their paper). Namely, their set S = R/ ∼ had the property that there
is no good S-predictor that is anonymous with respect to the class

C∞Lipschitz ∩Homeo+(R),(22)

where C∞Lipschitz is the set of f ∈ C∞ such that for all k ∈ N, f (k) is bounded.
We strengthen their result in two ways:

(1) We show that their result still holds when the class (22) is replaced by the smaller
class D∞Lipschitz of infinitely Lipschitz diffeomorphisms; i.e., the set of invertible f ∶
R→ R such that both f and f −1 are C∞ functions, and for every k ∈ N, f (k) and
( f −1)(k) are bounded.

(2) We show that even a weaker kind of prediction fails.
We first describe the weaker kind of prediction. Given a set S, let R

○

S denote the set
of S-valued functions f such that dom( f ) = R/{h f } for some h f ∈ R (so the domain
of f is the reals with a hole at h f ). If F is a total function on R and x ∈ R, F/{x} will
denote the restriction of F to the domain R/{x}. A weak S-predictor will refer to any
function

P ∶ R○S → S ,

and it will be called a good weak S-predictor if for every total F ∶ R→ S, the set

{x ∈ R ∶ P (F/{x}) ≠ F(x)}
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has Lebesgue measure zero. Roughly, P almost always “predicts” F(x) based on the
past and future behavior of F.

Every good S-predictor yields a good weak S-predictor, because if P is a good S-
predictor, define Q on R

○

S as follows: given any f ∈ R
○

S whose domain has a hole at
h f , define

Q( f ) ∶= P( f ↾ (−∞, h f )).
Then, for any total F ∶ R→ S, we have Q(F/{x}) = P(F ↾ (−∞, x)), which can only
fail to equal F(x) on a measure zero set.

If U ⊆ Homeo+(R), let us say that a weak S-predictor P is U-anonymous if
whenever f , g ∈ R

○

S (with holes h f , hg in their respective domains), φ ∈ U , φ(h f ) =
hg , and f = g ○ φ ↾ (R/{h f }), then P( f ) = P(g). Similarly, as above, any good U-
anonymous S-predictor yields a good U-anonymous weak S-predictor.

Our goal is to prove the following theorem.

Theorem 19 There is an equivalence relation ∼ on R such that, letting S = R/ ∼, there
is no good, D∞Lipschitz-anonymous, weak S-predictor.

Our proof ofTheorem 19 relies heavily on the proof of [1, Theorem 8]. Much of the
following lemma was implicit in their proof.

Lemma 20 Suppose U ⊆ Homeo+(R) and ∼ is an equivalence relation onR such that:
(1) no equivalence class has full measure;13 and
(2) for every P = (x , y) ∈ R2, there exists a φ ∈ U such that:

(a) φ(x) = y; and
(b) if z ≠ x, then z ∼ φ(z); i.e., each equivalence class is closed under φ ↾ (R/{x}).

Then there is no U-anonymous, good, weak R/ ∼-predictor. In fact, the particular
function x ↦ [x]∼ witnesses the non-goodness of every U-anonymous, weak R/ ∼-
predictor.

Proof Let S ∶= R/ ∼, and suppose toward a contradiction that P ∶ R○S → S is a U-
anonymous, good, weak S-predictor. Let E ∶ R→ S be defined by E(x) = [x]∼.Wewill
get a contradiction by proving that P(E/{x}) ≠ E(x) holds for positively many x. It
suffices to prove that

∀x , y ∈ R P(E/{x}) = P(E/{y}),(23)

because if the equivalence class C were their constant value, then the equation

P(E/{x}) = E(x) ( = [x]∼)(24)

could hold only if x ∈ C; and since C does not have full measure, this would yield
positively many x where equation (24) fails.

13A set X has full measure if R/X has Lebesgue measure zero.
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To prove (23), pick any x , y ∈ R. By assumption, there is a φ ∈ U such that φ(x) = y
and z ∼ φ(z)whenever z ≠ x. It follows that E/{x} = E/{y} ○ φ ↾ (R/{x}). Then, by

U-anonymity of P, P(E/{x}) = P(E/{y}). ∎
Corollary 21 Suppose U ⊆ Homeo+(R) and F is a family such that:
(1) F is a countable set of partial, injective functions from R→ R;
(2) for every (x , y) ∈ R2, there is some φ such that:

(a) φ ∈ U;
(b) φ(x) = y; and
(c) if z ≠ x, then there is some f ∈ F such that φ(z) = f (z).
Let ∼ be the equivalence relation on R generated by the relation

