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1. Introduction 

In this note we discuss the stability at the origin of the solutions of 
the differential equation 

(՛) _<.'+«)©· 
where a dot indicates a differentiation with respect to time, and a, /3 are 
real-valued functions of any arguments. We tacitly assume that a, /5 are 
such that solutions to (1) do in fact exist. Under the transformation 

y = x; f = a+/9; g = a/J, 
equation (1) takes the equivalent familiar form 

x֊\-fx+gx = 0. 

As the basis of our work we suppose that the values of the functions 
a, /? he uniformly between positive real bounds, namely 

(2) 0 < p ^ a ^ q and 0 <r ^ /3 <; s. 

Then in order to state our results we need the functions P, Q, R and the 
real number S = 11.0160938 · · · defined by 

*-՛<*··՛.՛>-{(֊9 ( H ) y (?) 1 

f/s—*\s+8<7<V/(s~e)
 i qs-p2 1 

K = .R(0, <?, r) = {0fo,0, r)}- 1 

= 7 H^W l^/l C X P \{q֊P){q-r) 
and |2(S+1) \ 

s = e x p ( ^ = r ) -
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The functions P, Q, R will only be used for values of p, q, r, s for which they 
are well defined and positive real valued. Our principal result is 

Theorem 1. If, for all values of their arguments, the functions a and /3 
satisfy the bounds (2), then for equation (1) the origin x = y = 0 is uniformly 
asymptotically stable in the large, except possibly if there is a real number x 
such that p < t < q, r < x < s and either 

(i) p y^r; q ^ s and P ^ 1, 
(ii) p = r; q s and Q ^ 1, 
(iii) p ^r; q = s and R ^ 1, 

or (iv) p = r; q = s and pS/q ^ 1. 

This theorem is the best obtainable from uniform bounds of the form 
(2). For each of the exceptional cases (i) —(iv) of the theorem, in section 6 
we give examples of functions a, /3 for which the solution to (1) is unstable. 
However if one of the cases (i) — (iv) hold with equality in the inequality 
involving P, Q, R or S, as the case may be, then the solutions to (1) converge 
either to the origin or to limit cycles. There is no point in considering 
stability of (1) when the bound p or r is non-positive or when the bounds 
q and s are both non-finite, because it is easy to choose functions a, /3 which 
take arbitrarily small or arbitrarily large values for which solutions to (1) 
are unstable. It is also worth remarking that, if w is a positive real number, 
then the values of the functions P, Q, R and pSfq are unchanged by the 
transformation 

p ֊> pw; q -> qw; r ֊> rw; s ֊> sw. 

This fact is not surprising because such a transformation corresponds to the 
change t ->tw of the time variable i. 

It is well known (cf. [2], p. 48) that when a and /3 are real constants 
then the solution to (1) is stable at the origin if (and only if) a > 0 and 
/3 > 0. Also H. H. Rosenbrock recently proved [1] that we get stability 
of (1) if (2) hold and q < r or s < p. Both these results are generalised by 
theorem 1. 

After seeing a typescript of this paper, Rosenbrock kindly drew the 
authors' attention to the case in which one of q and s is finite whilst the 
other is infinite. By symmetry in a and /3 we may as well assume that 
q < s = go. He had proved that we then get stability of (1) if (2) hold 
and q^r. Taking the limit s-> oo of the functions P and Q gives, as a 
corollary to theorem 1, the most general result, namely 

Theorem 2. / / , for all values of their arguments, the functions a and /3 
satisfy the bounds 

0<p<LoL^q and 0 < r ^ £ , 
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(4) 

is given by 
dx y 

(5) = c\vx+y\՝> if u^v, 

but by 

(6) \ux+y\ = c exp {—uxj(ux-{-y)} if U = V, 

where c denotes an arbitrary constant. These facts can be verified either by 
differentiating (5) and (6) or by making the transformation y = zx in the 
homogeneous equation (4) and integrating. 

Consider now the solution curve of (4) which passes through the point 
(X, 0), where A is arbitrary. This curve is given by (5) or (6) with 

i \X\u-vuav-՝' if u v, 
(7) c — { 

[ \k\ ue if u = v. 

Further the curve meets the fixed line mx+y = 0 at a point (a;(A), y(X)) 
depending on L Putting x = — y\m in (5) and (6) we find that 

(8) y(X) — ±Aa(u, v), 

where a(u, v) denotes the constant 

then for equation (1) the origin x = y=Q is uniformly asymptotically stable 
in the large, except possibly if r <q and either 

(i) p*T and { ( ^ ' ( ^ l / , - ^ ! , 

or 

(ii) p = r and ֊—^— exp M-) ̂  1. 

