T.-GROUPS AND A CHARACTERIZATION OF THE
FINITE GROUPS OF MOEBIUS TRANSFORMATIONS

P. J. LORIMER

In recent years a number of algebraic characterizations of the groups of
Moebius transformations over finite fields have been given in the literature;
see (1, 3, 6). H. W. E. Schwerdtfeger has noticed (4) that the group G of
Moebius transformations over the real, complex, and certain other fields has
the property:

G contains a subgroup H such that

(i) ifa ¢ H, bab=* ¢ H, and a® # 1, then there exists exactly one h € H such
that hah™ = bab™';

(i1) of a ¢ H, bab~' ¢ H, and a* = 1, then there exist exactly two hy, hy € H
such that hyahi™' = hyahy ! = babd™L.

Any group G having this property he has called a T's-group with respect to the
subgroup H; and H is said to be a T's-subgroup of G. If, further, G — H con-
tains an involution, then G is called an Se-group with respect to the subgroup
H; and H is called an S;-subgroup of G.

This paper is a study of Se-groups, and includes a description of all finite
Se-groups. The following theorem is the main one of interest.

THEOREM. If G s a finite group, then G is an Ss-group and the centre of G 1is
trivial if and only if G is one of the groups of Moebius transformations over a finite
field of characteristic #2.

Many of the results of this paper are also proved for infinite groups and are
stated without restriction. In particular, all S,-groups with non-trivial centre,
whether finite or infinite, may be considered together, and are shown to lie
in one of two well-known families of groups.

1. Notations. Upper case latin letters stand for groups and fields; lower case
latin letters, and sometimes greek letters, for their elements. C(a) is the
centralizer of the element e, N(K) the normalizer of the subgroup K, and
Z(K) the centre of the group K. |K| is the order of the group K and (0, 1) is
the group with two elements.
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2. Examples of S;-groups.

Example 1. Let F be any field of characteristic #2. Let G be the group of
all regular Moebius transformations

z_}az—i—b, a,b,¢,d € Fandad — bc # 0
¢z +d
and let H be the subgroup of G of all similarities
e%}ﬁ, a,b,d € F,ad = 0.

Then H is an Se-subgroup of G. Schwerdtfeger has given a geometrical proof
of this result for certain fields in (4).

G may be represented as a group of congruence classes of elements of the
group GL(2, F) of all regular 2 X 2 matrices over F. If A, B € GL(2, F) we
define A ~ B if and only if there exists a N € F, N\ £ 0 such that 4 = \B.
We denote the congruence class containing 4 by [4]. H is then the subgroup

()f C()ngruence ClaSSeS

with ¢ = 0. We use these congruence classes in the following proof that G is

an Se-group.
=[( 9)]ee

m=[(9)]

is a conjugate of [4]. Then there exists a N € F such that AP is a conjugate of
A in GL(2, F). Without loss of generality we may suppose that X = 1. Then

Proof. Suppose that

and that

¢ p+s=a+d,
(2) ps — qr = ad — be.
Suppose that [4] ¢ H, [P] ¢ H. Then
(3) r #0, ¢ #0.
Further
4) ir=[PP=1op+s=a+d=0.

We seek solutions [H] € H to the equation [H]|[A] = [P][H], which is
equivalent to seeking solutions to HA = APH, \ € F, where to maintain the
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values of the determinants we must have \2 = 1. Now char F # 2. Thus the
equation \? = 1 has two distinct solutions in F, viz. 1 and —1.

Suppose that
—(* Y
H= (0 z) :

Then xz 5% 0 and hence

() x#0, z#0.
Now HA = NPH implies that

(6) (@ — M)x +cy =0,

) NMx —cz =0,

8) bx + (d — N\p)y — Mgz = 0,

9) My + (As — d)z = 0.
From (6) and (3)

10) y=—cla — M)

and from (7) and (3)

(11) z = ¢~ \rx.

These solutions for y and z are consistent with (8) if and only if
p( + s)(A\ — 1) = 0 and with (9) if and only if A\ — 1)(p 4+ 5) = 0.

