
Cite this article: Real, R., Snider, C., Goudswaard, M., Hicks, B. (2023) ‘How Do Prototypes Change? Characterising 
Quantitative and Qualitative Changes between Prototype Iterations’, in Proceedings of the International Conference on 
Engineering Design (ICED23), Bordeaux, France, 24-28 July 2023. DOI:10.1017/pds.2023.211

ICED23 2105

 
 
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED23 
24-28 JULY 2023, BORDEAUX, FRANCE 

ICED  

 

 

HOW DO PROTOTYPES CHANGE? CHARACTERISING 
QUANTITATIVE AND QUALITATIVE CHANGES BETWEEN 
PROTOTYPE ITERATIONS 
 
Real, Ricardo; 
Snider, Chris; 
Goudswaard, Mark; 
Hicks, Ben 
 
University of Bristol 
 

ABSTRACT 
Prototyping strategies and technology often focus on reducing the fabrication time and cost between 
design iterations, however, there is limited knowledge about the specific characteristics of change that 
prototyping strategies aim to impact. To investigate, and better understand these characteristics, this 
study curates and systematically analyses a representative dataset of 50 'real-world' prototype samples. 
The study aims to explore the various elements that constitute a design change and to determine their 
impact on the scale of volumetric change detected. The results highlight emergent patterns and 
correlations between study metrics to better understand the reasons for design change and the frequency 
and scale of changes detected in the sample dataset. Findings reveal that the purpose of a design change 
is, in certain cases, highly correlated to the scale of change affected, and that some changes are more 
prevalent in the dataset than others, with an average volumetric difference of 4.2% between sample 
versions detected. The study provides an initial characterisation of prototype change to guide iterative 
prototyping processes and improve the efficiency and effectiveness of design iterations.  
 
Keywords: Big data, Case study, Remanufacture, Change, Embodiment design 
 
Contact: 
Real, Ricardo 
University of Bristol 
United Kingdom 
ric.real@bristol.ac.uk 

https://doi.org/10.1017/pds.2023.211 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.211


2106  ICED23 

1 INTRODUCTION 

Prototyping is widely regarded an essential part of the New Product Development (NPD) process 

(Elverum et al., 2016) . Whether to explore novel concepts by building to think (Brown and Katz, 

2011), or enhance an existing solution through refinement (Camburn et al., 2017), the prototype plays 

a crucial role in bridging the gap between an idea and its tangible form. Camere and Bordegoni 

(2016), describe prototyping as an engagement with the product to be, where the prototype 

approximates various features that constitute a final product, service, or system. Designers frequently 

manipulate the prototype in order to refine and enhance the final product through what Schon and 

Wiggins (1992) describe as a reflective conversation with the materials of the design solution. 

Organisations often prototype to embody new innovations (Schrage, 1996) with research showing that 

increased prototyping activity in the development stage leads to improved products (Camburn et al., 

2017). However, where prototypes often go through several iterations in development, prototyping 

often predetermines a large portion of resource deployment, above all, time and cost (Camburn et al., 

2017). In a landscape where speed to market is the key ingredient for competitiveness (Schrage, 1996), 

the speed of prototyping and subsequent testing become critical factors (Elverum et al., 2016). A study 

into the prototyping practices of design teams by (Yang, 2008) identifies that the percentage of time 

spent on fabrication is greater than that of other activities combined. And further, (Yang, 2008) 

observe a negative correlation between increased fabrication time and the resulting outcome. As such, 

recent works place focus on new methods to reduce fabrication time between prototype iterations. For 

example, (Real et al., 2022) investigates remanufacture as a method to cut time between prototype 

iterations, showing a significant potential reduction in fabrication time of up to 87%. Mathias et al. 

