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Abstract

This paper is devoted to the study of two-person zero-sum games for continuous-time
jump Markov processes with a discounted payoff criterion. The state and action spaces
are all Polish spaces, the transition rates are allowed to be unbounded, and the payoff rates
may have neither upper nor lower bounds. We give conditions on the game’s primitive
data under which the existence of a solution to the Shapley equation is ensured. Then,
from the Shapley equation, we obtain the existence of the value of the game and of a pair
of optimal stationary strategies using the extended infinitesimal operator associated with
the transition function of a possibly nonhomogeneous continuous-time jump Markov
process. We also provide a recursive way of computing (or at least approximating) the
value of the game. Moreover, we present a ‘martingale characterization’ of a pair of
optimal stationary strategies. Finally, we apply our results to a controlled birth and death
system and a Schlögl first model, and then we use controlled Potlach processes to illustrate
our conditions.

Keywords: Zero-sum game; jump Markov process; pair of optimal stationary strategies;
martingale characterization

2000 Mathematics Subject Classification: Primary 91A15; 91A25; 60J27

1. Introduction

In this paper we are concerned with a class of zero-sum stochastic dynamic games. These
games have been widely studied in the literature. The existing works can be roughly classified
into three main groups. The first group deals with discrete-time games (see, for instance, [6],
[15], [23], [26], [28], and the references therein), in which the evolution of the states of the
game is described by a discrete-time Markov chain. The second group deals with stochastic
differential games (see, for instance, [2], [7], [17], and the references therein), in which the states
evolve according to a stochastic differential equation. The third group deals with semi-Markov
games in which the state of the game is described by a semi-Markov process and the players can
choose their actions only at certain (random) epochs; see, for instance, [16], [19], [22], [29], and
the references therein. Here we study a fourth class of stochastic games, namely, continuous-
time Markov games in which the state process evolves according to a continuous-time jump
Markov process. The latter class has been considered in [12], [13], and [18]. However, the
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treatments in [12] and [13] are restricted to the case of a denumerable state space; and although
the state space in [18] is general, the concluding remarks in [22] raise questions as to whether
the main results are correct.

In this paper we study the more general case in which the state and action spaces are all Polish
spaces, the transition rates are allowed to be unbounded, the payoff rates may have neither upper
nor lower bounds, and, moreover, the players can select their actions continuously in time. The
main motivation for studing this general case stems from the zero-sum nature of many real-
world situations, such as inventory/production processes, telecommunication systems, water
reservoir systems, controlled queueing networks, and some models of chemical reactions. In
such systems the payoff rates may be unbounded, and the state or the action space may be
nondenumerable.

More precisely, we deal with stochastic games specified by four primitive data: a state
space S; control constraint sets A(x) for player 1 and B(x) for player 2, which may depend
on the current state x ∈ S; transition rates q(· | x, a, b); and payoff rates r(x, a, b). The state
space S is a Polish space, the transition rates q(· | x, a, b) may be unbounded, and the payoff
rates r(x, a, b) may have neither upper nor lower bounds. We impose suitable conditions
on these primitive data. Under these conditions, we first construct a probability space on
which we introduce the game’s state and action processes as well as some of their fundamental
properties. We then prove that the Shapley (or dynamic programming or Hamilton–Jacobi–
Bellman) equation has a solution. This solution is used to show that the game has a value,
and that a pair of optimal stationary strategies exists. In addition, we provide a recursive
way of computing (or at least approximating) the value of the game, and also present a
‘martingale characterization’of pairs of optimal stationary strategies. Moreover, our conditions
are illustrated by generalized Potlach processes with controlled parameters [3], and our results
are applied to controlled birth and death systems and to a Schlögl first model. A key feature of
this paper is that our assumptions are imposed on the game’s primitive data.

The rest of the paper is organized as follows. In Section 2 we introduce the game model we
are interested in. In Section 3 we define the family of admissible strategies, and present some
properties of the state and the action processes. The optimality criterion we are concerned with
is presented in Section 4. Our main optimality results are stated in Section 5, and illustrated
with examples in Section 6; their proofs are postponed to Section 7.

2. The game model

We begin this section by introducing some notation. IfX is a Polish space (that is, a complete
and separable metric space), we denote by B(X) its Borel σ -algebra and by P(X) the set of
probability measures on B(X), endowed with the topology of weak convergence.

In this section we introduce the following (continuous-time, time-homogeneous) two-person
zero-sum stochastic game model:

{S, (A(x) ⊆ A,B(x) ⊂ B, x ∈ S), q(· | x, a, b), r(x, a, b)}, (2.1)

where S is the state space, a Polish space, A(x) and B(x) are the (nonempty) Borel sets of
admissible actions for players 1 and 2 in state x, and A and B are Polish spaces representing
the action spaces for players 1 and 2, respectively. Let

K := {(x, a, b) | x ∈ S, a ∈ A(x), b ∈ B(x)},
which is a Borel subset of S × A× B [21].
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The function q(· | x, a, b) in (2.1) is the function of transition rates and satisfies the
following properties.

(T1) For each fixed (x, a, b) ∈ K , q(· | x, a, b) is a signed measure on B(S), whereas for
each fixed D ∈ B(S), q(D | ·) is a real-valued Borel-measurable function on K;

(T2) 0 ≤ q(D | x, a, b) < ∞ for all (x, a, b) ∈ K and x /∈ D ∈ B(S); and

(T3) q(S | x, a, b) = 0 and 0 ≤ −q({x} | x, a, b) < ∞ for all (x, a, b) ∈ K .

Furthermore, the model in (2.1) is assumed to be stable, which means that

q(x) := sup
(a,b)∈A(x)×B(x)

(−q({x} | x, a, b)) < ∞ for each x ∈ S. (2.2)

Finally, r(x, a, b) is a real-valued function on K that stands for the reward rate function for
player 1 (or the cost rate function for player 2).

The game is played as follows. Players 1 and 2 continuously observe the current state of the
system. Whenever the system is at state x(t) ∈ S at time t ≥ 0, players 1 and 2 independently
choose actions at ∈ A(x(t)) and bt ∈ B(x(t)) according to some strategies, respectively. As a
consequence of this, the following happens:

1. player 1 receives an immediate reward at rate r(x(t), at , bt ) and player 2 incurs a cost at
rate r(x(t), at , bt ); and

2. the system moves to a new state set governed by a possibly nonhomogeneous transition
probability function, which is determined by the transition rates q(· | x(t), at , bt ).

Thus, the goal of player 1 is to maximize his/her rewards, whereas that of player 2 is to minimize
his/her costs with respect to some performance criterion J (·, ·, ·), which in our present case is
defined by (4.1), below.

To illustrate the game model, (2.1), we consider the following two examples.

Example 2.1. (A controlled birth and death system.) Consider a birth and death system in
which the state variable denotes the population size at time t ≥ 0. There are ‘natural’ birth
and death rates λ and µ, respectively, which are nonnegative constants, emigration parameters
h1 controlled by a player 1, and immigration parameters h2 controlled by a player 2. When
the state of the system is x ∈ S := {0, 1, . . .}, player 1 takes an action a from a given set
A(x), which gives a reward at rate r1(x, a) and which may increase (h1(x, a) ≥ 0) or decrease
(h1(x, a) ≤ 0) the emigration parameter. Conversely, player 2 takes an action b from a set
B(x), which incurs a cost with rate c(x, b), and which may increase (h2(x, b) ≥ 0) or decrease
(h2(x, b) ≤ 0) the immigration. In addition, there is a reward rate p0x for each unit of time
during which the system remains in state x, where p0 > 0.

We now formulate this system as the game model (2.1) with S, A(x) and B(x) as above,
A := ⋃

x∈S A(x), B := ⋃
x∈S B(x), and the corresponding transition rates q(y | x, a, b) and

reward rates r(x, a, b) are given as follows. For x = 0 and each a ∈ A(0) and b ∈ B(0),

q(1 | 0, a, b) := −q(0 | 0, a, b) := h2(0, b),
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and, for each x ≥ 1, a ∈ A(x), and b ∈ B(x),

q(y | x, a, b) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
µx + h1(x, a) if y = x − 1,

−(µ+ λ)x − h1(x, a)− h2(x, b) if y = x,

λx + h2(x, b) if y = x + 1,

0 otherwise,

(2.3)

r(x, a, b) := p0x + r1(x, a)+ c(x, b). (2.4)

Example 2.2. (A controlled Schlögl first model.) The Schlögl first model [27] is a model of
a chemical reaction with diffusion in a container, and it is a typical model of nonequilibrium
systems. Here we formulate it as the game problem.