R ∶= {(u, v) ∶ ∃ f ∈ F f (u) = v}.
Then there is no good weak U-anonymous R/ ∼ predictor.
Proof We verify that ∼ satisfies the assumptions of Lemma 20. Each ∼-equivalence
class is countable, because F is countable and each member of F is injective
(“countable-to-one” would suffice). So each ∼-equivalence class not only fails to have
full measure, but in fact has measure zero. Consider any (x , y) ∈ R2. By assumption,
there is a φ ∈ U such that φ(x) = y and whenever z ≠ x, φ(z) = f (z) for some f ∈ F.
Then (z, φ(z)) ∈ R and R is contained in ∼, so z ∼ φ(z). ∎

We first sketch the outline of Bajpai–Velleman’s proof of Theorem 4. They first fix
a single, increasing C∞ bijection

s ∶ [0, 1] → [0, 1]
with vanishing derivatives at the endpoints (i.e., s(k)− (0) = 0 = s(k)+ (1) for all k ∈ N,
where theminus and the plus denote left and right derivatives, respectively). A rational
point is a point in the plane such that both coordinates are rational. By rational line, we
will mean a line with positive slope that passes through two distinct rational points.14
If Ψ ∶ R→ R is a rational line (i.e., an affine function whose graph is a rational line),
we write s ○Ψ to denote the obvious partial function with domain Ψ−1([0, 1]). They
show that the countable collection

F ∶= {Φ ○ s ○Ψ ∶ Φ, Ψ are rational lines }(25)

witnesses the assumptions of Corollary 21. This basically amounts to showing that,
given any (x , y) ∈ R2, one can form an infinite concatenation of members of F to
yield a strictly increasing C∞ function h ∶ (−∞, x) → R, whose approach (from the
left) to the point (x , y) is flat enough that ĥ ∶= h⌢(x , y) will still be a C∞ function
from (−∞, x] → R, with ĥ(k)− (x) = 0 for all k ∈ N. Then extending ĥ to all of R (in a
C∞ manner) is easy.

14Equivalently, a rational line is a line that has (positive) rational slope and passes through at least
one rational point. Note that there are only countably many rational lines, and that the intersection of
two nonparallel rational lines is a rational point.
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We follow a similar strategy to proveTheorem 19, although we must use a different
collection in order to avoid vanishing first derivatives. Fix any “bump” function

b ∶ [0, 1] → R

with the following properties:
(i) b(0) = 0 = b(1);
(ii) b(x) > 0 for all x ∈ (0, 1);
(iii) b ∈ C∞ (with one-sided derivatives taken at 0 and 1) and b(k)(0) = 0 = b(k)(1)

for all k ∈ N; and
(iv) ∫[0,1] b = 1.

To get such a b, one could start, for example, with the common bump function

Ψ(x) =
⎧⎪⎪⎨⎪⎪⎩
exp ( −11−x2 ) , if x ∈ (−1, 1),
0, otherwise,

let Φ(x) = Ψ(2x − 1), and then define b ∶ [0, 1] → R by b(x) = Φ(x)
∫[0,1] Φ

.

Definition 22 Given any point A = (p, q), any Δ > 0, and any γ > 0, define

FA,Δ,γ ∶ [p, p + Δ] → [q, q + Δ(1 + γ)]
by

FA,Δ,γ(x) = q + Δ∫
[0, x−pΔ ]

(1 + γb).
FA,Δ,γ will serve as a smooth transition function from the point A = (p, q) to the

point (p + Δ, q + Δ(1 + γ)), with derivative 1 (and vanishing higher derivatives) at
those endpoints (see Figure 2). The Δ and γ parameters are used to control the norm
of the higher derivatives in our subsequent construction.

The key features are:
(I) FA,Δ,γ(p) = q and FA,Δ,γ(p + Δ) = q + Δ(1 + γ);
(II) The Fundamental Theorem of Calculus and Chain Rule yield, for all x ∈ [p, p +

Δ]:
F′A,Δ,γ(x) = Δ(1 + γb (x − p

Δ
))( 1

Δ
) = 1 + γb (x − p

Δ
) .

In particular, since γ > 0 and b > 0 on (0, 1), FA,Δ,γ is increasing. Together
with (I), it follows that FA,Δ,γ is an increasing bijection from [p, p + Δ] to
[q, q + Δ(1 + γ)]. Moreover, notice that for all x ∈ [p, p + Δ],

∣F′A,Δ,γ(x) − 1∣ ≤ γ∥b∥,
where ∥⋅∥ denotes the sup-norm.