(2019), couples Additive Manufacture (AM) with LEGO in a hybrid process, reducing fabrication 

time by 45%. Whilst these works show promising results and give indication as to the direction in 

which prototyping strategies are tending, it is apparent that little is known about the characteristics of 

changes that such strategies are intended to affect. We know that prototypes change, however how 

they change with respect to both their physical and more subjective attributes is less clear. This study 

therefore aims to develop an initial characterisation of design changes by investigating the quantitative 

and qualitative properties of changes detected in a representative dataset of prototype samples. This 

work leverages the online ’thingiverse’ design repository to curate an arbitrary dataset of 50 ’real-

world’ prototype samples. Samples comprise version 1 (V1) and modified version 2 (V2) design 

iterations which were analysed using computational methods to detect changes and generate a range of 

descriptive statistics. Datasets for the study were processed using ’IBM SPSS Statistics 27’ to identify 

emergent patterns and correlations between samples. Finally, the paper reflects on the implications of 

this work with relation to prototyping, limitations of the study, and opportunities for future work. 

1.1 Aims 

By better understanding how prototypes change, strategies for affecting change, such as 

remanufacture, can be better informed to align with the needs of prototyping in reducing iteration time 

and cost. This study aims to investigate the different elements that constitute a design change, and 

their influence on the scale of change identified. Where design changes often seem deceptively simple 

(Clarkson et al, 2004), fundamentally, this work looks to provide a steppingstone towards change 

characterisation, using a statistical approach to identify emergent patterns from a sample of prototype 

data to support the development of prototyping strategies and tools. 

2 METHODOLOGY 

In order to characterise change between prototype iterations a 3-stage methodology was adopted 

(Figure 1). The methodology allowed for a situated grounding of the study in the context of rapid 

prototyping, affording systematic evaluation to samples across quantitative and qualitative study 

metrics. Figure 1 details the methodological approach, from dataset curation to evaluation metric 

selection and description, before presenting the analysis method and subset of analysis datasets leading 

into results in Section 3. 
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Figure 1. Study methodology used to detect and measure prototype changes.  

2.1 Dataset curation 

A dataset of 3D object files (.STL) was sampled from the’Thingiverse.com’ digital model repository. 

The platform hosts over 2 million open-source 3D files uploaded by community members with the 

technical proficiency to design, document, and share object files (including revisions) of an original 

’thing’. Between the 1st and 15th November 2022, the repository was queried using search terms ’V1, 

V2’ for projects containing multiple part versions in their documents, returning 4951 search results. 

From this pool, samples containing ’V1’ and ’V2’ files were randomly selected and vetted for 

damaged entries, generating a dataset of 50 samples, with 100 unique 3D object files.  

Table 1. Dataset statistics V=Volume in mm3, B=Bounding box (x,y,z) in mm. 

 

Table 1 provides an overview of the dataset statistics, featuring Min/Max part volumes(mm3), and 

bounding box dimensions (x,y,z) for V1 and V2 files. All part files were found to fit in the build 

volume of a typical desktop FFF 3D printer. For reference the average part volume is similar to that of 

a compact computer mouse. It is assumed that part versions V1/V2 were created by the same user in 

each case and as such represent targeted refinements to the part, aiming to improve performance in 

some dimension of interest. 

2.2 Dataset processing 

To delineate a characterisation of change between versions, each of the 50 dataset samples were 

evaluated against a set of Quantitative and Qualitative metrics. The quantitative metrics were intended 

to capture the degrees of physical change between versions, whilst the qualitative metrics provide an 

indication of the rationale for a change, for instance adding functionality or refining the design 

through, for example, light-weighting. Measured values for each sample were logged and coded for 

database entry and analysis. Metrics are further discussed in the following section. 