Let E := {1, . . . , i, . . . , N} with N < ∞. We view each i ∈ E as a small vessel in which
there is a reaction. The states of the model are vectors x = (xi, i ∈ E), where xi ≥ 0 is the
number of particles in vessel i. Thus, the state space is S := Z

N+ with Z+ = {0, 1, 2, . . . , }. In
each vessel i ∈ E, the rate function of the reaction is of a birth–death type as

qr(y | x, a, b) :=

⎧⎪⎨
⎪⎩
β0 + β1xi if y = x + ei,

δ1xi + δ2xi(xi − 1) if y = x − ei,

0 otherwise ,

with a := (β0, β1) and b := (δ1, δ2), where ei is the element in S whose value corresponding
to i is 1, and all other values are 0. Here we interpret the parameters (β0, β1) and (δ1, δ2) as
the actions controlled by players 1 and 2, which take values in compact sets A and B in R

2+,
respectively, where R+ := (0,∞). Moreover, when using actions a and b in state x ∈ S,
player 1 receives a reward r1(x, a) and player 2 obtains a reward r2(x, b), so that the payoff
for this model turns out to be r(x, a, b) := r1(x, a)− r2(x, b).

The other part of the model consists of diffusion between any two vessels, which are described
by a transition probability matrix (p(i, j) : i, j ∈ E). This means that, if there are xi particles
in vessel i, then the rate function of the diffusion from vessel i to j is xip(i, j). Thus, the rate
function of the diffusion becomes

qd(y | x) :=
{
xip(i, j) if y = x − ei + ej ,

0 otherwise.

Then the Schlögl first model can be expressed as the game model (2.1) with S,A(x), B(x), and
r(x, a, b) as above, A := ⋃

x∈S A(x), B := ⋃
x∈S B(x), and the transition rates q(y | x, a, b)

:= qr(y | x, a, b)+ qd(y | x). Explicitly, for each a := (β0, β1) ∈ A and b := (δ1, δ2) ∈ B,

q(y | x, a, b) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β0 + β1xi if y = x + ei,

δ1xi + δ2xi(xi − 1) if y = x − ei,

xip(i, j) if y = x − ei + ej ,

0 otherwise,

(2.5)

and q(x | x, a, b) = − ∑
y �=x q(y | x, a, b).

The two examples will be further studied in Section 6, below.
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3. Strategies

A randomized Markov strategy for player 1 is a family π1 = (π1
t ) (t ≥ 0) that satisfies the

following conditions.

(i) For each t ≥ 0, π1
t is a stochastic kernel on A given S, that is, for each D ∈ B(A),

π1
t (D | ·) is a Borel function on S, and for each x ∈ S, π1

t (· | x) is a probability measure
on A, and, furthermore, π1

t (· | x) is concentrated on A(x), i.e. π1
t (A(x) | x) = 1; and

(ii) for every D ∈ B(A) and x ∈ S, π1
t (D | x) is a Borel measurable function in t ≥ 0.

For each t ≥ 0 and x ∈ S, by (i), we shall regard π1
t (· | x) as a probability measure on

A(x). We denote by �m1 the family of all randomized Markov strategies for player 1.
A strategy π1 = (π1

t ) ∈ �m1 is called stationary if it does not depend on t ; that is, if there
is a stochastic kernel π1 on A given S such that

π1
t (· | x) ≡ π1(· | x) for all x ∈ S and t ≥ 0.

We denote this stationary strategy by π1(· | x). The set of all stationary strategies for player 1
is denoted by �s1.

The sets of all randomized Markov strategies�m2 and all stationary strategies�s2 for player 2
are defined similarly, with B(x) in lieu of A(x).

For each pair of strategies (π1, π2) := (π1
t , π

2
t ) ∈ �m1 × �m2 , we define the associated

transition rates q(· | x, π1
t , π

2
t ) as follows. For each C ∈ B(S), x ∈ S, and t ≥ 0,

q(C | x, π1
t , π

2
t ) :=

∫
B(x)

∫
A(x)

q(C | x, a, b)π1
t (da | x)π2

t (db | x). (3.1)

In particular, when both π1 and π2 are stationary, we write the left-hand side of (3.1) as
q(C | x, π1, π2).

It follows that, for each fixed pair of strategies (π1, π2) := (π1
t , π

2
t ) ∈ �m1 × �m2 , the

transition rates function q(· | x, π1
t , π

2
t ) is an infinitesimal generator [5]. (For a more precise

statement of this fact, see Lemma 7.2(b) with u = 1C , the indicator function of a set C, and
Remark 7.1, below.) As is well known, any (possibly substochastic and nonhomogeneous)
transition (probability) function p̃(s, x, t, C;π1, π2) depending on (π1, π2) and satisfying

lim
�t→0+

p̃(t, x, t +�t,C;π1, π2)− 1C(x)
�t

= q(C | x, π1
t , π

2
t )

for all x ∈ S,C ∈ B(S), and t ≥ 0, is called a Q-process with transition rates q(C | x, π1
t , π

2
t ).

To guarantee the existence of such a Q-process we restrict ourselves to admissible policies
in the classes �1 and �2 defined as follows.

Definition 3.1. The classes �1 and �2 denote the subsets of randomized Markov strategies
πk = (πkt ) in�mk for player k (k = 1, 2) such that π1

t (D1 | x) and π2
t (D2 | x) are continuous

in t ≥ 0, for each fixed x ∈ S, D1 ∈ B(A), and D2 ∈ B(B).

Remark 3.1. (a) Observe that �1 × �2 is nonempty because it contains �s1 × �s2 �= ∅.
Moreover, we will provide an example to show that �1 and �2 do not contain the stationary
strategies only; see Example 6.4, below.
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(b) By (3.1), q(C | x, π1
t , π

2
t ) is continuous in t ≥ 0 for each x ∈ S, C ∈ B(S), and

(π1, π2) ∈ �1 ×�2.

By (T1)–(T3), (2.2), Definition 3.1, and (3.1), we have the following facts.

Lemma 3.1. Let (π1, π2) be in �1 ×�2. Then

(a) for each x ∈ S, t ≥ 0, and C ∈ B(S),

(i) q(· | x, π1
t , π

2
t ) is a signed measure on B(S);

(ii) 0 ≤ q(C | x, π1
t , π

2
t ) < ∞ when x /∈ C;

(iii) q(S | x, π1
t , π

2
t ) = 0 and 0 ≤ −q({x} | x, π1

t , π
2
t ) < ∞;

(iv) q(C | x, π1
t , π

2
t ) is continuous in t ≥ 0 and measurable in x ∈ S,

(b) there exists a Q-process p̃(s, x, t, C;π1, π2) with transition rates q(C | x, π1
t , π

2
t ).

Proof. Parts (i)–(iii) in (a) follow from (3.1) and the definition of the model, (2.1). Part
(iv) follows from (2.2) and Definition 3.1. Finally, part (b) follows from part (a) together with
Theorem 1 of [5].

Lemma 3.1(b) guarantees the existence of a Q-process, such as the minimum Q-process
denoted by pmin(s, x, t, C;π1, π2), which it is so-named because pmin(s, x, t, C;π1, π2) ≤
p̃(s, x, t, C;π1, π2) for any Q-process p̃(s, x, t, C;π1, π2). The minimum Q-process can be
directly constructed from the given transition rates q(· | x, π1

t , π
2
t ); see (3.3), below. As is

well known [1], [5], however, such a Q-process might not be regular, that is, we might have
pmin(s, x, t, S;π1, π2) < 1 for some x ∈ S and t ≥ s ≥ 0. To ensure the regularity of a
Q-process we propose the following ‘drift’ conditions.

Assumption 3.1. There exists a measurable function w1 ≥ 1 on S, and constants c1 �= 0,
b1 ≥ 0, and Mq > 0 such that

(a)
∫
S
w1(y)q(dy | x, a, b) ≤ c1w1(x)+ b1 for all (x, a, b) ∈ K; and

(b) q(x) ≤ Mqw1(x) for all x ∈ S, with q(x) as defined in (2.2).

Remark 3.2. (a) For the case of uniformly bounded transition rates (i.e. supx∈S q(x) < ∞),
Assumption 3.1(b) is not required.

(b) Assumption 3.1(a) is an extension of the ‘drift condition’ (2.4) of [20], for a homogeneous
Q-process, and it is also known as a Lyapunov or Foster–Lyapunov condition. It is typically
used to obtain growth conditions, as in Lemma 3.2(a), below, or some forms of ergodicity, as
in [11], [16], and [29], for instance.

Assumption 3.1 is supposed to hold throughout the following, unless explicitly stated
otherwise.

