A NOTE ON CENTRE-BY-FINITE-EXPONENT VARIETIES OF GROUPS

NARAIN GUPTA and AKBAR RHEMTULLA

(Received 4 March 1969, revised 1 May 1969)

To Bernhard Hermann Neumann on his 60th birthday

Communicated by G. E. Wall

We refer the reader to Hanna Neumann [7] for notation and other undefined terms. Let $\mathfrak{A}(n)$, $\mathfrak{B}(n)$ and $\mathfrak{C}(n)$ denote the varieties of groups defined by the laws $(xy)^n = x^ny^n$, $[x, y]^n = 1$ and $[x, y^n] = 1$ respectively, where n is an integer. $\mathfrak{A}(n)$ -groups were termed "n-abelian" by R. Baer [1] and have been a subject matter of investigation by various authors (see [3], [5], [6] and the references therein). Recently Kalužnin [5] has shown that $\mathfrak{A}(n) = \mathfrak{A} \vee \mathfrak{B}_n \vee \mathfrak{B}_{n-1}$ $(n \neq 0, 1)$, thus clarifying the relationship between $\mathfrak{A}(n)$ and the familiar varieties. From the elementary inequalities

(1) $\mathfrak{A}(n) = \mathfrak{A}(1-n) \leq [\mathfrak{B}_{n(n-1)}, \mathfrak{C}] = \mathfrak{C}(n(n-1)) \leq \mathfrak{AB}_{n(n-1)} \quad (n \neq 0, 1)$ it is easily deduced that

$$\mathfrak{A}(n) \leq \mathfrak{B}(n(n-1))$$

(see for instance [5]). If $G = C_m \operatorname{Wr} C_{\infty}$, then clearly $G \in \mathfrak{B}(m)$ but $G \notin \mathfrak{C}(m^*)$ for any $m^* \neq 0$ and hence $G \notin \mathfrak{A}(m^*)$ for any $m^* \neq 0,1$. Thus $\mathfrak{B}(m) \leq \mathfrak{C}(m^*)$ and $\mathfrak{B}(m) \leq \mathfrak{A}(m^*)$. It is also easy to see that in general $\mathfrak{C}(n(n-1)) \leq \mathfrak{A}(n)$ (see for instance [6] § 5.1) and we are led to ask

QUESTION 1: Does there exist for each positive integer m, an integer f(m) such that $\mathfrak{C}(m) \leq \mathfrak{A}(f(m))$?

If m is such that $B_{2,m}$ (the unrestricted Burnside group of exponent m on 2 generators) is finite, then for a group $G = \langle x, y \rangle$ in $\mathfrak{C}(m)$ one has G/Z(G) finite and by a well-known theorem of Schur [8] (page 26) G' is finite, say, of exponent m^* . Now for a suitable u in G' we have that $(xy)^{mm^*} = (x^my^mu)^{m^*} = x^{mm^*}y^{mm^*}$; hence $\mathfrak{C}(m) \leq \mathfrak{A}(mm^*)$. In particular Question 1 has affirmative answers for m = 2, 3, 4 and 6. However not relying on the solution of the Burnside problem we are able to prove

Theorem 1. (i)
$$\mathfrak{C}(2) \subseteq \mathfrak{A}(4)$$
, (ii) $\mathfrak{C}(3) \subseteq \mathfrak{A}(9)$, (iii) $\mathfrak{C}(4) \subseteq \mathfrak{A}(32)$.

PROOF: We note that the laws $[x, y^n] = 1$ and $(xy)^n = (yx)^n$ are equivalent.

- (i) The law $[x, y^2] = 1$ implies [x, y, z] = 1 and so also $[x, y]^2 = 1$. Thus $(xy)^4 = ((xy)^2[x, y])^2 = ((yx)^2[x, y])^2 = (yx^2y)^2 = (y^2x^2)^2 = x^4y^4$.
- (ii) $(xy)^9 = ((xy)^3[x, y])^3[y, x]^3 = ((yx)^3[x, y])^3(y, x]^3 = ((yxy)(xxy))^3[y, x]^3 = ((xxy)(yxy))^3[y, x]^3 = (x^3y^3[x, y])^3[y, x]^3 = x^9y^9$.

$$\begin{array}{ll} (\mathrm{iii}) & (xy^2)^{16} = \left((xy^2)^4[x,\,y^2]\right)^4[y^2,\,x]^4 = \left((y^2x)^4[x,\,y^2]\right)^4[y^2,\,x]^4 = \\ & \left((y^2x)^3xy^2\right)^4[y^2,\,x]^4 = \left(x^2y^4(xy^2)^2\right)^4[y^2,\,x]^4 = \left(x^4y^8[x,\,y^2]\right)^4[y^2,\,x]^4 = x^{16}y^{32}. \end{array}$$

Replace x by x^{-1} and y by xy to get $(yxy)^{16} = x^{-16}(xy)^{32}$. Thus

$$(xy)^{32} = x^{16}(y(xy))^{16} = x^{16}(xy^2)^{16} = x^{32}y^{32}.$$

It follows from (2) that a torsion-free $\mathfrak{A}(n)$ -group is abelian (since a torsion-free $\mathfrak{B}(n)$ -group is abelian). Here we ask

QUESTION 2: Is every torsion-free $\mathfrak{C}(n)$ -group abelian?