2.2.1 Measuring quantitative and qualitative change 

Quantitative changes were detected following the computational analysis process outlined in prior 

works (Real et al., 2022). Component V1:V2 registrations were performed using an Iterative Closest 

Point Algorithm (ICP) from which the net volumetric percentage difference between versions was 

measured. Additionally, counts of the discrete changes per sample were taken, and the polarity of 

changes (added (+) or subtracted (-)) noted. Discrete changes determined to require material 

subtraction prior to any additive steps were further classified as ’Hybrid’ and considered separately in 

the analysis.  
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Qualitative evaluation metrics encompass aspects of change that are more subjective in 

interpretationand descriptive. In this study these are considered Location v(descriptive) i.e., where the 

change is implemented. Purpose i.e., an assumption as to the necessity of the change (Sanfilippo and 

Borgo, 2016; Townsend et al., 2011). And Dimension of change i.e., an assumption of the dimension 

in which knowledge has been developed to influence the change (Real et al., 2021). A coding schema 

to evaluate qualitative metrics was created (Table 2), and results were manually coded per sample by a 

researcher with prior experience in prototype evaluation, and KD coding studies (Real et al., 2021). 

Table 2. Qualitative coding schema & evaluation metrics from prototyping literature. 

The metrics presented in Table 2 were extracted from the cited literature to define a set of measurable, 

and relatively unambiguous evaluation criteria for sample analysis. As readers may be less familiar 

with the KD coding schema of Real et al. (2021), this assessment metric is derived from Schon (1992) 

to determine the prototyping dimensions to which design knowledge is registered. For instance, a 

rearrangement of features might suggest an improved understanding of the design in the dimension of 

configuration. 

2.3 Dataset analysis 

Analysis was performed on four datasets, a global dataset (DS) containing all 50 samples, with further 

analysis performed on three subsidiary datasets. Subsidiary dataset samples were categorised by net 

volumetric difference, including Additive (DS1), where samples exhibit a net positive volumetric 

difference between versions. Subtractive (DS2) where the net sample difference is inversely negative, 

and Zero (DS3) where no, or negligible volumetric difference is detected. The data was analysed using 

descriptive statistics and exploratory analysis tools in ’IBM SPSS Statistics 27’. 

 

Figure 2. Example of a curated sample, ICP registration, and change detection. 
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Figure 2 illustrates the study process, from dataset curation to registration and change detection. The 

sample shown is a 'FFF-Printer extruder knob' with two successive versions of its design. 

3 RESULTS 

Results are presented in three sections. The first reporting descriptive statistics from an analysis of 

quantitative component data. The second reporting qualitative data by means of frequency analysis. 

The third, investigates correlations between quantitative and qualitative data in relation to detected 

volumetric differences (%). For precision, section-wise results are organised by dataset, with results 

for the Complete (DS), and subsequent Additive (DS1), Subtractive (DS2), and where applicable, Zero 

(DS3) data subsets considered independently. Where sample size is comparatively small for DS3, key 

findings are presented at the end of the results section.  

3.1 Quantitative results (descriptive dataset statistics) 

Table 3 provides summary statistics for 

the complete sample dataset (DS) and the 

discrete changes identified (∆ Types). For 

DS, volumetric changes are measured 

within the range of -47.1% to 127.4%, 

with a mean change of 4.2% between 

sample versions. Respectively, mean 

change in the additive subset (DS1) was 

measured at 21.4%, and -10.1% for the 

subtractive (DS2) samples, suggesting 

that where an additive change is required, 

the scale of change is generally greater. 

Findings show the majority of samples 

exhibit a net subtractive change (23), 

marginally succeeding net additive (21), 

with a further (6) showing negligible 

difference between versions (<0.1 mm3). 

Samples featuring a singular change are 

more prevalent in the DS dataset than samples with multiple changes, 74% of V2 designs comprise a 

singular change from their V1 counterpart. Overall, 75 discrete changes are detected in the DS dataset 

averaging 1.5 changes per sample. This supports the finding that there are few, between 1 and 2, 

distinctions between versions, reflecting that designers are typically focused on revisions and not 

broader changes. Subtractive and hybrid changes constitute the majority of discrete changes with 

37.3%, and 34.7% of changes, respectively. Further analysis into the distribution of change volume 

