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EXISTENCE AND UNIQUENESS IN THE THEORY OF BENDING
OF ELASTIC PLATES
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1. Introduction

Kirchhoff's kinematic hypothesis that leads to an approximate two-dimensional
theory of bending of elastic plates consists in assuming that the displacements have the
form [1]

ux = x3vx(xux2), a =1,2,
(1.1)

In general, the Dirichlet and Neumann problems for the equilibrium equations
obtained on the basis of (1.1) cannot be solved by the boundary integral equation
method both inside and outside a bounded domain because the corresponding matrix of
fundamental solutions does not vanish at infinity [2]. However, as we show in this
paper, the method is still applicable if the asymptotic behaviour of the solution is
suitably restricted.

2. Notation and formulae

Let (x1,x2,x3) be the Cartesian coordinates of a generic point in R3. We consider a
homogeneous and isotropic plate occupying a region Ox [ — ho/2,ho/2], where ho = const
and Q is a domain in the (xlJx2)-plane, whose boundary dfi is a closed Lyapunov
curve.

Unless otherwise stipulated, throughout the paper Latin and Greek suffixes take the
values 1,2,3 and 1,2, respectively, the convention of summation over repeated indices is
adopted, and (.. .),„ = d{.. .)/3xa.

Also, we denote by M* the transpose of a matrix M, and by Hk and Jk (k=0,1) the
averaging operators

HkW(Xi) = (1/Ao) t » ( x , ) ] ^ Zh-%2,

JkW(xd = (l/*o) T 4M*ddx3.
-V 2

Let ti} be the stresses, u( the displacements, ft the body forces, and X and \i the elastic
coefficients of the material. If we set
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48 CHRISTIAN CONSTANDA

then the linear equilibrium equations obtained by using (1.1) can be written in the form

L(d>(x) = F(x), (2.1)

where L(5J = 1(3/3*,, d/dx2) = (Ltj{dx)),

/h2nA + h2(l + n)tl-H h2(A + n)^2 -fi^\
i,£2) = ( h2(X + M£i h2n/± + h2{X + n)£-n -rf2 Y (2.2)

In connection with the system (2.1) we consider the boundary stress operator T(8X) =
T(d/dxu d/dx2) = (7J/3J), where

0 \

0 j (2.3)
\m2 A<(ni£i +n2^2) '

and nx are the components of the unit outward normal to BQ.
In what follows we assume that k and /J, satisfy the inequalities

which ensure that the system (2.1) is elliptic and that the internal energy of the plate
(measured on the unit of its middle plane) h0E(v, v), where

^ + vll), (2.4)

is positive.
From (2.1)-(2.4) we easily obtain the Betti formula

J v*Lv da + j 2E(v, v) da = J" v* Tv ds (2.5)
n n an

and the relations

$L3ivtda= | T3ivtds,
a en

|
en

(2.6)
JLxi-xxL3i)Vida= | {Txi-xxT3i)Vids,
n enn en

where v is a smooth (3 x l)-matrix.

3. Fundamental solutions

The matrix of fundamental solutions for the system (2.1) is [2]

(3.1)
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where

t(x, y) = t(r) = a\r2 In r + 4/i2 In r + 4h2K0(r/h)l

\ (3.2)

is the modified Bessel function of order zero, and the entries of the matrix B(dx) =
are

-H2il (« not summed)

- h2n(l + 3/i)A + n2,
(3.3)

We also consider the matrix P(x,y)=(Pij{x,y)), where

Pij(x,y) = (T(dy)D(y,x))j, (3.4)

We denote SI by Qin and set Qei = 7?2\{fiinu3Q}. As in the classical theory (see, for
example, [3]), we can derive the relations

(3.5)
xxT3k(dx)Dkj(x, y) dsx =

where

r1'
) = < - 1 / 2 ,

U
and 8jj are the Kronecker delta, and the Somigliana formula

t>(x)=
dCl

(3.6)
- J D(x,y)L(dy)v(y)dsy, xeQin,

" i n

where i> is a smooth (3 x l)-matrix.
Let si be the set of (3 x l)-matrices v in ilcx having an asymptotic expansion of the
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form

vx(r, 0) = - [a0 sin 0 + 2at cos 0—a0 sin 30+(a2 — ax) cos 30]

J_
r2

+ - j [2Pi s i n 3# + 2 ? r i c o s 3# + 3(p2 -P i ) sin 50 + 3(7i2 — nx) cos 50] + O\-i),

v2i
r, 0) = - [2<*2 sin 0 + a0 cos 0 + (a2 — 0̂ ) sin 30 + a0 cos 30]

r

+^-[(202+ y2) sin 20-)-! cos 20 + 202 sin 40 + 20! cos 40]
r

+^[2n2sin39-2p2cos30+3(7t2-^i)sin50 + 3(p1-p2)cos50] + o(-j ),

U 3 ( r ,0)=-(a 1 +a 2 ) lnr - [a 1 +a 2 + aosin20 + (a1-a2)cos20]