Thus if [4]2 % 1, (10) and (11) give a solution if and only if A = 1, while
if [A]? =1, p 4+ s = 0and (10) and (11) give a solution for both values of \;
i.e. if [4]% # 1 the only solution is

m=[G 7))

while if [4]? = 1, there is a further solution

m=[(5 7))
(¢ D)

lies in G — H and is an involution. Hence G is an Ss-group.

The congruence class

Example 11. Let I be a commutative integral domain with unit 1 such that
14+ 10, and let S be the set of all regular 2 X 2 matrices with elements
in J. We define an equivalence relation ~ on the elements 4, B, ... of S by
setting 4 ~ B if and only if there are non-zero \, u € I such that AA = uB.
It is easily shown that S/~ is a group which is isomorphic to the group of
Moebius transformations of the field of quotients of J and is hence an Se-group.

https://doi.org/10.4153/CJM-1965-036-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-036-5

356 P. J. LORIMER

Example 111. Suppose that G =~ (0, 1), where (0, 1) is the group with two
elements and « is any cardinal number. Let H be any subgroup of G such that
H ~ (0,1). Then H is a Ss-subgroup of G.

Example IV. Let H be any abelian group containing just one involution.
We extend H to a group G by adjoining to H an element ¢:42 = 1 and thi=! = h~!
for all # € H. H is then a S,-subgroup of G.

In the following it is shown, in the case where G is a finite group, that groups
of these types are the only Ss-groups. The result is extended to the infinite
case when the centre of G is not trivial.

3. Five lemmas. The following five lemmas, giving general information on
T>-groups, will be useful in later theorems. The lemmas in this section are
denoted by numbers; all other lemmas of the paper are denoted by upper case
latin letters.

LeEmMA 1. If H is a To-subgroup of G, h € H, and h commutes with an element
of G — H, then h* = 1.

LemmA 2. If Hy and Hs are proper Ty-subgroups of G and H, & Ho, then
H1 = H«z.

LemMma 3. If H is a To-subgroup of G and K is a subgroup of G such that
H C K, then H is a Ts-subgroup of K.

LeMMA 4. If H is a Ts-subgroup of G and g ¢ H, then
(1) g has exactly |H| conjugates in G — H if g*> # 1,
(ii) g has exactly % |H| conjugates in G — H if g* = 1.

Lemma 5. If H >~ (0, 1) is an Se-subgroup of a group G, then G ~ (0, 1)« for
some a.

Proof. Suppose that H = {1, k}, h* = 1. Then C(h) = {glg € G, g* = 1}.
Thus every element of C(k) is an involution and hence C(k) ~ (0, 1)* for
some a.

Suppose that a1, a; € C(k) — H and that a. is a conjugate of a;. Then, by
the property .S, there is an h € H such that ha,i~! = a,, which is impossible
as h commutes with both a; and a.. Thus, if ¢ € C(h) — H and a is not a
conjugate of &, then a € Z(G). Furthermore, h has at most one conjugate in G.

Suppose that ki is a conjugate of k. Then C(k) — Z(G) = {k, h1}. Hence,
as C(h) N\ Z(G) is a subgroup of C(h), C(h) \Z(G) = {1, hk,} and thus
C(h) = {1, h, hy, hh,}.

Now £ has only one conjugate in G. Therefore C(%) has only one coset in G.
Suppose that a € G — C(k). Then aha=! = h, and a® € C(h). Obviously
a? is different from 1, %, or &, and a? % hh,, for then (ha)? = (hhhy)? = b2 = 1
and thus a € H.

Thus we have derived a contradiction and % can have no conjugates in G,
ie. b € Z(G). Hence G = C(h) ~ (0, 1)=.
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4. Normal S,;-subgroups. Suppose that G has the property S» with respect
to H. The main result of this section is that the following are equivalent:
(i) H<1G,
(i) Z(G) # 1,
(ili) G and H are described in either Example I1I or Example IV.
Many of the results have applications later in the paper.