(Figure 3.) shows the central tendency of volumetric difference in DS samples to be unimodal and 

clustered between -10% and 10% volume difference (Figure 3.1. a). Thus, suggesting the majority of 

changes to be small in relation to part volume. Examining DS1, and DS2 it is clear that a greater 

distribution of volumetric change is present in DS1 additive samples (Figure 3.1. c) where the only 2 

cases above 100% are identified. For DS2 (Figure 3.1. b) variation in the distribution is less 

pronounced with a smaller Std.Dev of 14.1 to that of DS1’s 35.5, suggesting subtractive changes to be 

characteristically smaller in scale. Investigating the quantity of changes per data sample (Figure 3.2), it 

is evident that the distribution is mostly uniform in each dataset. However, subtractive samples (DS2) 

are more frequently observed to contain more than one change between versions with 34.7% of DS2 

samples, compared to 19% of DS1 (Figure 3.2).  

3.2 Qualitative results (dataset frequency analysis) 

Qualitative findings are proportionally illustrated by Figure 4, Counts are provided for the number of 

observations, and coding is kept consistent across datasets. Foremost, individual findings for each 

metric, Location (a.), Purpose (b.), and Dimension (c.) are presented, before discussing emergent 

correlations observed in the data. Findings for Location (a.) show the majority of changes to be located 

to a Feature (48%), followed by Form (40%), and relatively few changes (12%) spanning both Form 

and Feature. This suggests that changes are more frequently constrained to a specific location. 

Table 3. Sample descriptive statistics and 
change types (∆) for DS TO DS3.  
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For Purpose(b.) a large proportion of samples (64%) show Refinement to be the primary objective of 

change, with fewer, 36%, altering Function by way of iteration. Dimension (c.) shows Design 

Elements (features or components that comprise a design) are detected most frequently (42%), with 

Form (shape and size of the design), and Character (design aesthetic and styling) accounting for 28% 

and 14% of detected dimensions. Of interest, DS3 contributes the highest proportion of counts to the 

Character dimension (57%). Configuration (12%) and Manufacture (4%) are the KDs appearing least, 

with no other KDs detected in the sample. Little variation in the proportion of counts is observed 

across datasets, indicating that the polarity of change (additive/subtractive) is not correlated to its 

rationale. However, the influence of rationale on the scale of change is further investigated in section 

3.3. Qualitative data correlations: there is an apparent degree of correlation between qualitative 

metrics (a. b. c.) in datasets DS through DS2. These findings infer that the most probable, or ’common 

change’ made between versions of a prototype is located to a feature, for the purpose of refinement, 

assuming a developed knowledge of its design elements.  

 

Figure 3. 1. Histograms of Volume difference (%). 2. Changes per sample (DS-DS3) 

3.3 Quantitative and qualitative correlation analysis 

Investigating Qualitative and Quantitative relationships by correlating the qualitative properties of a 

change to the physical scale of change affected permits a novel perspective into the causality of 

change between versions. Figure 5 provides a summary of the results using boxplots to identify mean 

values, data dispersion, and the skewness of correlations per dataset. Summary results for DS are 

firstly presented, followed by a comparative analysis of DS1 and DS2 plots to identify distinctions 

between additive and subtractive samples.  
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Figure 4. Qualitative frequency statistics. Datasets (DS-DS3) presented by row, with 
columns showing metrics for each DS: a. (Location), b. (Purpose), c. (Dimension). 

For summary results (DS): Dimensions(a.): Design Elements (DE) exhibit the largest interquartile 

range (IQR) of the dimensions, with the greatest dispersion of volumetric difference measured 

between samples. Form (FM) appears normally distributed and ranging between +/-4% suggesting 

scale variation to fall roughly within the wider sample mean (Table 3). Manufacturing (M) has few 

samples (4%), of those detected the IQR appears normally distributed and changes small in scale. 