Lemma 3.2. Suppose that Assumption 3.1 holds. Then, for each (π1, π2) ∈ �1 ×�2, and all
t ≥ s ≥ 0 and x ∈ S, we have

(a)
∫
S
w1(y)p

min(s, x, t, dy;π1, π2) ≤ ec1(t−s)w1(x)+ (b1/c1)(ec1(t−s) − 1), and

(b) pmin(s, x, t, S;π1, π2) = 1.
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Proof. (a) Part (a) can be obtained as in the proof of Lemma 3.2 of [11].

(b) Let γ (C | x, π1
z , π

2
z ) := q(C \ {x} | x, π1

z , π
2
z ). For each x ∈ S, C ∈ B(S), n ≥ 0, and

t ≥ s ≥ 0, let

pn+1(s, x, t, C, π
1, π2)

:=
∫ t

s

exp

(∫ z

s

q({x} | x, π1
v , π

2
v ) dv

) ∫
S

pn(z, y, t, C, π
1, π2)γ (dy | x, π1

z , π
2
z ) dz,

(3.2)

with p0(s, x, t, C, π
1, π2) := 1C(x) exp(

∫ t
s
q({x} | x, π1

v , π
2
v ) dv). Then, by Theorem 2 of

[5], we have

pmin(s, x, t, C;π1, π2) =
∞∑
n=0

pn(s, x, t, C, π
1, π2). (3.3)

Moreover, let Ln(s, x, t, π1, π2) := − ∫ t
s

∫
S
q({y} | y, π1

v , π
2
v )pn(s, x, v, dy, π1, π2) dv for

all x ∈ S and t ≥ s ≥ 0. Then, by Assumption 3.1(b) and (2.2) we have

Ln(s, x, t, π
1, π2) ≤

∫ t

s

∫
S

Mqw1(y)pn(s, x, v, dy, π1, π2) dv,

which together with (3.3) and part (a) gives limn→∞ Ln(s, x, t, π
1, π2) = 0. Hence, part (b)

follows from the corollary after Theorem 1 of [5].

Lemma 3.2(b) shows that a Q-process with transition rates q(C | x, π1
t , π

2
t ) is regular. Thus,

under Assumption 3.1 we shall write the regular transition function pmin(s, x, t, C;π1, π2)

simply as p(s, x, t, C;π1, π2).
To define our game’s payoff criterion, we need to introduce the state and action processes

for players 1 and 2. Thus, we first construct a probability space for these processes.
For each s ≥ 0, let Gs := {(t0, t1, . . . , tn) | s ≤ t0 < t1 < · · · < tn < ∞, n ≥ 0} directed

by inclusion, i.e. τ := (t0, t1, . . . , tn) ≺ τ ′ ∈ Gs means that τ ′ = (t0, t1, . . . , tn, . . . , tm) for
some positive numbers tm > tm−1 > · · · > tn with m ≥ n+ 1.

For each (π1, π2) := (π1
t , π

2
t ) ∈ �1 ×�2, let p(s, x, t, C;π1, π2) be the corresponding

regular Q-process. Let E := S × A× B with the usual product σ -algebra.
For each s ≥ 0, let µs be an arbitrary probability distribution on S. Then, for each vector

τ := (t0, t1, . . . , tn) inGs , we can define the product probability measure Pµ
t0 ,π1,π2

τ on 
τ :=
En+1 such that, for each F := Ct0 ×D1

t0
×D2

t0
× Ct1 ×D1

t1
×D2

t1
× · · · × Ctn ×D1

tn
×D2

tn

with Ctk ∈ B(S), D1
tk

∈ B(A), and D2
tk

∈ B(B),

Pµ
t0 ,π1,π2

τ (F ) =
∫
Ct0

µt0(dxt0)π
1
t0
(D1

t0
| xt0)π2

t0
(D2

t0
| xt0)

∫
Ct1

p(t0, xt0 , t1, dxt1;π1, π2)

× π1
t1
(D1

t1
| xt1)π2

t1
(D2

t1
| xt1) · · ·

∫
Ctn

p(tn−1, xtn−1 , tn, dxtn;π1, π2)

× π1
tn
(D1

tn
| xtn)π2

tn
(D2

tn
| xtn). (3.4)

LetT := [0,∞), and let (
,F ) be the (canonical) product measurable space with
 := ET ,
and F the product σ -algebra. Moreover, let gτ be the coordinate projection, i.e.

gτ (e) := eτ for each e = (e(t), t ≥ 0) ∈ 
, (3.5)
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where eτ := (e(t0), e(t1), . . . , e(tn)) and τ = (t0, t1, t2, . . . , tn). We then have the following
result.

Proposition 3.1. Suppose that Assumption 3.1 holds. Then, for each (π1, π2) = (π1
t , π

2
t ) ∈

�1 × �2 and any given (initial) distribution µs on S at time s ≥ 0, there exists a unique
probability measure P̃

µs

π1,π2 on (
,F ) such that, for each t ≥ s,

P̃
µs

π1,π2(Wt ) =
∫
Cs

µs(dxs)
∫
C

p(s, xs, t, dxt ;π1, π2)π1
t (D1 | xt )π2

t (D2 | xt ), (3.6)

P̃
µs

π1,π2(Ws) =
∫
Cs

µs(dxs)π
1
s (D1 | xs)π2

s (D2 | xs), (3.7)

where

Wt := {e ∈ 
 : (e(s), e(t)) ∈ Cs × A× B × C ×D1 ×D2},
Ws := {e ∈ 
 : e(s) ∈ Cs ×D1 ×D2},

with Cs, C ∈ B(S), D1 ∈ B(A), and D2 ∈ B(B).

Proof. Because any probability measure on a Polish space is ‘inner regular’ [25], by (3.4)

we conclude that the probability measure Pµ
s,π1,π2

τ is also inner regular for each τ ∈ Gs . Then

the existence of the unique probability measure P̃
µs

π1,π2 follows from Theorem 4 of [25, p. 20],
for instance. Moreover, the results in (3.6) and (3.7) follow from (3.4) and (3.5), together with
Proposition 1 of [25, p. 18].

Definition 3.2. (State and action processes.) For each e = (e(t), t ≥ 0) ∈ 
 and t ≥ 0, let
e(t) := (e0(t), e1(t), e2(t)) ∈ E = S × A× B. Then the coordinate process ξ(t)(e) := e0(t)

defines the system’s state process, and η1(t)(e) := e1(t) and η2(t)(e) := e2(t) are the action
processes for players 1 and 2, respectively.

Let Ẽ
µs

π1,π2 denote the expectation operator associated with P̃
µs

π1,π2 . We write P̃
s,x

π1,π2 for

P̃
µs

π1,π2 and Ẽ
s,x

π1,π2 for Ẽ
µs

π1,π2 when µs is the Dirac measure at x ∈ S. We then obtain the
following result.

Proposition 3.2. Suppose that Assumption 3.1 holds. Then, for each x, y ∈ S, (π1, π2) =
(π1
t , π

2
t ) ∈ �1 ×�2, C ∈ B(S), D1 ∈ B(A), D2 ∈ B(B), and t ≥ s,

(a) P̃
s,x

π1,π2(ξ(t) ∈ C) = p(s, x, t, C;π1, π2),

(b) P̃
s,x

π1,π2(η1(t) ∈ D1, η2(t) ∈ D2 | ξ(t) = y) = π1
t (D1 | y)π2

t (D2 | y),
(c) Ẽ

s,x

π1,π2r(ξ(t), η1(t), η2(t)) is Borel measurable in t ≥ s.

Proof. Parts (a) and (b) follow from (3.6) and Definition 3.2. To prove part (c) we define
reward rates r(x, π1

t , π
2
t ) as follows:

r(x, π1
t , π

2
t ) :=

∫
A(x)

∫
B(x)

r(x, a, b)π2
t (db | x)π1

t (da | x) for each x ∈ S and t ≥ 0.

(3.8)

https://doi.org/10.1239/aap/1189518632 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518632


Zero-sum games 653

By Definition 3.1, we see that r(x, π1
t , π

2
t ) is Borel measurable in (t, x) ∈ [0,∞)× S. Thus,

by (3.6) and (3.8) we have

Ẽ
s,x

π1,π2r(ξ(t), η1(t), η2(t)) =
∫
S

p(s, x, t, dy;π1, π2)r(y, π1
t , π

2
t ), (3.9)

which is Borel measurable in (t, x), because p(s, x, t, C;π1, π2) is continuous in t ≥ 0;
see [5]. Hence, (c) follows.

We will write the left-hand side of (3.8) as r(x, π1, π2)when both π1 and π2 are stationary.