2. An elementary differential equation 

If we consider the vector matrix equation (1) as a pair of simultaneous 
equations, then by ehminating the time variable t, we have 

(3) dl. = i. = -*Px-(o-+P)y 
dx x y 

For arbitrary functions a, /5 we cannot write down the solution to this 
equation. However if u, v are positive real numbers, then the general 
solution of 

dy —uvx—[u-\-v)y 
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3 . The fundamental case 

In this section we suppose that the functions a, /3 satisfy (2) and that 

(12) p <r <q; r <s; s ^ q. 

This case is the fundamental case of theorem 1 and the other cases of the 
theorem will be deduced from lemma 2 below. For the moment we wish 
to find an upper bound for the value of y in (1). We let T, II denote the 
regions of the (x, y) plane 

r = {(*, y)\y^O, mx+y ^ 0} and II = {(x, y)\y^O, mx+y ^ 0}, 

where m is given by (10). Then we have 

LEMMA 1. 
—prx—{p֊\֊r)y at the point (x,y) of F, 
—qsx— (q-\-s)y at the point (x, y) of II. 

PROOF. Equation (1) shows that 

y = x(֊Px—y)-Py. 

Since p ^ a q, for any values of /3, x, y the value of y must therefore 
he between p(—f}x—y)—j}y and q{—(Sx—y)—f}y. In turn, since r ^ /3 s, 
for any values of x, y the value of y must lie between the maximum and 
the minimum of the numbers 

—prx֊(p+r)y; -psx—(p+s)y; ֊qrx֊(q+r)y; —qsx—(q+s)y. 

The lemma follows by finding which of these numbers is the largest, subject 
to (12), and subject to (11) which holds by virtue of (12). 

Let us assume for the present that 

(13) a{p, r)/a(q, s) = P(p, q, r, s), whenever (12) holds. 

( (I"-1—m-^lv-1—»»-i|-»)i/<»-») if u=£v, 
(9) a(u, v) = 

I |M| \m\(m—u)| exp {»»/(»»—«)} if « = w. 

The particular value of m which will interest us is given by 

(10) m = vf/ji where v = qs—pr and fi = q—p+s—r. 
It is easy to show that if there is a r such that p < x < q and r < r < s, 
then 
(11) p, r < m < q, s. 
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We will prove this result in section 4 and by means of it we can prove our 
fundamental result, which is 

Lemma 2. If (2) and (12) hold and if P{p, q, r, s) > 1, then for equation 
(1) the origin x = y = 0 is uniformly asymptotically stable in the large. 

Proof. We use a Liapunov function in the standard way. In other 
words we simply define a closed contour V containing the origin with the 
properties that, (i) each ray from the origin cuts V once, and (ii) there 
is a S > 0 such that 

(14) (£, y ) ֊ n > d , 

at each point r\ of V, where the vector (x, y) in the scalar product is evaluated 
from (1) with (x, y) at r), and n denotes the unit inward normal to V at t j . 
Our contour in fact has corners at which n is not defined. For such corners 
tj we need only assume that r\ belongs to both arcs adjacent to tj. If for 
each positive real number p we were to construct a contour V(p) by mul­
tiplying every coordinate of V by p, then from the form of (1) we see that 
V(p) would have the same properties as V. Therefore the lemma will fol­
low from Liapunov's stability theorem (cf. [2], p. 59) if V does in fact 
have the properties (i) and (ii). 

Now the functions P and m are continuous in each of their variables 
p, q, r, s. We are given that P(p, q, r, s) > 1, and (11) holds by virtue 
of (12). Hence we can choose p', q', r', s' so that 

P' <p; q< q'\ r' <r; s < s'; p' # r'\ q' s', 
(15) P(p', q', r', s') > 1, 

p, r < m' < q, s. 

For convenience we will use dashes to denote the effect of replacing the 
bounds p, q, r, s by the new set p', q', r', s'. For example 

P' = P(p'։ q', r', s') 
whilst 

r = {(x, y)\y^O, m'x+y ^ 0}, 
and so on. 