TureoreM 1. If H is a normal Ts-subgroup of G, then either
(1) g2=1forallgec G— Hor
(i) g2# 1forallg € G — H.

Proof. Suppose that a,g € G — H, a?> = 1, g* # 1. By property 7%, there
exists an & € H, h #% 1, such that hah~! = a. Hence C(a) N\ H = {1, h}. But,
as H<1 G, C(a) N\ H<a C(a), and hence every element of C(a) is an involu-
tion. This is obviously true for every & € G — H satisfying 5% = 1.

Suppose that ¢ € G. Then, as H<31G, cac* ¢ H and hence there is an
hi € H such that &, ahi™ = cac™. Hence ¢ € hy C(a) € HC(a). Here ¢ is any
element of G and thus G = HC(a). Similarly G = HC(g).

Since g2 # 1, property 7 implies that C(g) M H = 1. Hence C(g) ~ G/H.
Also C(a) "H = {1, h};therefore C(a)/{1,h} ~G/Hand C(g) ~ C(a)/{1, h}.
But every element of C(a) is an involution. Hence every element of C(g) is an
involution, which is a contradiction as g2 # 1.

TuEOREM 2. If H is a normal Se-subgroup of Gand g € G — H, h € H, then
ghg™t = kL.

Proof. G — H contains an involution and hence, by Theorem 1, every element
of G — H 1s an involution. Therefore g* =1 and if h € H, (gh)? =1, i.e.

ghg™ = bl
COROLLARY 1. H contains exactly one involution; for if h € H is an involution,
ghg™ =

COROLLARY 2. H is abelian; for h — k~! is an automorphism of H.
COROLLARY 3. If h is the involution of H, then Z(G) = {1, h}.

THEOREM 3. If H 1s a normal Se-subgroup of G, then either (i) H ~ (0, 1) and
G =~ (0, 1)« for some a or (ii) G/H ~ (0, 1).

Proof. Suppose that t € G — H. Then {2 = 1 and |C(¢) N H| = 2. Suppose
that |G|/|H| > 2.

Suppose that ¢ H, u ¢ tH. Then ut ¢ H and hence by Theorem 1,
u? =1 (ut)? = 1. Thus utu=' = {. Hence ¢t commutes with every element of
G — {H \UtH}. Thus t commutes with every element of #H and hence with
every element of H. This yields

HCCt) NH~(0,1).
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Hence H ~ (0, 1) and every element of G is an involution, i.e. G ~ (0, 1)*
for some a.
Alternatively G/H ~ (0, 1).

THEOREM 4. H is a normal Se-subgroup of G if and only if H and G are de-
scribed by either Example 111 or Example IV.

THEOREM 5. Let H be a Ts-subgroup of G but not necessarily a normal subgroup
of G. Let h be an involution of H. Then C(h) M H is a normal Ts-subgroup of C(h).

Proof. Write C(h) M H = K and suppose that @ € C(h) — K. Let badb~! be
any conjugate of ¢ such that bab=' € C(h) — K. Suppose that k; € H and
hyahi™' = bab~'. Then bab=! € C(k) and thus kyak,~' € C(h), i.e.

hl ahf‘h = h.hl dh]__l.

Therefore hihhy € C(a) N H. But C(a) \ H = {1, h}. Hence hy"'hh, = k,
i.e. by € C(h). This yields &, € C(h) N\ H.

Now a € C(k) and hence a®> = 1. Hence by the property 7%, there are
hy he € H such that

hl ahl_l = h2 (lkg_l = bab‘l,

and by the above 1, ks € C(a) M H. Thus C(a) M H is a Ts-subgroup of C(a).
Suppose that ¢t € C(@) — K, h € K. Then > =1 and (¢h1)? = 1. Hence
thy t71 = hy~1. Therefore tKi~! = K, i.e. K <1 C(a), i.e. C(a) N\ H<a C(a).