4. The discounted payoff criterion

Fix a discount factor α > 0. Then, for each pair of strategies (π1, π2) ∈ �1 × �2 and
x ∈ S, the discounted payoff criterion J (·, ·, ·) is defined as

J (x, π1, π2) :=
∫ ∞

0
(Ẽ

0,x
π1,π2 e−αt r(ξ(t), η1(t), η2(t))) dt. (4.1)

We also need the following concepts. The functions on S defined as

L(x) := sup
π1∈�1

inf
π2∈�2

J (x, π1, π2) and

U(x) := inf
π2∈�2

sup
π1∈�1

J (x, π1, π2),

are called the lower value and the upper value, respectively, of the discounted payoff game. It
is clear that

L(x) ≤ U(x) for all x ∈ S. (4.2)

When the equality holds in (4.2) we obtain the following definitions from the theory of dynamic
games [2], [6], [7], [12], [13], [15], [16], [19], [22], [26], [28].

Definition 4.1. If L(x) = U(x) for all x ∈ S, then the common function is called the value of
the game and denoted by V .

Definition 4.2. Suppose that the game has a value V . Then a strategy π1∗ in �1 is said to be
optimal for player 1 if

inf
π2∈�2

J (x, π1∗ , π2) = V (x) for all x ∈ S.

Similarly, π2∗ ∈ �2 is optimal for player 2 if

sup
π1∈�1

J (x, π1, π2∗ ) = V (x) for all x ∈ S.

If πk∗ ∈ �k is optimal for player k (k = 1, 2), then (π1∗ , π2∗ ) is called a pair of optimal strategies.

The aim of this paper is to give conditions for the existence of pairs of optimal stationary
strategies, and to present a ‘martingale characterization’ of such pairs. To this end we first
introduce some notation.

For each s ≥ 0, x ∈ X, and each pair of strategies (π1, π2) := (π1
t , π

2
t ) ∈ �1 × �2,

we denote by Eπ
1,π2

s,x the expectation operator associated with the probability measure Pπ
1,π2

s,x
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which, as in Proposition 3.1, is completely determined by p(s, x, t, C;π1, π2). Then, from
[8, pp. 107–109], there exists a right-continuous, with finite left-hand limits, Markov process
x(t) with values in S and p(s, x, t, C;π1, π2) as its transition function. It is well known that
such a process x(t) is Borel measurable as a function of t ≥ 0.

Thus, by (3.9) we have, for each t ≥ 0 and x ∈ S,

Ẽ
0,x
π1,π2r(ξ(t), η1(t), η2(t)) = Eπ

1,π2

0,x r(x(t), π1
t , π

2
t ), (4.3)

and so, by (4.3) and (4.1),

J (x, π1, π2) =
∫ ∞

0
(Eπ

1,π2

0,x e−αt r(x(t), π1
t , π

2
t )) dt. (4.4)

Remark 4.1. By (4.4), without loss of generality we will restrict ourselves to using x(t) and

the corresponding probability Pπ
1,π2

x := Pπ
1,π2

0,x and expectation Eπ
1,π2

x := Eπ
1,π2

0,x throughout
the following.

5. Main results

In this section we state our main results. The proofs are postponed to Section 7.
To guarantee the finiteness of the discounted criterion J (x, π1, π2), by Lemma 3.2(a)

and (4.4) it is natural to propose the following conditions, in which w1 is the function in
Assumption 3.1.

Assumption 5.1. (a) |r(x, a, b)| ≤ M1w1(x) for all (x, a, b) ∈ K , for some constantM1 > 0.

(b) α > max{0, c1}, with c1 as in Assumption 3.1.

Conversely, to ensure the existence of a pair of optimal strategies, in addition to Assump-
tions 3.1 and 5.1, we use the following hypotheses.

Assumption 5.2. (a) For each x ∈ S, A(x) and B(x) are compact.

(b) For each fixed x ∈ S, r(x, a, b) is continuous in (a, b) ∈ A(x)× B(x).

(c) For each x ∈ S, the function
∫
S
u(y)q(dy | x, a, b) is continuous in (a, b) ∈ A(x)×B(x),

for u = w1 and also for each bounded measurable function u on S.

(d) There exists a nonnegative measurable function w2 on S, constants c2 > 0, b2 ≥ 0, and
M2 > 0 such that (with q(x) as defined in (2.2))

q(x)w1(x) ≤ M2w2(x) and
∫
S

w2(y)q(dy | x, a, b) ≤ c2w2(x)+ b2,

for all (x, a, b) ∈ K .

Remark 5.1. Assumptions 5.2(a)–(c) are similar to the standard continuity-compactness
hypotheses for discrete-time Markov control processes; see, for instance, [14], [24], and the
references therein. Assumption 5.2(d) allows us to use Dynkin’s formula, but it can be removed
when q(x) is bounded on S.
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Given a measurable functionw on S withw(x) ≥ 1 for all x ∈ S, a function u on S is called
w-bounded if the w-norm ‖u‖w defined as

‖u‖w := sup
x∈S

|u(x)|
w(x)

is finite. Such a function w will be referred to as a weight function. We denote by Bw(S) the
Banach space of all w-bounded measurable functions on S.

Moreover, for any C ∈ B(S), and probability measures φ ∈ P(A(x)) and ψ ∈ P(B(x)), let

q(C | x, φ,ψ) :=
∫
B(x)

∫
A(x)

q(C | x, a, b)φ(da)ψ(db), (5.1)

r(x, φ, ψ) :=
∫
B(x)

∫
A(x)

r(x, a, b)φ(da)ψ(db). (5.2)

For each π1 = π1(· | x) ∈ �s1 and π2 = π2(· | x) ∈ �s2, we write

q(C | x, φ, π2) := q(C | x, φ, π2(· | x)), q(C | x, π1, ψ) := q(C | x, π1(· | x), ψ),
r(x, φ, π2) := r(x, φ, π2(· | x)), r(x, π1, ψ) := r(x, π1(· | x), ψ).

Let q(x) be as defined in (2.2), and take an arbitrary real-valued measurable function m(x)
on S such that

m(x) > q(x) ≥ 0 for all x ∈ S.
Moreover, let w1 be as in Assumption 3.1, and define an operator T on Bw1(S) as follows:

for u ∈ Bw1(S) and x ∈ S,

T u(x) := max
φ∈P(A(x))

min
ψ∈P(B(x))

{
r(x, φ, ψ)

α +m(x)
+ m(x)

α +m(x)

∫
S

u(y)P(dy | x, φ,ψ)
}
, (5.3)

where the probability measure P(· | x, φ,ψ) is defined as

P(C | x, φ,ψ) := q(C | x, φ,ψ)
m(x)

+ 1C(x) for all C ∈ B(S). (5.4)

Moreover, for each n ≥ 1 and x ∈ S, let

un(x) := T un−1(x) with u0(x) := −
(

b1M1

α(α − c1)
+ M1w1(x)

α − c1

)
, (5.5)

where the constants c1, b1, and M1 are as in Assumptions 3.1 and 5.1. By Assumption 5.1(b),
u0(·) ≤ 0.

Theorem 5.1. Suppose that Assumptions 3.1, 5.1, and 5.2 hold. Then we have the following
results.

(a) We have |J (x, π1, π2)| ≤ −u0(x) for all x ∈ S and (π1, π2) ∈ �1 ×�2.

(b) The limit limn→∞ un(x) := u∗(x) exists and belongs to Bw1(S) and, moreover, the
function u∗ satisfies Shapley’s equation, i.e.

αu∗(x) = max
φ∈P(A(x))

min
ψ∈P(B(x))

{
r(x, φ, ψ)+

∫
S

u∗(y)q(dy | x, φ,ψ)
}

for all x ∈ S.
(5.6)
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(c) There exists a pair of stationary strategies (π1∗ , π2∗ ) ∈ �s1 ×�s2 such that, for all x ∈ S,

αu∗(x) = r(x, π1∗ , π2∗ )+
∫
S

u∗(y)q(dy | x, π1∗ , π2∗ ) (5.7)

= max
φ∈P(A(x))

{
r(x, φ, π2∗ )+

∫
S

u∗(y)q(dy | x, φ, π2∗ )
}

(5.8)

= min
ψ∈P(B(x))

{
r(x, π1∗ , ψ)+

∫
S

u∗(y)q(dy | x, π1∗ , ψ)
}
. (5.9)

(d) We have u∗(x) = L(x) = U(x) for all x ∈ S, which means that the value V of the game
exists and equals the function u∗(x), and, furthermore, u∗(x) = J (x, π1∗ , π2∗ ) for all
x ∈ S.

(e) In part (c), (π1∗ , π2∗ ) is a pair of optimal stationary strategies.

Proof. See Section 7.

Theorem 5.1 is a key result: part (d) gives the existence of the value of the game, whereas
(b) provides a recursive way of computing (or at least approximating) the value of the game.
Moreover, Theorem 5.1(e) shows the existence of a pair of optimal stationary strategies. Next,
we give an interesting characterization of a pair of optimal stationary strategies.