Let f denote the portion of the solution curve of (4) with u = q', 
v = s' which starts at (— s/P', 0) and lies in 11'. Similarly let | denote 
that portion of the solution curve of (4) with u = p', v = r' which starts 
at ( l /VP', 0) and lies in I". We can obtain C and f from (5) and (7). By 
virtue of (8) and our assumption (13), we have 

y'(~VP')ly'(ilVP') = P'<*(q', s')KP', / ) = l, 
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and hence f and f meet the line m'x+y = 0 at a common point 
C = (x'(—y/P'),y'{—-^/P')). Next we take a small positive number e 
and write B and D for the points of intersection of £ and I respectively 
with the line y — e. Further we denote the portions of C and f between 
B and C and between C and D by 0a and <£3 respectively. The lines joining 
the points A = (— 1, 0) and B and the points D and £ = (1, 0) we denote 
by <f>t and <£4 respectively. Finally our contour V consists of the curves <f>t and 
the curves y>t obtained from the 4>i by symmetry through the origin. 

Clearly a ray from the origin meets <f>t or $ 4 in at most one point. 
Moreover a ray will meet <f>2 or <f>3 in at most one point, as can be seen from 
(5), (7), (8) and (9). Thus V does have the property that each ray from 
the origin cuts it just once. 

Now the lines <j>1։ <j>t are nearly horizontal. By inspection of (1) and 
(2) we see that the vector (x, y) is of bounded magnitude and is nearly 
vertically upwards on <f>1։ but nearly vertically downwards on <£4. Hence 
there is a d > 0 such that (14) holds on <f>t and $ 4 . 

Next for i — 2, 3 let rj be a point of <f>t lying in any line m{x+y = 0. 
Then at rj we have x = y 2: e > 0. On the other hand y is bounded above 
as shown in lemma 1. Hence if 6, —n 6 n, is the argument of the vector 
(x, y) at rj then 

_ 1 ^ A _ + -ifi-\<ltan_1 {^-^-il+^yVy} o n + t . 
2 < _ tan (y/x) = | ^ { i _ p r x _ { i ) J r r ) y m o n ^ 

By definition of f, | the slope o- = ¿«//¿2; of ^ is given by (4) with u = q', 
v = s' if *' = 2, but with u = p', v — r' if i = 3. Hence at r\ we have 

a—tan 0 > 
[?sa;+(£+s)^֊§'Va;֊-(?'+s')?/]/2/ on <f>2, 
[prx+(p+r)y-p'r'x-(p'+r')y]ly on «£3, 
[{s'֊m2)(q'—q) + (q֊m2)(s'—s)]lm2 if t = 2, 
Um3֊r')(p֊p') + (m3--p)(r-r')]lm3 if = 3. 

We now point out that there is a 6 > 0 such that (14) holds on <f>2 and <f>3 

by showing that a—tan 0 is bounded below on <f>2 and <f>3. This result follows 
from (15) when we make the following observations. For r\ on <f>2 we note 
that m2 has a positive lower bound and m2 < m'. For r\ on that part of 
ff>3 in the second quadrant we have m' ^ m3 < GO. For »? on that part of 
^3 in the first quadrant we have x ^ 0 and y > s. 

We have therefore shown that there is a 6 > 0 such that (14) holds 
on the <£/s. By symmetry through the origin, it also holds on the y / s and 
the lemma is proved. 

Suppose now that (2) and (12) hold and that P(ft, q, r, s) = 1. Also 
let V be as defined above but with p' — p; q' = q; / = r; s' = s and 
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14 D. E. Daykin and K. W. Chang [7] 
e = 0. Then it is clear that solutions to (1) which start on the contour 
V either follow the contour of V or move inside V. This fact is the basis 
for our remark in the introduction concerning convergence to the origin 
or a limit cycle for the first exceptional case of theorem 1. The other excep­
tional cases could be discussed in a similar way but we shall not do so. 

4. The functions P, Q, R and pS/q 

Throughout this section we assume that there is a x such that 
p < r < q and r < r < s. From (10) we have 

-m~x = (s-֊p)(q--P)IM 
r ֊ l _ - w 1 = (q--r)(s-
w֊1֊ -q֊i = (q--r)(q֊ -P)lw> 

- s - i = (s--P)(s- -r)ls/i, 

and hence by straightforward manipulations from 

P(p, q, r,s) if p ^ r; q s, 

(16) a(p,r)la{q,s) = {QJ^S\ i « { ֊J' *' 
R(p, q, r) = [Q(q, p, r)]-1 if p ^ r; q = s, 
(Plq) exp {2(p+q)l(q~p)} if p = r; q = s. 