COROLLARY. If h is an involution of H and h commutes with an element of
G — H, then C(h) M H contains just one involution, viz. h.

Proof. From Theorem 4, C(k) M H must be one of the 7.-subgroups of
Examples III or IV.

The following theorem based on Theorems 4 and 5 will be useful in later
sections.

TaeoreM 6. (0, 1)2 cannot be an Se-subgroup of any group.

Proof. By Theorem 4, (0, 1)2 cannot be a normal Ss-subgroup of any group.

Suppose that H ~ (0, 1)2 is an Sy-subgroup of G and & € H. Then h? =1,
and by Theorem 5 C(h) M H is a normal Se-subgroup of C (k). But H is abelian
and hence C(h) M H = H. Hence C(h) = H. Thus no element of H commutes
with an element of G — H and G is not an Ss-group.

THEOREM 7. If H is an Ss-subgroup of G and Z(G) # 1, then H <1 G.

Proof. Suppose that Z(G) " H # 1. Let h € Z(G) M H. Then h commutes
with an element of G — H. Hence i* = 1,and by Theorem 5 C(k) N\ H <a C (%),
iLe. H<QG.

Suppose that Z(G) N\ H = 1. Then G — H contains an element, g say, of
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the centre. g commutes with an element of H and hence g2 = 1. Thus g com-
mutes with exactly two elements of H and commutes with every element of G.
Thus H ~ (0, 1). Hence, by Lemma 6, G ~ (0, 1)* for some « and H <1 G.

We have now proved the main theorem of this section.

THEOREM 8. If H is an Ss-subgroup of G, then the following are equivalent:
1) H=1G,

@) Z(G) #1,

(8) H and G are described by either Example 111 or Example IV.

5. Structure theorems for S;-groups.

TuroreM 9. If H and H are two Ts-subgroups of a group G and
(1) G # HH,
(2) H~ (0,1),

then H and H are comjugate subgroups of G. In fact if g € G — HH, then
gHg ! = H.

The proof proceeds by a number of lemmas.
LEMMA A. Let g ¢ HH. If h € H, then g~*h ¢ H; and if h ¢ H, then gh ¢ H.
Lemma B. If g ¢ HH, h € H — H, and h? # 1, then ghg™* ¢ H.

Proof. Suppose that ghg™* ¢ H. Then h ¢ H, ghg™* ¢ H, and hence by the
property T, there is an h € H such that ghg~! = hhh~'. Then g'h € C(h).
But by Lemma A g—'h ¢ H and hence 42 = 1.

Lemma C. If g ¢ HH,h € 0 — H, and h? 5 1, then g~*hg € H.

The rest of the proof consists in proving the equivalent of Lemma B for
the case k% = 1.

Lemva D. If ¢ ¢ H and g* =1, then ¢ ¢ H, g ¢ H and hence, by the
property T, there are h € H, h € H, h#1, h 1 such that gh = hg and
gh = hg. We show that h = h € H N H.

Proof. Suppose that A ¢ H and & ¢ H. We show firstly that hAkh~! = h.

h ¢ Hand, by Lemma 1, 22 = 1. Thus there exists a unique %; € H, ky # 1,
such that hy kbt = h. Then h = ghg=* = hy hhy~t. Hence g~'h; € C(h). But
g? = 1; hence g = g~L. Thus ghy € C(h) and by Lemma A, gh; ¢ H. Thus by
the property T, (ghi)? = 1,i.e. highi ! = gash2 =1,g2 = 1. Buthgh1 =¢
and % is determined uniquely. Hence # = h; and hhh~! = h.