Under the hypotheses of Theorem 5.1, for each x ∈ S, φ ∈ P(A(x)), and ψ ∈ P(B(x)) let

�(x, φ,ψ) := r(x, φ, ψ)+
∫
S

V (y)q(dy | x, φ,ψ)− αV (x),

whereV (x) is the value of the game; see Theorem 5.1(d). Moreover, for eachπ1 := π1(· | x) ∈
�s1, π2 := π2(· | x) ∈ �s2, and t ≥ 0, let

�(x, π1, π2) := �(x, π1(· | x), π2(· | x)), (5.10)

Ft := σ {x(s), 0 ≤ s ≤ t} (the σ -algebra generated by x(·)),
and define the (continuous-time) stochastic process by

M(t, π1, π2) :=
∫ t

0
e−ατ r(x(τ ), π1, π2) dτ + e−αtV (x(t)) for all t ≥ 0. (5.11)

Theorem 5.2. Suppose that Assumptions 3.1, 5.1, and 5.2 hold. Then, for a given pair of
strategies (π1∗ , π2∗ ) in �s1 ×�s2, the following statements are equivalent.

(a) The pair (π1∗ , π2∗ ) ∈ �s1 ×�s2 is optimal.

(b) For each x ∈ S,

�(x, π1∗ , π2∗ ) = min
ψ∈P(B(x))

�(x, π1∗ , ψ) = max
φ∈P(A(x))

�(x, φ, π2∗ ) = 0.

(c) For each x ∈ S, π1 ∈ �1
s and π2 ∈ �2

s ,

(i) {M(t, π1∗ , π2∗ ),Ft } is a P
π1∗ ,π2∗
x martingale,

(ii) {M(t, π1∗ , π2),Ft } is a P
π1∗ ,π2

x submartingale, and

(iii) {M(t, π1, π2∗ ),Ft } is a P
π1,π2∗
x supermartingale.
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Proof. See Section 7.

Theorem 5.2 gives, in particular, a ‘martingale characterization’of a pair of optimal stationary
strategies. Theorems 5.1 and 5.2 are extensions of the results in [9] and [10] for control problems
(or one-player games).

6. Examples

In this section we first apply our results to the controlled queueing system in Example 2.1
and to the controlled Schlögl model in Example 2.2, and then introduce Examples 6.3 and 6.4
to illustrate our assumptions.

Example 6.1. (Example 2.1 continued.) To find conditions ensuring the existence of a pair of
optimal stationary strategies for Example 2.1, we consider the following assumptions.

(E1) We have α + µ − λ > 0; µx + h1(x, a) ≥ 0 and λx + h2(x, b) ≥ 0 for all a ∈ A(x),
b ∈ B(x), and x ≥ 1; in addition h1(0, a) = 0 and h2(0, b) ≥ 0 for all a ∈ A(0) and b ∈ B(0).
(E2) For each x ∈ S,A(x) andB(x) are compact subsets of metric spacesA andB, respectively.

(E3) For each x ∈ S, the functions r1(x, a) and h1(x, a) are continuous in a ∈ A(x), while the
functions c(x, b) and h2(x, b) are continuous in b ∈ B(x). Moreover, h1(x, a) and h2(x, b)

are assumed to be bounded in the supremum norm, that is

‖h1‖ := sup
x∈S, a∈A(x)

|h1(x, a)| < ∞, ‖h2‖ := sup
x∈S, b∈B(x)

|h2(x, b)| < ∞.

Also, |r1(x, a)| ≤ L1(x + 1) for all a ∈ A(x), and |c(x, b)| ≤ L2(x + 1) for all b ∈ B(x), for
some positive constants Lk (k = 1, 2).

Under these conditions we obtain the following result.

Proposition 6.1. Under assumptions E1, E2, and E3, the controlled birth and death system in
Example 6.1 satisfies Assumptions 3.1, 5.1, and 5.2. Therefore, by Theorem 5.1, there exists a
pair of optimal stationary strategies.

Proof. We shall first verify Assumption 3.1. Let w1(x) := x + 1 for all x ∈ S, and
Mq := µ + λ + ‖h1‖ + ‖h2‖. Then Assumption 3.1(b) follows from (2.3). Also, for each
x ∈ S, a ∈ A(x), and b ∈ B(x), from E1 and (2.3) we have, for x ≥ 1,∑

y∈S
q(y | x, a, b)w1(y) = (λ− µ)(x + 1)+ µ− λ− h1(x, a)+ h2(x, b)

≤ (λ− µ)w1(x)+Mq. (6.1)

For x = 0, we obtain∑
y∈S

q(y | 0, a, b)w1(y) = h2(0, b) ≤ (λ− µ)w1(0)+Mq. (6.2)

By inequalities (6.1) and (6.2) we see that Assumption 3.1(a) holds with c1 := λ − µ and
b1 := Mq , and so Assumption 3.1 follows.

Furthermore, by (2.4) and E3, we have

|r(x, a, b)| ≤ p0x + L1(x + 1)+ L2(x + 1) ≤ (p0 + L1 + L2)w1(x)

for all x ∈ S, which together with E1 gives Assumption 5.1.
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Finally, to verify Assumption 5.2 let

w2(x) := (x + 1)2 for all x ∈ S.
Then

q(x)w1(x) ≤ M2w2(x) for all x ∈ S,
with M2 := µ+ λ+ ‖h1‖ + ‖h2‖.

Then as in (6.1) and (6.2), we can see that Assumption 5.2(d) is true. Conversely, by
(2.3) together with E2 and E3, Assumptions 5.2(a), 5.2(b), and 5.2(c) are all satisfied, and so
Assumption 5.2 follows.

Example 6.2. (Example 2.2 continued.) To find conditions that ensure the existence of a pair
of optimal stationary strategies for Example 2.2, we assume that r1(x, a) and r2(x, b) are
continuous in a and b, respectively, and satisfy |r1(x, a)| ≤ L1

∑N
i=1 x

2
i and |r2(x, b)| ≤

L2
∑N
i=1 x

2
i for some positive constants Lk (k = 1, 2). Thus,

|r(x, a, b)| ≤ (L1 + L2)

N∑
i=1

x2
i for all a ∈ A, b ∈ B, and x ∈ S. (6.3)

Then the Schlögl first model satisfiesAssumptions 3.1, 5.1, and 5.2. Therefore, by Theorem 5.1,
there exists a pair of optimal stationary strategies.

Indeed to verify Assumption 3.1, we let w1(x) := ∑N
i=1 x

2
i . Since A and B are compact

sets in R
2+, there exist positive constants ρ1 and ρ2 such that ρ1 ≤ max{β0, β1, δ1, δ2} ≤ ρ2 for

all (β0, β1) = a ∈ A and (δ1, δ2) = b ∈ B. Thus, for any x ∈ S such that xi ≥ 1 with i ∈ E,
a ∈ A, and b ∈ B,

∑
y∈S

q(y | x, a, b)w1(y) =
N∑
i=1

(1 + 2xi)(β0 + β1xi)+
N∑
i=1

(1 − 2xi)(δ1xi + δ2xi(xi − 1))

+
∑
i �=j

xip(i, j)((1 − 2xi)+ (1 + 2xj ))

=:
N∑
i=1

(−2δ2x
3
i + c1

i x
2
i + c2

i xi + c3
i )

≤
N∑
i=1

(−2ρ1x
3
i + λ1

i x
2
i + λ2

i xi + λ3
i ),

where cki , λki (k = 1, 2, 3, i ∈ E) are fixed constants, and λki are independent of a, b, and
x. Since there exists a positive integer L∗ such that −2δ2x

3
i + λ1x

2
i + λ2xi + λ3 < 0 when

xi ≥ L∗, and the set {x ∈ S : xi ≤ L∗ for some i ∈ E} is finite, straightforward calculations
yield a constant b1 > 0 such that∑

y∈S
q(y | x, a, b)w1(y) ≤ b1 ≤ 1

2
αw1(x)+ b1 for all (x, a, b) ∈ K. (6.4)

Conversely, by (2.5) we have
q(x) ≤ 5Nρ2w1(x),

which together with (6.4) gives Assumption 3.1.

https://doi.org/10.1239/aap/1189518632 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518632


Zero-sum games 659

By (6.3) and (6.4), Assumption 5.1 is true.
Finally, to verify Assumption 5.2, we letw2(x) := ∑N

i=1 x
4
i for all x = (xi, i ∈ E). Noting

that xy ≤ x2 + y2, then as in the proof of (6.4) we can verify Assumption 5.2(d), and by (2.5)
we obtain Assumption 5.2(c). Thus, Assumption 5.2 follows because Assumption 5.2(a) and
Assumption 5.2(b) are part of the model’s description.

