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We refer the reader to Hanna Neumann [7] for notation and other
undefined terms. Let 9l(w), 93(w) and @(w) denote the varieties of groups
defined by the laws {xy)n = xnyn, [x, y]n — 1 and [x, yn] = 1 respectively,
where n is an integer. 2l(w)-groups were termed "n-abelian" by R. Baer [1]
and have been a subject matter of investigation by various authors (see
[3], [5], [6] and the references therein). Recently Kaluznin [5] has shown
that 21(M) = 91 v S8B v 95B_! (» =7̂  0, 1), thus clarifying the relationship
between 21 (M) and the familiar varieties. From the elementary inequalities

(1) H(n) = H ( l - » ) =g [».«„_„, 6] = 6 ( n ( n - l ) ) :

it is easily deduced that

(2) 9l(«) ^ » (n(»-1) )

(see for instance [5]). If G = CmWrC0O, then clearly Ge93(m) but
G $ 6(m*) for any m* ^ 0 and hence G $ 21 (m*) for any m* =^0,1. Thus
93 (m) ^ S(w*) and 93 (m) ^ 91 (w*). It is also easy to see that in general
S(W(M— 1)) :g 9t(«) (see for instance [6] § 5.1) and we are led to ask

QUESTION 1: Does there exist for each positive integer m, an integer
f(m) such that 6(m) ^ 9I(/(w)) ?

If m is such that 5 2 m (the unrestricted Burnside group of exponent
m on 2 generators) is finite, then for a group G = (x, y} in ©(m) one has
G/Z(G) finite and by a well-known theorem of Schur [8] (page 26) G' is
finite, say, of exponent m*. Now for a suitable u in G' we have that
(xy)mm' = (xmymu)m' = x

mm"ymm'; hence ©(»») ^ %(mm*). In particular
Question 1 has affirmative answers for w = 2, 3, 4 and 6. However not
relying on the solution of the Burnside problem we are able to prove

THEOREM 1. (i) 6(2) ^ 21(4), (ii) (£(3) < 91(9), (iii)-<£(4) ^ 91(32).
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PROOF: We note that the laws [x, yn] = 1 and {xy)n — (yx)n are
equivalent.

(i) The law [x, y%~\ = 1 implies [x, y, z] = 1 and so also [x, y]% = 1.
Thus (xy)* = {{xyY[x, y})* = ((yx)*[x, y])* = {yx*yf = (y2*2)2 = x*y*.

(ii) {xy)* = ((xy)3[x, y])3[y, x]3 = ((yx)3[x, y])3(y, x]3 =
((yxy){xxy))s[y, x]3 = {{xxy)(yxy))3[y, x}3 = {x3y3[x, y])3[y, x]3 = x9y9.

(iii) (xy*)" = ((xy*nx, y2]y[y2, x]* = {{y*x)\x, y2])%2, x]* =

{(y2x)3xyy[y*, x]* = ( i V ^ 2 ) 2 ) 4 ^ , a;]4 = (*V[*, .V2])4[y2, ^ ] 4 = a;16y32.

Replace x by x"1 and y by a;y to get (yxy)16 = x~16(xy)32. Thus

(a;?/)32 = x16(y(xy))16 = x16(^2)16 = x32y32.

It follows from (2) that a torsion-free 2I(w)-group is abelian (since a
torsion-free S3(«)-group is abelian). Here we ask

QUESTION 2: Is every torsion-free (£(w)-group abelian?
This question is not new and in fact there is an outstanding conjecture

that this question has an affirmative answer. Obviously Question 2 has
positive answer for those integers for which Question 1 has positive answer.
Further, since by Schur's Theorem a torsion-free centre-by-finite group is
abelian, it follows that a torsion-free locally soluble ©(»)-group is abelian.
Without any such assumption we are able to prove

THEOREM 2. A torsion-free Qi(n)-group is abelian for n = 2*3'
{k^ 0,1 = 0, 1).