We now show that if 5y € H — H, hy 5 h and ;2 = 1, then ghg™! € H.
Suppose the contrary, i.e. there is an element

hi € H—H, by # h,h?=1and ghig! ¢ H.
Then hy ¢ H, ghy g~ ¢ H and hence by the property T, there are hy, ho€ H
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such tl}at ghy g = hy hy hy™' = hy by byt Thus _g—lﬁl € C(hy) anfi by L_emma
A, g7 'hy ¢ H. Hence, by the property 1%, (g7'h1)? =1, i.e. g7thig = hy™! as
g2 =1. ) ) ) )

Suppose that h; ¢ H, and thus hy! ¢ H. Then hy%? = 1; for _if h? # 1, we
have by Lemma C that gt hig € H, i.e. hy € H. Hence g™ hi g = k1. But
¢ 'hg = h and this determines & uniquely. Hence h; = h and

ghig™' = hy by hy™t = hhy B

Therefore g=' h € C(hy). But g=! h commutes with # € H and this determines %
uniquely. This yields 2 = k,, contrary to supposition. Thus we must have
hi € H; similarly ks € H.

Now the element h,;~!h, lies in H and commutes with %, ¢ H. Hence
(At ho)? = 1. Also hy='hy € H and h, € H. Therefore, by Theorem 5,
C(hy) € H. But g7* by € C(hy) and g=' hy € H, which is a contradiction. Thus,
if hy € H— H,hy, # hand b, = 1, then gh, g™' € H.

By this result and Lemma B, we have that if , € H — H and gh, g~' ¢ H,
then h, = h. Thus gHg™' — H contains at most two elements. Therefore
|gHg™'| < 4 and hence |H| < 4. H contains the involution k. Hence either
H~ (0,1) or H~ (0, 1)2. The first possibility is excluded by the conditions
of the theorem and the second by Theorem 5, Corollary, which gives a con-
tradiction. Hence either # € H or h € H. In either case, because of the
uniqueness of # and A, we have & = h € H N H, which proves Lemma D.

Lemma E. If ¢ ¢ HH, g = 1,and h € H — H, then g~* hg ¢ H.

Proof. If g‘l_ﬁg ¢ H, then by the property T, there is an k; € H such that
g hg = hi~' hhy. Thus ghy=! € C(h),and gh,~! ¢ HH and hence by Lemma D,
h € H N H, which is a contradiction.

Proof of Theorem 9. Either gH contains an involution or it contains no such
element. Suppose the former, i.e. (gh)? = 1 for some & € H. Then, by Lemma
E, (gh)~'(H — H)(¢gh) C H.

Suppose the latter and suppose that i € H — H. Then if g~ hg ¢ H, there
is an h, € H such that g=' hg = hy hhy;~'. Thus h commutes with gh; and
ghy € gH. Hence (gh1)? = 1 which is a contradiction. This yields

¢g'(H — H)g CH.

Thus, in either case, there is an # € H such that (gh)~1(H) (gh) C H, i.e.
g ' Hg C H. Hence by Lemma 2, g-'Hg = H, which proves Theorem 9.

LemMA F. If K is a subgroup of G,H C K and H # K, then H C K, HH C K.
CoRrOLLARY 1. N(H) = H.

Proof. Suppose that H # N(H). Then by Lemma F, HH C N(H). But
G — HH forms just one coset of H in G. Therefore HH = N(H) and hence

https://doi.org/10.4153/CJM-1965-036-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-036-5

MOEBIUS TRANSFORMATIONS 361

NH)<1G. By Lemma F, HC N(H) and, as NH) <3G and as
g ¢ HH = N(H) implies gHg! = H, we must have that H is a normal but
not characteristic subgroup of N(H).

If H is a T';-subgroup of N(H), then by (5), H is a characteristic subgroup.
Hence by Theorem 8, H and N(H) must be described by either Example II1I
or Example IV. Hence H ~ (0, 1), which is excluded by the conditions of
Theorem 8.

COROLLARY 2. If ¢ € G — HH, then G — HH = gH.
COROLLARY 3. H 1s a maximal subgroup of G.

CoOROLLARY 4. If K is an extension of G and H is a Ts-subgroup of K, then
G =K.

COROLLARY 5. If G is a finite group,
|GI/|H| = |H|/|H N H| + 1.

TreEOREM 10. If Hy, H,, and H; are three different conjugate Se-subgroups of a
group G, then Hy Y Hy M Hy = 1.