Remark 6.1. It should be noted that in Examples 6.1 and 6.2 both the reward and the transition
rates are unbounded.

Example 6.3. (A generalized Potlach process with control parameters.) The generalized
Potlach process (see [3], for instance) is a Q-process generated by the infinitesimal operator L
defined by (6.5), below. Here we are interested in the game problem.

Take S := [0,∞)d for some integer d ≥ 1. Then the operator L is defined by

Lu(x, a, b) :=
d∑
i=1

∫ ∞

0

[
u

(
x−eixi+y

d∑
j=1

pij xiej

)
−u(x)

]
be−by dy for all x ∈ S, (6.5)

where a := (pij ) is a Markov transition matrix on {1, 2, . . . , d}, ei is the ith unit vector
in R

d , and b is a parameter. When the process is at state x = (x1, . . . , xd) ∈ S, the cost
incurred at each component xi is denoted by qi > 0 for all i = 1, . . . , d. Here we interpret the
parameters a and b as controlled actions by player 1 and player 2, with values in the sets A(x)
andB(x), respectively. Suppose thatA(x) is a finite set of Markov transition matrices (pij ) and
B(x) := [1, b∗] for each x ∈ S, where b∗ > 1. For each C ∈ B(S), x ∈ S, a = (pij ) ∈ A(x),
and b ∈ B(x), let

q̃(C | x, a, b) :=
d∑
i=1

∫ ∞

0
1C\{x}

(
x − eixi + y

d∑
j=1

pij xiej

)
be−by dy. (6.6)

Then, by (6.5) together with Lemma 7.2(b), below, we see that the transition rate
q(C | x, a, b) is given by

q(C | x, a, b) = q̃(C | x, a, b)− 1C(x)q̃(S | x, a, b), (6.7)

whereas the reward rate is given by

r(x, a, b) :=
d∑
i=1

d∑
j=1

qipij xj − b(x1 + · · · + xd). (6.8)

Let w1(x) := 1 + x1 + x2 + · · · + xd for all x = (x1, . . . , xd) ∈ S. Then by (6.7) we have

q(x) = d, (6.9)

and so (2.2) holds. Moreover, by (6.5)–(6.7) we have∫
S

w1(y)q(dy | x, a, b) = −b − 1

b
(x1 + · · · + xd) ≤ α

2
w1(x)+ b∗,

which together with (6.9), verifies Assumption 3.1 with c1 := α/2 and b1 = b∗.
By (6.8) we have |r(x, a, b)| ≤ (q1 + · · · + qd + b∗)w1(x) for all x ∈ S, a ∈ A(x), and

b ∈ B(x), which together with the finiteness of A(x) and (6.9) verifies Assumption 5.1.
Obviously, Assumption 5.2 follows from the model’s description and the last part of

Remark 5.1.
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Remark 6.2. It should be noted that in Example 6.3 the state space is not denumerable, and the
reward rates have neither upper nor lower bounds; see (6.8). Nevertheless, by the discussion
above, in Example 6.3 our Assumptions 3.1, 5.1, and 5.2 are satisfied.

Example 6.4. In Example 6.3, we further suppose that A(x) = {a1, a2} for each x ∈ S. Then,
we define nonstationary Markov strategies π̃1 = (π̃1

t , t ≥ 0) and π̃2 = (π̃2
t , t ≥ 0) as

π̃1
t (a | x) =

{
exp(− Tr(a1)(t + 1)w1(x)) if a = a1,

1 − exp(− Tr(a1)(t + 1)w1(x)) if a = a2,
(6.10)

with Tr(a1) denoting the trace of a (transition) matrix a1, and

π̃2
t (C | x) =

{
1 − exp(− 1C(1)(t + 1)w1(x)) for C ∈ B(B(x)),

exp(− 1C(b∗)(t + 1)w1(x)) for C ∈ B(B(x)),
(6.11)

respectively.
Moreover, let�1 := �s1 ∪ {π̃1},�2 := �s2 ∪ {π̃2}. By (6.6), (6.7), (6.10), (6.11), and (3.1)

we see that�1 and�2 satisfy the requirements in Definition 3.1, and�i ⊃ �si , with�i �= �si ,
for i = 1, 2.

7. Proof of Theorems 5.1 and 5.2

In this section we present the proof of Theorems 5.1 and 5.2. To do so, we first introduce
some results which are already known but we state them here for completeness and ease of
reference.

Lemma 7.1. Suppose that Assumptions 5.2(a), 5.2(b), and 5.2(c) hold. Then we have the
following.

(a) For each fixed x ∈ S and u ∈ Bw1(S), the functions

r(x, φ, ψ) and
∫
S

u(y)P(dy | x, φ,ψ)

(recall (5.2) and (5.4)) are continuous in (φ, ψ) ∈ P(A(x))× P(B(x)).

(b) If a real-valued function g(φ,ψ) is continuous in (φ, ψ) ∈ P(A(x))×P(B(x)), then the
function g∗(φ) on P(A(x)) defined as

g∗(φ) := inf
ψ∈P(B(x))

g(φ,ψ)

is also continuous in φ ∈ P(A(x)).

Proof. (a) By Assumptions 5.2(b) and 5.2(c) we see that r(x, φ, ψ) and P(C | x, φ,ψ),
for each C ∈ B(S), are continuous. Then, the desired conclusion follows from Lemma 8.3.7
of [14] and Assumption 5.2(c).

(b) By Assumption 5.2(a), P(B(x)) is compact. Thus, g∗(φ) is well defined for each φ ∈
P(A(x)). Similarly, by Assumption 5.2(a) we also have P(A(x)) is compact. Hence, g(φ,ψ)
is uniformly continuous on the compact metric space P(A(x))×P(B(x)), and so part (b) follows
from well-known facts.
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Lemma 7.2. Suppose that Assumptions 3.1, 5.2(b), 5.2(c), and 5.2(d) hold. Then, for each
(π1, π2) ∈ �1 ×�2, x ∈ S, and s ≥ 0, the following statements hold.

(a) For each u ∈ Bw1+w2(S) and t ≥ v ≥ s,

(i)

‖ Eπ
1,π2

s,x |u(x(t))|‖w1+w2 ≤ b1 + b2 + |c1| + c2

|c1| + c2
‖u‖w1+w2 e(|c1|+c2)(t−s);

(ii)

lim
t↘s

exp

(∫ v

s

q({x} | x, π1
δ , π

2
δ )dδ

)
Eπ

1,π2

v,y u(x(t)) = lim
t↘s

Eπ
1,π2

s,y u(x(t)) = u(y)

for all y ∈ S.

(b) For each u ∈ Bw1(S), let Lπ
1,π2

u(s, x) := limt↓0 t
−1[Eπ1,π2

s,x u(x(s + t)) − u(x)].
Then

(i) Lπ
1,π2

u(s, x) = ∫
S
u(y)q(dy | x, π1

s , π
2
s ),

(ii)
‖ Eπ

1,π2

s,x |Lπ1,π2
u(t, x(t))|‖w1+w2

≤ ‖u‖w1(|c1| + c2 + b1 + b2 + 2M2)
2

|c1| + c2
e(|c1|+c2)(t−s)

for all t ≥ s.

Proof. (a) Letw := w1+w2, c := |c1|+c2, and b := b1+b2. For each (π1, π2) ∈ �1×�2,
y ∈ S and t ≥ v ≥ s ≥ 0, by Assumptions 3.1 and 5.2(d) as well as Lemma 3.2 we have∫

S

w(z)p(v, y, t, dz;π1, π2) ≤ ec(t−s)w(y)+ b

c
(ec(t−s) − 1)

≤ c + b

c
ec(t−s)w(y) for all v ∈ [s, t], (7.1)

which together with v := s and noting that |u(x)| ≤ w(x)‖u‖w gives (a)(i).
Noting that q({x} | x, π1

t , π
2) ≤ 0, by (3.3) we have

w(y) ≥ p(v, y, t, y;π1, π2)w(y)

≥ exp

(∫ t

v

q({y} | y, π1
δ , π

2
δ ) dδ

)
w(y)

≥ exp

(∫ t

s

q({y} | y, π1
δ , π

2
δ ) dδ

)
w(y) for all v ∈ [s, t]. (7.2)

This inequality and (7.1) give

0 ≤ exp

(∫ v

s

q({x} | x, π1
δ , π

2
δ ) dδ

) ∫
S\{y}

w(z)p(v, y, t, dz;π1, π2)

≤ exp

(∫ v

s

q({x} | x, π1
δ , π

2
δ ) dδ

)

×
(

ec(t−s)w(y)+ b

c
(ec(t−s) − 1)− w(y)p(v, y, t, y;π1, π2)

)
. (7.3)
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Letting t ↘ s, from (7.2) and (7.3) we have

lim
t↘s

(
exp

(∫ v

s

q({x} | x, π1
δ , π

2
δ ) dδ

)
p(v, y, t, y;π1, π2)− 1

)
w(y)

= lim
t↘s

exp

(
−

∫ v

s

q({x} | x, π1
δ , π

2
δ ) dδ

) ∫
S\{y}

w(z)p(v, y, t, dz;π1, π2)

= 0.