(III) Since b(0) = 0 = b(1), F′A,Δ,γ(p) = 1 = F′A,Δ,γ(p + Δ).
(IV) Following part (II), we see that

∀k ≥ 2 F(k)A,Δ,γ(x) = γ
Δk−1 b

(k−1) (x − p
Δ

) ,
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Figure 2: The function FA,Δ,γ .

so, in particular,

∀k ≥ 2 ∥F(k)A,Δ,γ∥ ≤ γ
Δk−1 ∥b(k−1)∥.

Let F denote the collection of all rational lines of positive slope, together with all
functions of the form FA,Δ,γ where A is a rational point and Δ and γ are positive
rational numbers. We will show that F satisfies the assumptions of Corollary 21, with
U ∶= D∞Lipschitz . Clearly, F is countable, and consists of injective functions. It remains
to verify clause (2) of Corollary 21.

Lemma 23 Given any point P = (w , z) in the plane, there exist sequences (An)n =(pn , qn)n and (γn)n such that:
(1) (pn)n and (qn)n are increasing sequences of rational numbers converging to w and

z, respectively.
(2) γn is a positive rational number for all n.
(3) Let Δn ∶= pn+1 − pn . Then 0 < Δn < 1 and qn+1 = qn + Δn(1 + γn) for all n.
(4) limn→∞

γn
(Δn)n−1

= 0.

Proof Fix an increasing sequence (pn)n of rational numbers converging to w such
that Δn ∶= pn+1 − pn < 1 for all n. Let L be the line of slope 1 that passes through P.15
For any point B, let vDist(L, B) denote the vertical distance from L to B.

Recursively define the qn , An , and γn , together with the auxiliary variable

vn ∶= vDist(L,An),

15Notice that, unless P happens to be a rational point, L will not be a rational line.
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as follows: fix a rational q1 such that A1 ∶= (p1 , q1) lies strictly below the line L, and

v1 < Δ1 .(26)

Given that qn is defined (and hence so are An = (pn , qn) and vn = vDist(L,An)), let
γn be a positive rational number such that

vn − (Δn+1)n+1
n + 1

< γnΔn < vn ;(27)

this is possible because the Δ’s are positive. Define qn+1 ∶= qn + Δn(1 + γn), An+1 ∶=(pn+1 , qn+1), and vn+1 ∶= vDist(L,An+1). Note that qn+1 is rational, provided that qn
was rational.

We inductively verify that

vn < (Δn)n
n

(IHn)

holds for all n. It holds for n = 1 by (26). Now, suppose IHn holds. Since L has slope 1,
it follows from the definition of An+1 that vn+1 = vn − γnΔn , which by (27) is less than
(Δn+1)n+1

n+1 ; so (IHn+1) holds.
Inequalities (IHn) and (27) yield

γnΔn < vn < (Δn)n
n

,

and hence
γn

(Δn)n−1 <
1
n

for all n. This ensures part (4) of the lemma. ∎
Fix any point P = (w , z) in the plane, and let (An)n = (pn , qn)n , Δn = pn+1 − pn ,

and γn be rational numbers as given by Lemma 23. For each n, let

Fn ∶= FAn ,Δn ,γn ∶ [pn , pn+1] → [qn , qn + Δn(1 + γn)-......................................./.......................................0
qn+1

]

using notation from Definition 22. See Figure 3.
Let F ∶= ⋃n Fn , which maps from [p1 ,w) → R. By (III) on page 1511, Fn and Fn+1

meet at the point An+1, both with first derivative 1 and vanishing higher derivatives;
in particular,

F is a C∞ function on [p1 ,w) and lim
x↗w

F(x) = z.(28)

By (II), we have the following for all n ∈ N:
∀x ∈ [pn , pn + Δn-.........../..........0

pn+1

] ∣F′n(x) − 1∣ ≤ γn∥b∥.(29)

Since γn → 0 as n →∞ (by requirements (3) and (4) of Lemma 23), it follows that

lim
x↗w

F′(x) = 1.(30)
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Figure 3: The Fn functions.

By (IV), the following also holds for all n ∈ N, where αk ,n is defined as indicated:

∀k ≥ 2 ∥F(k)n ∥ ≤ γn
(Δn)k−1-............./.............0

αk ,n

∥b(k−1)∥.(31)

Requirement (3) of Lemma 23 (that 0 < Δn < 1) ensures that

n ≥ k �⇒ 0 < γn
(Δn)k−1-............./.............0

αk ,n

≤ γn
(Δn)n−1 ,

the last term of which goes to 0 as n →∞ by requirement (4) of Lemma 23. So

lim
n→∞

αn ,k = 0,

and together with (31), this yields

∀k ≥ 2 lim
n→∞

∥F(k)n ∥ = 0.(32)