The proof follows Theorem 11.

TreoRrEM 11. If Hy, H,, and H; are three different conjugate Se-subgroups of a
group G, then H, M H, is abelian, contains exactly one involution, and there
exists an element hy € H, such that hy Hy hy™' = Hj;. Further, if a is the involution
Of Hl N Hz, then

C((l) f\Hl = C(a) nHz = HlmHz.

Proof. Hy is an Ss-subgroup of G and hence G — H; contains an involution,
say t. Suppose that ¢t commutes with a; € Hy,a:2 = 1. Nowa, € Hi N tH, t!
and it is easily seen, by Theorem 6, that

C(al) N H1 _g H1 N tHl L

An argument similar to that in Theorem 5 shows that H; M ¢tH; ¢~!is a normal
Se-subgroup of the group

H NH YV HHy Nt Ho ).
Hence H; M ¢t Hy ¢! is abelian and so
C(a) "YHy = HHNtH 7L
Similarly,
Cla) NtH 7Y = Hy N\ tH L.

Furthermore, H, M tH, t~! contains just one involution, viz. a,.
We now prove that if H is any other conjugate of H;, then there exists
h € Hy such that rHRE! = tH,t"'. By Theorem 9, if g ¢ tH,¢ ' H, then
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gHg™! = tH, . It is thus sufficient to prove that there exists & € H; such
that b ¢ tHyt'H.

Suppose the contrary. Then H; C tH,+'H and hence H, H C tH,t 1 H.
Thus, by Theorem 9, if g ¢ tH; t-1H, then gHg! = H,, which is a contra-
diction as gHg! =tH,;t! # H,. Thus there exists k € H; such that
RAR = tH, 1.

Theorem 11 now follows easily.

Proof of Theorem 10. Suppose that h € Hy N Hy M\ Hs, h # 1. Then
H, N\ Hy C H N\ Hy N H;, for otherwise 2 € H; commutes with an element
kof HiMN H,, k ¢ H;. Now, by Theorem 11, either 42 £ 1 or k2 ¢ 1 which
contradicts either the definition of 7’5, or Lemma 1. Therefore

HiN\Hy =H, N\ Hy N H,.
Hence, by the principle of generalization, if H is any conjugate of H; different

from H, and H,, then H; N\ Hy, = H; N H, M H. Thus
HNH =N ngg_l.

g€G

Therefore, H; M H, is a normal subgroup of G and a is the only involution of
H; N\ H,. Hence a € Z(G), which contradicts Theorem 8, as H; is not a normal
subgroup of G. Thus Hy N\ Hy M H; = 1.

TureoREM 12. If H; and H, are any two conjugate Ss-subgroups of a group G
and |Hy|/|H1 M Hy| = s, then

|[HiNHy| =s —1, |Hy| = (s — 1)s, and |G| = (s — 1)s(s + 1).

Proof. In the light of Theorem 9, Corollary 5, it is sufficient to prove that
|G|/|H:| = |Hi M Hy| + 2.

Lemma A. If ¢ € H,y, a commutes with t € G — H, and bab=! € H, for some
b € H, then hah=' = bab=! for some h € H,.

Proof. If b € H;, the result is obvious.

If b € tH,, take b = bt~ 1.

Ifb ¢ Hy, b & tHy, then Hy, bH, b7, and tH, {~! are three different conjugate
Se-subgroups of G. Hence by Theorem 11, there is an k2 € H; such that
h(tH, 7)1 = bH, b~!. Therefore

h(Hy N tH ) = Hy M bHy b7

But a is the only involution of H; M tH, ¢! and bab~! is the only involution
of Hy M bH, b—'. Hence hah™' = bab™'.

LemMA B. If a € H, and a commutes with t € G — Hy, then
Ca@) = (Cla) N Hy) Jt(Cla) N\ Hy).
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Proof. Suppose that u € C(a), u ¢ C{a) N\ Hy, u € £(C(a) N\ H;). Then
uw ¢ H, w¢tH. Thus H, tH{™', and uHu™"' are three different conjugate
Se-subgroups of G and @ € H M tHt* M uHu™!, which contradicts Theorem
10. Hence C(a) = (C(a) N\ Hy) \J t(C(a) N Hy).