Thus, for each u ∈ Bw(S),

0 ≤ lim sup
t↘s

∣∣∣∣exp

(∫ v

s

q({x} | x, π1
δ , π

2
δ ) dδ

) ∫
S

u(z)p(v, y, t, dz;π1, π2)− u(y)

∣∣∣∣
≤ ‖u‖w lim sup

t↘s

[
1 − exp

(∫ v

s

q({x} | x, π1
δ , π

2
δ ) dδ

)
p(v, y, t, y;π1, π2)

]
w(y)

+ ‖u‖w lim sup
t↘s

exp

(∫ v

s

q({x} | x, π1
δ , π

2
δ ) dδ

) ∫
S\{y}

w(z)p(v, y, t, dz;π1, π2)

= 0.

This implies (a)(ii).

(b) Let γ be as in the proof of Lemma 3.2(b). Under Assumption 3.1, by Fubini’s theorem,
(3.2), and (3.3) we have

Eπ
1,π2

s,x u(x(t))− u(x)

=
∫ t

s

∫
S

exp

(∫ v

s

q({x} | x, π1
δ , π

2
δ ) dδ

)
Eπ

1,π2

v,y u(x(t))γ (dy | x, π1
v , π

2
v ) dv

+ exp

(∫ t

s

q({x} | x, π1
δ , π

2
δ ) dδ

)
u(x)− u(x). (7.4)

From part (a) and Lemma 7.1, above, together with [14, Lemma 8.3.7], we have

lim
t↓s

∫
S

exp

(∫ v

s

q({x} | x, π1
δ , π

2
δ ) dδ

)
Eπ

1,π2

v,y u(x(t))γ (dy | x, π1
v , π

2
v )

=
∫
S

u(y)γ (dy | x, π1
s , π

2
s ). (7.5)

Finally, divide both sides of (7.4) by t − s, and then use (7.5) to obtain (b)(i).
Moreover, for each u ∈ Bw1(S) and t ≥ 0, by Assumption 5.2(d) we have∣∣∣∣

∫
S

u(y)q(dy | x, π1
t , π

2
t )

∣∣∣∣ ≤ ‖u‖w1

(∫
S

w1(y)γ (dy | x, π1
t , π

2
t )+ q(x)w1(x)

)
≤ ‖u‖w1(c1w1(x)+ b1 + 2M2w2(x))

≤ ‖u‖w1(|c1| + b1 + 2M2)(w1(x)+ w2(x)),

which together with part (a)(i) gives (b)(ii).
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Remark 7.1. For each fixed (π1, π2) ∈ �1 × �2, Lemma 7.2(b) shows that Lπ1,π2 is the
extended infinitesimal operator corresponding top(s, x, t, C;π1, π2), and also that the domain
of Lπ

1,π2
contains Bw1(S).

Lemma 7.3. Suppose that Assumptions 3.1, 5.1, 5.2(c), and 5.2(d) hold. Choose arbitrary
u ∈ Bw1(S) and (π1, π2) = (π1

t , π
2
t ) ∈ �1 ×�2.

(a) If, for each x ∈ S and t ≥ 0,

αu(x) ≥ r(x, π1
t , π

2
t )+

∫
S

u(y)q(dy | x, π1
t , π

2
t ),

then u(x) ≥ J (x, π1, π2) for all x ∈ S.

(b) If, for each x ∈ S and t ≥ 0,

αu(x) ≤ r(x, π1
t , π

2
t )+

∫
S

u(y)q(dy | x, π1
t , π

2
t ),

then u(x) ≤ J (x, π1, π2) for all x ∈ S.

(c) If (π1, π2) ∈ �s1 ×�s2, then J (x, π1, π2) is the unique solution to the equation

αu(x) = r(x, π1, π2)+
∫
S

u(y)q(dy | x, π1, π2) for all x ∈ S.

Proof. (a) By Lemma 7.2 and Dynkin’s formula we have

e−αt Eπ
1,π2

x u(x(t))− u(x) = Eπ
1,π2

x

∫ t

0
e−αv(Lπ1,π2

u(v, x(v))− αu(x(v))) dv

≤ −
∫ t

0
Eπ

1,π2

x e−αvr(x(v), π1
v , π

2
v ) dv. (7.6)

Conversely, by Lemma 3.2 and Assumption 5.1 we have

0 ≤ lim
t→∞ e−αt Eπ

1,π2

x |u(x(t))|
≤ ‖u‖w1 lim

t→∞[Eπ1,π2

x e−αtw1(x(t))]

≤ ‖u‖w1 lim
t→∞[e−(α−c1)tw1(x)+ b1

|c1|e−(α−c1)t + b1

|c1|e−αt ]
= 0 for all x ∈ S,

which together with (7.6) gives (a). The proof of (b) is similar.
To prove (c), we define an operator Tπ1,π2 (similar to T in (5.3)) on Bw1(S) as follows: for

u ∈ Bw1(S) and x ∈ S,

Tπ1,π2u(x) := r(x, π1, π2)

α +m(x)
+ m(x)

α +m(x)

∫
S

u(y)P(dy | x, π1, π2),

with P(· | x, φ,ψ) as defined in (5.4). Obviously, the operator Tπ1,π2 is monotone. Let
v0 := u0 be as in (5.5) and let

vn := T n
π1,π2v0 for n = 1, 2, . . . .
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By Assumptions 5.1, 5.2(c), and 5.2(d), the functions v0 and vn are well defined for each n ≥ 1.
Moreover, under Assumptions 3.1(a) and 5.1(a) straightforward calculations give

v1(x) ≥ −|r(x, π1, π2)|
α +m(x)

− m(x)

α +m(x)

(
b1M1

α(α − c1)
+ M1w1(x)

α − c1
+ M1

∫
S
w1(y)q(dy | x, π1, π2)

(α − c1)m(x)

)

≥ −M1w1(x)

α +m(x)
− m(x)

α +m(x)

(
b1M1

α(α − c1)
+ M1w1(x)

α − c1
+ M1(c1w1(x)+ b1)

(α − c1)m(x)

)

= − b1M1

α(α − c1)
− M1w1(x)

α − c1

= v0(x) (by (5.5)). (7.7)

Therefore,

v0 ≤ v1 ≤ · · · ≤ vn · · · ,
and so vn ↑ v for some function v ≥ vn for all n ≥ 0. Conversely, by induction and a
straightforward calculation as in the proof of (7.7), we have

|vn(x)| ≤ b1M1

α(α − c1)
+ M1w1(x)

α − c1
≤ (α + b1)M1

α(α − c1)
w1(x) =: Y (x) for all n ≥ 0 and x ∈ S,

and ∣∣∣∣
∫
S

Y (y)P(dy | x, π1, π2)

∣∣∣∣ ≤ (α + b1)M1

α(α − c1)

∫
S

w1(y)P(dy | x, π1, π2)

≤ (α + b1)M1

α(α − c1)
(w1(x)+ c1w1(x)+ b1).

Thus, v is in the space Bw1(S), and it follows, from the Dominated Convergence Theorem, that

v(x) = r(x, π1, π2)

α +m(x)
+ m(x)

α +m(x)

∫
S

v(y)P(dy | x, π1, π2) for all x ∈ S,

or, equivalently (by (5.4)),

αv(x) = r(x, π1, π2)+
∫
S

v(y)q(dy | x, π1, π2) for all x ∈ S.

This equation together with (a) and (b) gives v(x) = J (x, π1, π2). Thus, J (x, π1, π2) is a
solution to the equation in part (c). The uniqueness follows from (a) and (b) also.

Proof of Theorem 5.1. (a) By Assumption 5.1, (4.4), and Lemma 3.2, a straightforward
calculation yields part (a).

(b) Obviously, the operator T in (5.3) is monotone. By Assumptions 5.1 and 5.2, u0 and
un = T nu0 are also well defined for each n ≥ 1. Thus, under Assumptions 3.1(a) and 5.1(a),
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as in the proof of (7.7), a straightforward calculation yields

u1(x) ≥ −M1w1(x)

α +m(x)
− m(x)

α +m(x)

(
b1M1

α(α − c1)
+ M1w1(x)

α − c1
+ M1(c1w1(x)+ b1)

(α − c1)m(x)

)

= − b1M1

α(α − c1)
− M1w1(x)

α − c1

= u0(x).