In view of the statement of theorem 1 the last result may seem out of 
place so we hasten to point out that 

(17) pSjq g 1 according as (plq) exp {2(q+P)l(q֊P)} $ 1-

The results (16) and (17) show the origin of the functions P, Q, R, pSjq. 
Moreover the functions of (16) are related in the way shown by the following 
elementary limits, 

(18) Lira P{hp, q, p, s) = Q(j>, q, s) if p < q; p < s; q # s, 

(19) Lim P(p, q, r, hq) = R(p, q, r) if p < q; r < q; p ^ r, 
h-*l 

(20) Lim P(hp, q, p, qlh)=(plq) exp {2(*>+?)/(?֊£)} if p< q. 

We will make use of these limits, and the result of 

Lemma 3. / / a> > 0 and T is any one of the functions in (16) then there 
exist values of p, q, r, s for which T takes the value co, and there is a r such 
that p < t < q, r < t < s. 

Proof. For the last function in (16) the result follows from (17). 
If T is one of P, Q and R then T is continuous in each of the variables 
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p, q, r, s. Hence the lemma holds by virtue of the limits below, in which 
we assume that (12) holds. First we have 

(21) Lim P(p, kr, r, s) = Lim Q(p, q, s) = Lim R{p, q, r) = oo. 
p-nnin («»») p-*max (ptr) 

On the other hand 

so that 

Lim P(p, kq, r, ks) = 0, 
*֊»oo 

and hence 
Lim Q(p, kq, ks) = Lim R (p, kq, r) = 0. 
*֊»00 k֊*oo 

This proves the lemma. 
One further limit that we will use is 

(22) Lim P{p, q, r, kr) = oo if p <r< q. 
5 . Proof of theorem 1 

We prove the theorem by cases. In each case we replace the bounds 
p, q, r, s of (2) by new bounds in such a way that with the new bounds (2) 
still hold, inequalities (12) hold, and P > 1. Thus we satisfy the con­
ditions of lemma 2 and so have uniform asymptotic stability in the large 
for the solutions of (1). In each of the cases below the values of the arguments 
in the expression P > 1 indicate the values of the new bounds. We adopt 
this convention to save repeating ourselves. Also by symmetry in a, /3 
in (1), without loss of generality, we assume that p s£ r in (2). 

Case a. There is no % for which p < t < q and r < r < s. 
Case a (i). q ^ r. We choose s' with s < s' and then, in view of (21), 

we choose k > 1 but sufficiently close to 1 that kr s' and P(p, kr, r, s') > 1. 
Case a (ii). r < q. Then we must have r = s. We choose p' with p' <p 

so that p' < r < q and then, in view of (22), we choose k > 1 so that 
q^kr and P(j>', q, r, kr) > 1. 

Case b. There is a r such that p < t < q and r < t < s. 
Case b (i). p ^ r; q ^ s; P > 1. This is the case of lemma 2. 
Case b (ii). p = r; q s; Q > 1. In view of (18) we choose h, 0 < h < 1, 

so that P(hp, q,p,s) > 1. 
Case b (iii). p r; q = s; R > 1. In view of (19) we choose h > 1 

so that q^hq and P(p, q, r, hq) > 1. 
Case b (iv). p = r; q = s; pSjq > 1. Then in view of (17) and (20) 
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we choose h, 0 < h < 1, so that P(hp, q, p, qjh) > 1, and this completes 
the proof of theorem 1. 

6 . Unstable solutions 

For each of the exceptional cases of theorem 1, we now give examples 
of functions a, /3 for which the solution to (1) is unstable. Suppose therefore 
that there exists a x such that -p < x < q and r < x < s. Then choose 
one of the exceptional cases (i)֊(iv) of theorem 1 and let T denote the 
value of the corresponding function in (16). We then define functions a, /3 
by the rule, if (x, y) or (֊x, — y) is in r then a = p and /3 = r, otherwise 
a = q and /5 = s. Examination of (1) then shows that the solution to (1) 
moves clockwise round the origin in the (x, y) plane. Using the results 
of section 2 and equations (16), we then see that the solution curve to (1) 
which starts at the point (A, 0) with A < 0 passes in turn through the 
following points of the a;-axis and line mx-\-y = 0, 

(A, 0); (ka(q, s)lm, ֊Xa(q, s)) = (A<#, r)\mT, -ka(p, r)IT); 
(֊A/r, 0); {-Xa(q, s)jmT, U(q, s)/7՝) = {-ka(P. r)lmT*, Xa(p, r)jT*); (A/T2, 0). 

Hence if T = 1 the solution is a limit cycle. If on the other hand T < 1 
then the solution diverges. That T can take such values was shown in 
Lemma 3. 
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