Proof of Theorem 12. By the property S» and Theorem 11, H; M\ H, contains
exactly one involution which commutes with an element of G — H;. Now, a
has |Hi|/|C(a) M Hi| conjugates in H; by elements of Hi; and by Lemma B
it has no others. Further, a has |G|/|C(a)| conjugates in G. Thus, by Lemma 4,

Gl/IC@)| — [Hyl/|C(a) M Hi|

is either equal to zero or to |H,|. In the first case |G| = 2|H|, in which case H
is a normal subgroup of G, which is impossible. Hence the second case holds.
Replacing |C(a) M H,| by |Hy M Hs| (Theorem 11) and |C(a)| by 2|H; N H,|
(Lemma B), we have |G|/|Hi| = |H1 M H,| + 2.

6. A characterization of the Moebius groups. The object of this section
is to prove:

TrEOREM 14. If G is a finite Ss-group with trivial centre, then G is one of the
groups of Moebius transformations over a finite field of characteristic #2.

We use the method developed by H. Zassenhaus (6). We first represent G
as a permutation group.

The symbols of the permutations are the members of the set £ = {H} of
Ss-subgroups of G. The permutation g representing the element g of G is the
permutation g: H — gHh™! for all H in Z. This is obviously a faithful repre-
sentation of G.

TuroREM 13. As a permutation group on the symbols of Z, G is three-fold
transitive and any element of G is uniquely determined by the image of any three
symbols of 2.

Proof. Suppose that H, and i, 7 = 1, 2, 3, are any two triples of symbols
of 2. Then we must prove that there is a ¢ € G such that gH; g ! = H,,
1 =1,2,3.

Now the elements of Z are conjugate subgroups and hence there are elements
%, 9, 2 in G satisfying xH; x~1 = H,;, yHyy! = Hy, zH3 3! = H,.

LemMA A. [xH, M yH,| # 0.

Proof. Suppose that |xH; M yH,| = 0. Then xH; C G — yH; = H, H; by
Theorem 9. Hence xH, Hy C H, H;. Now
]i)CH1 Hz[ = IHI H2| = IHllngl/lHl mHzl = 82(3 bt 1),
where s = |Hy|/|H: N H,|, and similarly [H, H,| = s2(s — 1). Thus xH; H, =

H, H,. Hence
G — xH1H2 = G - HgHz = yH2.
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This yields x(G — Hy Hy) = yH; or G — H, Hy = x~'yH,. Hence
(x~'y)Hy(x~ty)™t = H,.

Thus yH, y~! = xH, x71, i.e. H; = H,, which is impossible as the symbols of
3 are distinct.

LemMa B. |xH; N yH, N z2H;| # 0.

Proof. Suppose that |xHy; N yHs M 2H;| = 0. Then zH; C G — (xH, N yH,).
By Lemma A, there is an o € xH; M yH,. Then xH, N yH,; = a(H, N H,).
Therefore zH; € G — a(H, M H,) and hence

a_IZHggG - (HlmHg) = (G - Hl) U (G -_ Hz).

Thuso'z € (G — Hy H;) U (G — Hy H;). Hence eithera'z € G — H, Hzor
o~z € G — Hy H;. Suppose the former. Then (o '2)H;3(a"'2)~! = H;. There-
fore

gH3 271 = aH, 07! = xH, x7 L.

Thus H; = H,, which is a contradiction. Thus we must have
|«H, N yH, M z2Hy| # 0,

which proves Lemma B.

Proof of Theorem 13. By Lemma B, there is a g € xH, N yH. M zH,.

Obviously gG; g7t = H;, 7 = 1,2, 3. The second part follows by Theorem 10.