PROOF: Let G be a torsion-free group in S(2*3!). We prove by reverse
induction on / e {k, • • •, 0} that G e (S(23'3*). For / = k the result is given.
Assume Ge<£(2<+i3') (0 ^ * < *). We show that [*, f/2'3'] = 1 for all
x,y e G. Put z = i/2'3', so that by induction hypothesis, [x, z2] = 1. Thus
[x, 2]-i = [x, * ] \ But this implies that [*, *] 2 < + l 3 ' = [*, zf+1^ = [*, z]~*M*.
Hence [x,'zf+H'=l. Since G is torsion-free, [*,*] = 1 and Ge©(2<31).
Thus G e e(2'3!) for all / e {k, • • •, 0}, and G e ©(1) = 91 or ©(3) depending
on whether / = 0 or / = 1. In both cases G is abelian by Theorem 1.

REMARK 1. If G e 2l(«), then for any x,y e G,

{x-iy-^xyy = (x-iy-^ixy)" = {yx)-n{xy)n.

Thus by Kaluznin's Theorem 3 we have

(3) 2t(w) A33(W) = 9l(w) A(£(n) =3IvS3 n .

REMARK 2. It seems worthwhile to remark that if G is a torsion-free
Engel group in (£(«), (w ^ 0) then for any two elements x, y in G, either
[x, y] = 1 or there exists an integer >• 3: 1 such that [x, ry] # 1 but
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[x, (r+l)y] = 1. In the latter case, 1 = [x, (r—l)y, yn] = [x, ry]n = [x, ry]
gives a contradiction. Thus in E(«) torsion-free Engel groups are abelian.

REMARK 3. In [3] Durbin considered the problem of characterizing those
sequences {nx, • • • ,nt} of integers for which it is true that /\jj.=, 2f(%) = S&.
If 33 denotes the cla.ss of all groups of finite exponent, then he proves that
S3 A (AU. «(»*)) < 21 if and only if ((»'), • • •, (*<)) = 1, where («*) =
\nk{nk-\-\). He shows further that the hypothesis of finite exponent can be
replaced by "periodicity" in the special case {n, n-\-2}. We complete the
discussion on Durbin's problem by proving,

THEOREM 3. A &(»*) = % *f *nd only if ((*»), • • •, (*')) = 1.

PROOF: The "only if" part of the theorem follows from Durbin's proof.
For the rest of the proof we first notice from (1), that

t

But groups in $ft2 satisf}^ the law {xy)n = xnyn[y, «]<«) for every integer n.
Thus A*=i 9t(%) = 91, as was required.

REMARK 4. In our initial proof of Theorem 3 we made use of the follow-
ing lemma which seems to be of independent interest (c.f. [7] page 39 and [2].

LEMMA. 5RC(A »m.) = A K.®™,
k=l ft=l

PROOF: For positive integers c, m, n let G e 9?c93m A lift,. 93,. Then
[*". ' • •, <+1] = [ < , ' • • , xn

c+1] = 1 for all xt eG. If d= (m, n), both
[x{, • • • )<J ( m/ ( i ) C + 1 and [xi, • ••, ^ + 1 ] < n / < i ) C + 1 lie in (Gd)(c+a), where
Gd = <a^; x e G). Thus (Gd)(c+1) = (Gd)(c+2). On the other hand
Gd — GmGn is nilpotent since Gm,Gne3lc. Thus (Gd)u+1) = 1 and
Ge5ftc93d. This proves «Re(»m A 5Bn) = SReS3m A SReS8n and the lemma
follows.

REMARK 5. In the concluding section of his paper [3], Durbin raised
the following number theoretic question: Does there exist, for each positive
integer t, a set {nlt • • •, nt) of integers satisfying ((^M, • • •, (2')) = 1
such that no proper subset satisfies this property? We give an affirmative
answer to this question by giving a process of constructing such integers.
This construction is due to T, J. Dickson whose co-operation is gratefully
acknowledged.
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For t = 2, the set {2, 3} will do. For t > 2 we first choose a set px,
p2, ' " '. Pt of primes as follows: choose p1 = 2, p2 = 3 and for 3 5S i 5S £,
choose >̂t to be of the form Ijpxpz""' A - i + 1 f°r some integer /, ;> 3. This is
possible by Dirichlet's Theorem (see for instance [4] page 13). Thus
Pi = 1 {p,) for / = 1, • • •, * - l . Let p\ = Jli+tPi a n d d e f i n e ni = 2^5-I" 1-
It is now routine to show that the set {«!,-•-, »J has the required properties.
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