This question is not new and in fact there is an outstanding conjecture that this question has an affirmative answer. Obviously Question 2 has positive answer for those integers for which Question 1 has positive answer. Further, since by Schur's Theorem a torsion-free centre-by-finite group is abelian, it follows that a torsion-free locally soluble $\mathfrak{C}(n)$ -group is abelian. Without any such assumption we are able to prove

THEOREM 2. A torsion-free $\mathfrak{C}(n)$ -group is abelian for $n=2^k3^l$ $(k \ge 0, l=0, 1)$.

PROOF: Let G be a torsion-free group in $\mathfrak{C}(2^k3^l)$. We prove by reverse induction on $j \in \{k, \dots, 0\}$ that $G \in \mathfrak{C}(2^j3^l)$. For j = k the result is given. Assume $G \in \mathfrak{C}(2^{i+1}3^l)$ $(0 \le i < k)$. We show that $[x, y^{2^i3^l}] = 1$ for all $x, y \in G$. Put $z = y^{2^i3^l}$, so that by induction hypothesis, $[x, z^2] = 1$. Thus $[x, z]^{-1} = [x, z]^z$. But this implies that $[x, z]^{2^{i+1}3^l} = [x, z]^{2^{i+1}3^l} = [x, z]^{-2^{i+1}3^l}$. Hence $[x, z]^{2^{i+2}3^l} = 1$. Since G is torsion-free, [x, z] = 1 and $G \in \mathfrak{C}(2^i3^l)$. Thus $G \in \mathfrak{C}(2^j3^l)$ for all $j \in \{k, \dots, 0\}$, and $G \in \mathfrak{C}(1) = \mathfrak{A}$ or $\mathfrak{C}(3)$ depending on whether l = 0 or l = 1. In both cases G is abelian by Theorem 1.

REMARK 1. If $G \in \mathfrak{A}(n)$, then for any $x, y \in G$,

$$(x^{-1}y^{-1}xy)^n = (x^{-1}y^{-1})^n(xy)^n = (yx)^{-n}(xy)^n.$$

Thus by Kalužnin's Theorem 3 we have

(3)
$$\mathfrak{A}(n) \wedge \mathfrak{B}(n) = \mathfrak{A}(n) \wedge \mathfrak{C}(n) = \mathfrak{A} \vee \mathfrak{B}_n.$$

REMARK 2. It seems worthwhile to remark that if G is a torsion-free Engel group in $\mathfrak{C}(n)$, $(n \neq 0)$ then for any two elements x, y in G, either [x, y] = 1 or there exists an integer $r \geq 1$ such that $[x, ry] \neq 1$ but

[x, (r+1)y] = 1. In the latter case, $1 = [x, (r-1)y, y^n] = [x, ry]^n = [x, ry]$ gives a contradiction. Thus in $\mathfrak{C}(n)$ torsion-free Engel groups are abelian.

REMARK 3. In [3] Durbin considered the problem of characterizing those sequences $\{n_1, \dots, n_t\}$ of integers for which it is true that $\bigwedge_{k=1}^t \mathfrak{A}(n_k) = \mathfrak{A}$. If \mathfrak{B} denotes the class of all groups of finite exponent, then he proves that $\mathfrak{B} \wedge \left(\bigwedge_{k=1}^t \mathfrak{A}(n_k)\right) < \mathfrak{A}$ if and only if $\binom{n_1}{2}, \dots, \binom{n_t}{2} = 1$, where $\binom{n_k}{2} = \frac{1}{2}n_k(n_k+1)$. He shows further that the hypothesis of finite exponent can be replaced by "periodicity" in the special case $\{n, n+2\}$. We complete the discussion on Durbin's problem by proving,

THEOREM 3.
$$\bigwedge_{k=1}^{t} \mathfrak{A}(n_k) = \mathfrak{A}$$
 if and only if $\binom{n_1}{2}, \dots, \binom{n_t}{2} = 1$.