Therefore,
u0 ≤ u1 ≤ · · · ≤ un · · · ,

and so un ↑ u∗ for some function u∗ ≥ un for all n ≥ 0. Hence, for a moment assuming that
u∗ is in Bw1(S), we have T u∗ ≥ T un = un+1 for all n ≥ 1, which gives

T u∗ ≥ u∗. (7.8)

Conversely, to prove that u∗ is indeed in Bw1(S) it suffices to show that

|un(x)| ≤ b1M1

α(α − c1)
+ M1w1(x)

α − c1
≤ (α + b1)M1

α(α − c1)
w1(x) for all n ≥ 0 and x ∈ S.

This, however, follows by induction and a straightforward calculation as in the proof of (7.7).
Next, we will show that (7.8) holds with equality. Indeed, for each fixed n ≥ 1, x ∈ S, and

φ ∈ P(A(x)), we have already proved that un is in Bw1(S), whereas, by Assumption 5.2(a),
P(B(x)) is compact. Thus, by Lemma 7.1, there exists aψ∗

n ∈ P(B(x)), which may also depend
on x and φ, such that

un+1(x) = max
φ∈P(A(x))

min
ψ∈P(B(x))

{
r(x, φ, ψ)

α +m(x)
+ m(x)

α +m(x)

∫
S

un(y)P(dy | x, φ,ψ)
}

≥ min
ψ∈P(B(x))

{
r(x, φ, ψ)

α +m(x)
+ m(x)

α +m(x)

∫
S

un(y)P(dy | x, φ,ψ)
}

= r(x, φ, ψ∗
n )

α +m(x)
+ m(x)

α +m(x)

∫
S

un(y)P(dy | x, φ,ψ∗
n ). (7.9)

Since P(B(x)) is compact, without loss of generality we may suppose that ψ∗
n → ψ∗ ∈

P(B(x)). Therefore, as u0 ≤ un ↑ u∗ ∈ Bw1(S), by the ‘extended Fatou lemma’,
Lemma 8.3.7(b) of [14], and our Lemma 7.1, letting n → ∞ in (7.9) we obtain

u∗(x) ≥ r(x, φ, ψ∗)
α +m(x)

+ m(x)

α +m(x)

∫
S

u∗(y)P(dy | x, φ,ψ∗)

≥ min
ψ∈P(B(x))

{
r(x, φ, ψ)

α +m(x)
+ m(x)

α +m(x)

∫
S

u∗(y)P(dy | x, φ,ψ)
}
. (7.10)

As (7.10) holds for all φ ∈ P(A(x)) and x ∈ S, we conclude that

u∗ ≥ T u∗,

which together with (7.8) gives u∗ = T u∗. This completes the proof of part (b), because using
(5.4) it is easily seen that the equation u∗ = T u∗ is equivalent to (5.6).

https://doi.org/10.1239/aap/1189518632 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518632


666 X. GUO AND O. HERNÁNDEZ-LERMA

(c) Since r(x, φ, ψ) and q(dy | x, φ,ψ) are bilinear in φ and ψ , by (5.6), Fan’s minimax
theorem in [4], and the minimax measurable selection theorem in [21] and [26], there exists a
pair of strategies (π1∗ , π2∗ ) ∈ �s1 ×�s2 that satisfies (5.7)–(5.9), i.e.

αu∗(x) = r(x, π1∗ , π2∗ )+
∫
S

u∗(y)q(dy | x, π1∗ , π2∗ ) (7.11)

= max
φ∈P(A(x))

{
r(x, φ, π2∗ )+

∫
S

u∗(y)q(dy | x, φ, π2∗ )
}

(7.12)

= min
ψ∈P(B(x))

{
r(x, π1∗ , ψ)+

∫
S

u∗(y)q(dy | x, π1∗ , ψ)
}
.

(d) Since u∗ ∈ Bw1(S), by (7.11) and Lemma 7.3 we have

J (x, π1∗ , π2∗ ) = u∗(x) for all x ∈ S. (7.13)

Now fix π2∗ . Then, for any strategy π1 = (π1
t ) ∈ �1, we have π1

t (· | x) ∈ P(A(x)) for all
t ≥ 0 and x ∈ S, and so, from (5.1), (5.2), and (7.12) we have

αu∗(x) ≥ r(x, π1
t , π

2∗ )+
∫
S

u∗(y)q(dy | x, π1
t , π

2∗ ) for all x ∈ S.

The latter inequality and Lemma 7.3(a) yield

u∗(x) ≥ J (x, π1, π2∗ ) for all π1 ∈ �1 and x ∈ S,
which together with (7.13) implies that

u∗(x) = sup
π1∈�1

J (x, π1, π2∗ ) ≥ inf
π2∈�2

sup
π1∈�1

J (x, π1, π2) = U(x) for all x ∈ S. (7.14)

A similar argument, replacing π2∗ with π1∗ gives

u∗(x) = inf
π2∈�2

J (x, π1∗ , π2) ≤ sup
π1∈�1

inf
π2∈�2

J (x, π1, π2) = L(x) for all x ∈ S. (7.15)

By (7.15), (7.14), and (4.2) we obtain J (x, π1∗ , π2∗ ) = U(x) = L(x) = u∗(x) =: V (x) for all
x ∈ S, which together with (7.13) gives part (d).

(e) This follows from (7.13), (7.14), and (7.15).

Proof of Theorem 5.2. From the proof of Theorem 5.1 and the definition of �, (5.10), we
see that (b) implies (a). Conversely, if (a) holds, then from Lemma 7.3(c) and Theorem 5.1 we
obtain (b). Therefore, (a) and (b) are equivalent.

We next prove that (b) implies (c). Using Lemma 7.2 and Dynkin’s formula, from (5.10)
and (5.11) a standard argument gives, for each x ∈ S, (π1, π2) ∈ �s1 ×�s2, and t ′ ≥ t ≥ 0,

Eπ
1,π2

x [M(t ′, π1, π2) | Ft ] = M(t, π1, π2)+ Eπ
1,π2

x

[∫ t ′

t

e−αt�(x(τ), π1, π2) dτ

∣∣∣∣ Ft

]
.

(7.16)
By (7.16) we immediately see that (b) yields (c).
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Finally, we shall show that (c) implies (b). First note that taking expectations in both sides
of (7.16) gives

Eπ
1,π2

x M(t ′, π1, π2) = Eπ
1,π2

x M(t, π1, π2)+ Eπ
1,π2

x

[∫ t ′

t

�(x(τ), π1, π2) dτ

]
(7.17)

for all t ′ > t ≥ 0 and (π1, π2) ∈ �s1 × �s2. Therefore, if (c)(i) holds, from (7.17) and the
Fubini theorem we obtain∫ t ′

t

E
π1∗ ,π2∗
x [�(x(τ), π1∗ , π2∗ )] dτ = E

π1∗ ,π2∗
x

[∫ t ′

t

�(x(τ), π1∗ , π2∗ ) dτ

]
= 0 for all t ′ > t ≥ 0 and x ∈ S.

Hence,

E
π1∗ ,π2∗
x �(x(t), π1∗ , π2∗ ) = 0 for all x ∈ S and almost all t ≥ 0.

Therefore, there exists a sequence tn ↓ 0 such that

E
π1∗ ,π2∗
x �(x(tn), π

1∗ , π2∗ ) = 0 for all n ≥ 0 and x ∈ S. (7.18)

Since �(·, π1∗ , π2∗ ) is in Bw1+w2(S), by Lemma 7.2(a) we have

lim
t→0+ E

π1∗ ,π2∗
x �(x(t), π1∗ , π2∗ ) = �(x, π1∗ , π2∗ ) for all x ∈ S. (7.19)

Letting n → ∞ in (7.18), from (7.19) we obtain

�(x, π1∗ , π2∗ ) = 0 for all x ∈ S. (7.20)

Conversely, under (c)(ii), (7.17) gives

E
π1∗ ,π2

x

[∫ t

s

�(x(τ), π1∗ , π2) dτ

]
≥ 0 for all t ≥ s ≥ 0, x ∈ S, and π2 ∈ �s2.

Hence, as in the proof of (7.20), we can derive that

�(x, π1∗ , π2) ≥ 0 for all x ∈ S and π ∈ �s2. (7.21)

Similarly, from (7.17) and (c)(iii) we can obtain

�(x, π1, π2∗ ) ≤ 0 for all x ∈ S and π1 ∈ �s1,
which together with (7.20) and (7.21), gives part (b).
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