+ - j [tTi sin 20 + a2 cos 20 + {p2 - p j sin 40 + (n2 - nx) cos 40] + o( -3 V

where a0, av, 0V, yv, pv, TIV, av = const, and si' the set of matrices v' = v + C, where ves/
and

C* = (c1,c2,c-c1x1-c2x2), c,cx = const. (3.7)

Remark. In view of (1.1), the matrix (3.7) represents a rigid displacement, and it is
obvious that for vesi' the internal energy density (2.6) remains finite as r->co.

4. Elastic potentials

We define the single layer potential

V(x) = ^D(x,y)z(y)dsy

and the double layer potential

W(x)=\P{x,y)z(y)dsy,
da
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where the (3 x l)-matrix z is an unknown density. Proceeding as in [4], we can prove
the following assertions:

Theorem 1. L(dx) V(x) = 0, L(dx) W(x)=0, x $ dQ.

Theorem 2. (i) / / z(x) is continuous on dQ, then V(x) is continuous in R2.
(ii) / / z(x) is Holder continuous on dQ, then W(x) tends to finite limits as x->xoe3ft

both from Qia and from Qcx, these limits being

« J P{xo,y)z{y)dsy,
dQ

J P(xo,y)z(y)dsy.
' *• o n

(iii) / / z(x) is Holder continuous on dQ, then T(dx)V(x) tends to finite limits as
x-*xoedQ both from Qin and from Qex, these limits being

in(*o) = 2 z(xo) + j T(d*0)D(x0, y)z(y) dsy,

(4.1)

{TV)ex{x0)=-l-z{xQ)+ J T(dXo)D(xo,y)z(y)dsy.

Also, we have [2]

Theorem 3. / / z(x) is continuous on dQ, then

(i) West;
(ii) Vestf if and only if

| z 3 d 5 = j ( z a - x a z 3 ) d s = 0. (4.2)
en en

5. Boundary value problems

Let A(x), B(x), R(x), and S(x) be (3 x l)-matrices prescribed on dQ. For the
homogeneous system (2.1), that is,

Udx)v(x) = 0, (5.1)

we consider the following Dirichlet and Neumann problems:

(I) Find v satisfying (5.1) in Qin and

v(x) = A(x), xedQ. (5.2)
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(II) Find v satisfying (5.1) in fiin and

T(dx)v(x) = B(x), xedCl. (5.3)

(III) Find vejrf' satisfying (5.1) in Qex and

v(x) = R(x), xedSl. (5.4)

(IV) Find vestf satisfying (5.1) in Qtx and

(5.5)

Theorem 4. (i) The interior Dirichlet problem (I) has a unique solution for any Holder
continuous matrix A(x). This solution can be expressed as a double layer potential.

(ii) The exterior Neumann problem (IV) has a unique solution for any Holder
continuous matrix S(x) if and only if

J S3rfs=J(Sa-x,S3)rfs = 0. (5.6)
en en

The solution can be expressed as a single layer potential.

Proof. First, suppose that vesrf is a solution of (IV). Let KR be a circle whose
radius R is sufficiently large so that (Qu dQ)<=KR. Applying (2.6) to v in ClexnKR, we
arrive at the equalities

$S3ds=$T3ivids=- J L3iVido+ j T3iVids= J T3iVids,
en da _ _ ntlr,KR SKR dKR

J (Sa-xaS3)ds= j (Tai-xaT3i)Vids
dn an

= - j (Lai-xaL3i)vida+ j (Tai-xxT3i)Vids.
nc,nKR SKR

Since TaiVi = O(l/R2) and T3iVi = O(l/R3) for verf [2], the relations (5.6) are obtained
immediately by letting K-»oo.

Suppose now that (5.6) hold. Seeking the solutions of (I) and (IV) in the form of W
and V, respectively, we interpret (5.2) and (5.5) as

and from Theorem 2(ii, iii) it follows that the unknown density z(x) must satisfy the
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integral equation

$ P(x,y)z(y)dsy = A(x), xedto (Din)
dil

(in the case of (I)), and

-\z(x)+\T{dx)D{x,y)z{y)dsy = S{x), xedO. (Nex)

(in the case of (IV)).
In view of (3.4), (Din) and (Nex) are mutually adjoint, and using (3.1)—(3.4) it is not

difficult to show that their index [5] is zero, which implies that Fredholm's theorems are
applicable to these equations.