PROOF: The "only if" part of the theorem follows from Durbin's proof. For the rest of the proof we first notice from (1), that

$$\bigwedge_{k=1}^{t} \mathfrak{A}(n_{k}) \leq \bigwedge_{k=1}^{t} [\mathfrak{B}_{n_{k}(n_{k}-1)}, \mathfrak{E}]$$

$$\leq [\bigwedge_{k=1}^{t} \mathfrak{B}_{n_{k}(n_{k}-1)}, \mathfrak{E}] = [\mathfrak{B}_{2}, \mathfrak{E}] \leq \mathfrak{N}_{2}.$$

But groups in \mathfrak{R}_2 satisfy the law $(xy)^n = x^n y^n [y, x]^{\binom{n}{2}}$ for every integer n. Thus $\bigwedge_{k=1}^t \mathfrak{A}(n_k) = \mathfrak{A}$, as was required.

REMARK 4. In our initial proof of Theorem 3 we made use of the following lemma which seems to be of independent interest (c.f. [7] page 39 and [2].

Lemma.
$$\mathfrak{N}_{\mathfrak{c}}(\bigwedge_{k=1}^{t}\mathfrak{B}_{m_{k}})=\bigwedge_{k=1}^{t}\mathfrak{N}_{\mathfrak{c}}\mathfrak{B}_{m_{k}}$$

PROOF: For positive integers c, m, n let $G \in \mathfrak{R}_c \mathfrak{B}_m \wedge \mathfrak{R}_c \mathfrak{B}_n$. Then $[x_1^m, \cdots, x_{c+1}^m] = [x_1^n, \cdots, x_{c+1}^n] = 1$ for all $x_i \in G$. If d = (m, n), both $[x_1^d, \cdots, x_{c+1}^d)^{(m/d)^{c+1}}$ and $[x_1^d, \cdots, x_{c+1}^d]^{(n/d)^{c+1}}$ lie in $(G^d)_{(c+2)}$, where $G^d = \langle x^d; x \in G \rangle$. Thus $(G^d)_{(c+1)} = (G^d)_{(c+2)}$. On the other hand $G^d = G^m G^n$ is nilpotent since G^m , $G^n \in \mathfrak{R}_c$. Thus $(G^d)_{(c+1)} = 1$ and $G \in \mathfrak{R}_c \mathfrak{B}_d$. This proves $\mathfrak{R}_c(\mathfrak{B}_m \wedge \mathfrak{B}_n) = \mathfrak{R}_c \mathfrak{B}_m \wedge \mathfrak{R}_c \mathfrak{B}_n$ and the lemma follows.

REMARK 5. In the concluding section of his paper [3], Durbin raised the following number theoretic question: Does there exist, for each positive integer t, a set $\{n_1, \dots, n_t\}$ of integers satisfying $\binom{n_1}{2}, \dots, \binom{n_t}{2} = 1$ such that no proper subset satisfies this property? We give an affirmative answer to this question by giving a process of constructing such integers. This construction is due to T. J. Dickson whose co-operation is gratefully acknowledged.

For t=2, the set $\{2,3\}$ will do. For t>2 we first choose a set p_1 , p_2, \dots, p_t of primes as follows: choose $p_1=2$, $p_2=3$ and for $1\le i\le t$, choose p_i to be of the form $l_ip_1p_2\cdots p_{i-1}+1$ for some integer $l_i\ge 3$. This is possible by Dirichlet's Theorem (see for instance [4] page 13). Thus $p_i\equiv 1$ (p_i) for $j=1,\dots,i-1$. Let $p_i'=\prod_{j\ne i}p_j$ and define $n_i=2p_i'+1$. It is now routine to show that the set $\{n_1,\dots,n_t\}$ has the required properties.

Acknowledgement

We thank the referee for drawing our attention to Kalužnin's paper and for his many useful suggestions.

References

- [1] R. Baer, 'Factorization of n-soluble and n-nilpotent groups', Proc. Amer. Math. Soc. 4 (1953), 15—26.
- [2] V. Dlab, 'A note on powers of a group', Acta. Sci. Math. (Szeged) 25 (1964), 177-178.
- [3] J. R. Durbin, 'Commutativity and n-abelian groups', Math. Zeitschr. 98 (1967), 89-92.
- [4] G. H. Hardy and E. M. Wright, Theory of Numbers, (Oxford 1965).
- [5] L. A. Kalužnin, 'The structure of n-abelian groups' (Russian), Mat. Zametki 2 (1967), 455—462.
- [6] G. A. Karasev, 'The concept of n-nilpotent groups', Sibirskii Mat. Zhurnal 7 (1966), 1014—1032. English Translation pp. 808—821.
- [7] Hanna Neumann, Varieties of Groups, (Springer-Verlag 1967).
- [8] I. Schur, 'Über die Darstellung der endlichen Gruppen durch gebrochene lineare substitutionen', J. reine angew. Math. 27 (1904), 20—50.

University of Manitoba and University of Alberta, Edmonton