This entire construction, starting from Lemma 23, has a straightforward analogue
“from the right” of the point P = (w , z), yielding a decreasing sequence (pRn)n of
rationals converging to w, and functions

FR
n ∶ [pRn+1 , pRn ] → R

such that FR
n ∈ F, and FR ∶= ⋃n FR

n is an increasing C∞ function from (w , pR1 ] → R

with nonvanishing first derivative that has the following analogues of the properties
above:

lim
x↘w

FR(x) = z, lim
x↘w

(FR)′(x) = 1, and ∀k ≥ 2 lim
n→∞

∥(FR
n )(k)∥ = 0.
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Let ΨL be the affine function with slope 1 passing through the rational point
(p1 , q1), ΨR be the affine function with slope 1 passing through the rational point
(pR1 , qR1 ), and define G ∶ R→ R by

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΨL(x), if x < p1 ,
F(x), if x ∈ [p1 ,w),
z, if x = w ,
FR(x), if x ∈ (w , pR1 ],
ΨR(x), if x > pR1 .

Then G is continuous, invertible, and has the property that for every x ≠ w, there
is some f ∈ F such that G(x) = f (x).16

It remains to prove thatG ∈ D∞Lipschitz . Now,G is affine on (−∞, p1] andon [pR1 ,∞).
In particular,

G∣(−∞,p1]∪[pR1 ,∞) has bounded derivatives of all orders.(33)

So, to prove that G ∈ D∞Lipschitz , it suffices to show that G ∈ D∞; i.e., that both G and
G−1 are C∞ functions.17 Furthermore, by the Inverse FunctionTheorem, to prove that
the invertible functionG is in D∞, it suffices to show thatG ∈ C∞ and thatG′ is never
zero. Since Fn agrees with Fn+1 (and FR

n agrees with FR
n+1) at all derivatives at their

meeting points, and their first derivatives are always positive, the only nontrivial point
to deal with is w; we will show that:
• G′(w) = 1; and
• G(k)(w) = 0, for k ≥ 2.
Wewill prove these from the left ofw; the proof from the right is similar.The following
lemma is a minor variant [1, Lemma 7].
Lemma 24 Suppose f is continuous on (a, b], differentiable on (a, b), and

lim
x↗b

f ′(x) = L.

Then f is left differentiable at b, and f ′−(b) = L.
Proof Suppose (xn) is an arbitrary sequence in (a, b) that converges to b. By the
Mean ValueTheorem, for each n, there is a cn ∈ (xn , b) such that f ′(cn) = f (b)− f (xn)

b−xn .
By assumption, limn→∞ f ′(cn) = L, so limn→∞

f (b)− f (xn)
b−xn = L. ∎

By (28), G is C∞ on (−∞,w), and we already noted that G is continuous on R.
By (30), continuity of G, and Lemma 24, G′−(w) = 1 = limx↗w G′(x) and hence G′
is continuous on (−∞,w]. Then, using (32) (with k = 2) and applying Lemma 24 to
G′, we get that G(2)− (w) = 0 = limx↗w G(2)(x) and G(2) is continuous on (−∞,w].
Continuing by induction, we get that G(k)− (w) = 0 = limx↗w G(k)(x) for all k ≥ 2.

16This f is either ΨL (if x < p1), or one of the Fn ’s (if x ∈ [p1 ,w)), or one of the FR
n ’s (if x ∈ (w, pR1 ]),

or ΨR (if x > pR1 ).17Once we know that both G and G−1 are C∞, then by the Heine–Cantor and Extreme Value
Theorems, for each k ∈ N, the functions G(k) and (G−1)(k) would be bounded on the closed intervals
[p1 , pR1 ] and [q1 , qR1 ], respectively. Together with (33), this implies G ∈ D∞Lipschitz .
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6 Concluding remarks

Hardin–Taylor’s Question 2 (page 1494) is still very much open, as there is still a big
gap between the “lower frontier” of our Theorem 5 and the “upper frontier” of our
Theorem 8.

Our Theorem 5 isolated some (topological) group-theoretic properties that guar-
antee existence of good anonymous predictors. It is natural to pursue this further. In
particular,Theorem 11 implies that any groupU ≤ Homeo+(I) satisfying the assump-
tions of Theorem 5 is a metabelian group, meaning that its commutator subgroup is
abelian. AndTheorem 5 encompasses all known examples of groups for which good,
anonymous predictors exist (for every set S). This suggests the following question.

Question 25 Suppose U ≤ Homeo+(R), and for every set S, there exists a U-
anonymous, good S-predictor. Must U be metabelian? Must U at least be solvable?

Acknowledgment We thank the anonymous referee for their careful reading of the
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