Multiplying (Nex)3 and the combination (Ncx)x—xax(Nex)3 by dsx, integrating over
dCl, and taking (3.5) into account, we obtain

J z3ds = - J S3ds, J (z. - x a z 3 ) d s = - $ ( S a - x x S J d s . (5.7)
sn en an an

Suppose the existence of a non-trivial solution z°(x) to the homogeneous equation
(N°ex), that is,

- \ z°(x) + J T(dx)D(x, y)z°(y) dsy = 0, xe 30.

Then, by Theorem 2(iii), the single layer potential

V°(x)= J D{x,y)z°(y)dsy
dil

satisfies

(TV°Ux) =--z°(x) + J T(dx)D(x,y)z°(y)dsy = 0, xe8O,
l an

and from (5.7) we find that

an an

By Theorem 3(ii), V° e si'. Since, according to Theorems 1 and 2(iii), we also have

L(dx)V
o(x) = 0, xencx,

(TK°)ex(x) = 0, xedfi ,

the uniqueness theorem for (IV) [2] implies that V°(x) = 0, xefie x . Theorem 2(i) now
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yields F°(x)=0, xedQ, and since L(3x)F°(x) = 0, xefiin, from the uniqueness theorem
for (I) we conclude that F°(x) = 0, xeR2. Finally, from (4.1) we obtain

z°(x) = (TV°)in(x) -(TV°Ux)=0, x e 30.

This shows that (iV°x) has only the trivial solution. Hence, so does the homogeneous
equation (Dfn), which means that both (Din) and (Nex) are uniquely solvable. To
complete the proof we only need to check that in the case of (IV) the solution V belongs
to stf. But this is established immediately, since the relations (4.2) hold for the density
z(x) of V by virtue of (5.6) and (5.7).

Theorem 5. The interior Neumann problem (II) is solvable for any Holder continuous
matrix B(x) if and only if

$B3ds=S(Ba-xxB3)ds = 0. (5.8)
an an

The solution can be expressed as a single layer potential and is unique up to a rigid
displacement (3.7).

Proof. We seek the solution in the form of V and interpret (5.3) as

(TV)in(x) = B(x), xedCl.

By Theorem 2(iii), this means that z(x) must satisfy the integral equation

\ z(x) + J T(dx)D{x, y)z(y) dsy = B(x), x e dQ, (JVJ

for which we can again verify that the index is zero.
It is easy to check that a matrix C of the form (3.7) satisfies

C(x) = 0, xefiin,

Therefore, by (3.6), we have the representation

C(x)=-jP(x,y)C(y)dsy, xeQin
sn

Since the right-hand side above is a double layer potential, letting x->xoe<3Q and
making use of Theorem 2(ii) we obtain

\ C(x0) + J P(x0, y)C(y) dsy = 0, (5.9)
-̂  an
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which means that C is a solution of the adjoint homogeneous equation. Clearly, v(1),
where

v<1»* = ( l , 0 ) - x 1 ) , v<2>*=(0,l,-x2), v<3>* = (0,0,1),

are linearly independent solutions of the latter, so the homogeneous equation (JV?n) has
at least three linearly independent solutions //''. Just as in [4], we can prove that {/i(1)}
is a complete system of such solutions for {N?n), hence, so is {v(1)} for (5.9). This implies
that (Nin) is solvable if and only if

f v^*Bds = 0,
an

which is equivalent to (5.8).
The last part of the statement of the theorem is obvious.

Remark. Taking into account (1.1) and the averaging procedure employed to derive
the simplified two-dimensional bending equations, it can be shown that in the case of
both Neumann problems (II) and (IV) the conditions (5.6) and (5.8) imply that the total
force and moment across dil must be zero.

Theorem 6. The exterior Dirichlet problem (III) has a unique solution for any Holder
continuous matrix R(x).

Proof. We assume that the systems of functions {^(l)} and {v(I)} mentioned in the
proof of Theorem 5 have been bi-orthonormalized (by means of a procedure similar to
that used in [4]) and seek the solution of (HI) in the form W+C^, where W is a
double layer potential of unknown density z and

C,= \ ^*Rds. (5.10)
an

Then Theorem 2(ii) yields

\ z(x) + | P(x, y)z(y) dsy = R(x) - Qv«(x), x e dCl (£>J
2- an

In view of (3.4), this equation is adjoint to (Nia), hence its index is zero. From the
definition of the C, in (5.10) we see that

f nw*(R-Civ
ii))ds = 0,

an

which implies that (Z)ex) is solvable. Also, by Theorem 3(i), Wes/, and since C,v(l> is a
rigid displacement of the form (3.7), it follows that W+C,V ( 1 ) 6«E/ ' , as required.
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