We now apply the method of Zassenhaus to this three-fold transitive group.
Denote the symbols of £ by a, b,¢,...,x, 7,2, ...and choose three of them,
arbitrarily, to be denoted by 0, 1, and «. Now the symbols of X are .S,-sub-
groups. Denote the subgroup corresponding to ¢ in 2 by H,, and if g € G,
write g(e) = b if and only if gH, ¢! = H,. Now, because N(H,) = H, for
all @ € Z, we have H, = {g € G:g(a) = a}. We are interested particularly
in Hyand H,_, and it is convenient to denote the elements of H_ by upper case
latin letters.

Consider H,, M Hy. From Theorem 13, H_ M H, is obviously a transitive
group on the symbols of £, = £ — {0, «»} and each element of H_ M H, is
uniquely determined by the image of any one symbol of Z,. We denote the
element of H,, M H, which takes 1 onto x by M, and define a binary relation,
on the symbols of Z,, by defining xy = M, (y).

LeEMMA A. 2, is a group isomorphic to Hy, (M H,.

Proof. It is sufficient to show that M, M, = M,,. We have
(1) x1 = x for M,(1) = x,
(i) M,,(1) = (xy)1 = xy by (i),
M, M,(1) = x(yl) = xy by (i).
Hence M,,(1) = M, M,(1) and hence M,, = M, M,. Thus the group Z, is
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isomorphic to H,, M H,. In particular we have that =, is abelian and contains
an involution.

Now H,, is a two-fold transitive group on the symbols of £; = £ — {»}
and only the unit element of H leaves two symbols fixed. Therefore, by the
Theorem of Frobenius (2, p. 181), the elements of H which leave no symbol
of 2, fixed form a transitive normal abelian subgroup K of H_. Obviously
each element of K is uniquely determined by the image of one symbol of Z;.
We denote the element of K which takes 0 onto x by 4,, and define a binary
relation 4+ on Z; by defining x + y = A,(y).

LEMMA B. 2, s a group isomorphic to K.

Proof. 1t is sufficient to prove that A,, = A, 4,. We have

(1) x + 0 = x for 4.(0) = x,
(i) Az4,(0) = (x + ) +0 =« + y by (),
4: 4,000 =x+ (y +0) = x + y by ().
Therefore A,,, = A, 4, and hence Z, is isomorphic to K. In particular Z, is
abelian.

LemMA C. Z; with the two binary relations is a field.

Proof. As both the groups of Z; are abelian it is sufficient to prove the
distributive law x(y + 2) = xy + x2. We have

(1) M = M,-1 for M,-» M,(1) = x~1(x1) = 1; hence M,-1 M, = 1;

(i1) M.(0) = 0 for M, € H,.

Now K is a normal subgroup of H; hence, if M, € H,MN Hyand 4, € K,
then M, A, M,”* = A, for some z € Z;. Now

M, 4, M;71(0) = M, 4,(0) = M,(y) = xy
and A4,(0) = z. Therefore z = xy and hence M, 4, M, = 4,, or
M, A, = A4,, M,.
But M, 4,(z) = x(y + 2) and 4,, M,(3) = xy + xz. Hence
x(y + 2) = xy + xz.
Thus 2 is a field.

Now G contains an involution T such that TM, T = M, = M,-1 for
all M, € H, N\ Hy. Thus TM, = M,-: T and in particular

TM,.(1) = M, T(1).
Hence
Tx) =x'TQ1) = T(Q)x?
as Z; is abelian.
Put I = Mpay-1 1. Then

I(x) = Mpy—1T(x) = T()'T(1)x™! = x~ L.
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Thus G contains the permutation x — x~!. Furthermore G contains the per-
mutations M,:x —ax and A4,:x —a 4+ x. Thus G contains the group of
Moebius transformations of the field 2, of order s. But the order of G is
(s — 1)s(s + 1) and hence G is the group of Moebius transformations over
the field Z,. Further, H, M H, has order s — 1 and contains an involution.
Thus s and hence the characteristic of Z; is odd. This completes the proof of
Theorem 14.
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