Configuration (Co) features the second largest IQR with a distinctly negative skew. This highlights 

subtractive (Co) changes to be more variable in scale, however the sample (12%) is perhaps 

insufficient to generalise. Character (Ch) shows a positively skewed IQR with changes often additive 

and small in scale (14% of samples). Location(b.): Form (Fo) displays a negative skew with the scale 

of subtractive volume more widely dispersed. Feature (Fe) presents a finding of significant interest, 

where feature based changes are the largest proportion of samples (48%) their IQR is fairly compact, 

indicating these changes are small, and generally of a similar scale. Naturally, changes to Form and 

Feature (F&F) host the largest IQR with the majority of changes being net additive, up to 40%. 

Purpose(c.): changes related to Function (F) are more dispersed than for Refinement (R). However, 

where R changes account for 64% of total samples it is again of note that little variation between 

measured samples is detected. These findings suggest Features (Fe) in Location and Refinement (R) in 

Purpose are high frequency types of change, and correlated with low volumetric difference between 

iterations. However, in the case of Design Elements (DE) where frequency in the sample is also high 

(42%) a larger dispersion of change volume is observed. This finding may evidence Location and 

Purpose metrics to be better predictors for the scale of a change than other qualitative metrics, such as 

Dimensions. 
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For comparative results (DS1/DS2): with the exception of Form (Fo), additive sample changes are 

shown to range more widely in volume to that of subtractive samples. This suggests additive (DS1) 

changes to be more indeterminate and is particularly true for Function (F) where the dispersion of 

additive changes are significantly larger. For subtractive samples (DS2), similar results are evidenced 

in Form (Fo) and Configuration (Co) where the scale of negative volume is also more widely 

dispersed. Features (Fe) and Refinement (R) appear somewhat symmetrical in their IQR showing 

samples to be similar for both additive and subtractive changes.  

Figure 5. Comparison of qualitative metrics against volume difference (%) 

DS3 Results: samples show discrete subtractive changes to be the most frequent. This is perhaps due 

to the nature of these samples as changes are often fine surface refinements such as texture, or 

tolerancing and therefore not detected in the study. Design reconfiguration, for example changing the 

location of a feature without changing the overall volume is also often seen in DS3 samples. 

4 DISCUSSION  

Where this study shows a breadth of initial results the discussion is focused on those most relevant to 

rapid prototyping and their impact in relation to current practice. The following points provide a 

summary of the key findings from this investigation, the aim of which, towards a primary 

characterisation of changes from a representative sample of prototype data. 

• Singular changes are detected for 74% of samples. 

• Changes range from -47.1% to 127.4% in volume with an average of 4.2%. 

• Changes are more often subtractive than additive or hybrid at 37.3%. 

• Hybrid changes are the second largest proportion of changes in the sample with 34.7% 

• IQR results show additive changes are more dispersed in volume than subtractive. 
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• Qualitative results show the ’average change’ is a feature refinement, assuming new knowledge 

of design elements (DE). 

• Features (Fe), and Refinement (R) are the most frequently detected qualitative changes (48%, and 

64%) and both correlated with small-scale volumetric difference. 

• In cases where no difference is detected, a reconfiguration of features is often observed. 

• Subtractive (DS2) samples often have multiple changes 37.4% compared to 19% of additive 

(DS1) 

By better understanding how prototypes change at both a quantitative and qualitative level, 

prototyping platforms, and further strategies can be better prescribed to support prototype 

development in NPD. Findings from this study show that the rationale for a design change, often plays 

a significant role in the scale of change affected. Further, this study identifies some change ’types’ to 

be more prevalent than others, with refinement as the most frequent ’purpose’ for a change, and 

’feature’ its location. As prototyping research aims to reduce iteration time and cost, such 

characterisations of change may allow for the development of more targeted prototyping strategies 

offering the capability to rapidly iterate between part versions. One approach is remanufacture (Real et 

al. 2022), where additive and subtractive processes are leveraged to directly implement version 

changes on an existing part. By understanding the characteristics of changes that such strategies 

should support, from change detection through to execution, the capability of platforms can be more 

aligned with the requirements of prototyping. To outline a basic set of requirements based on the 

findings of this study, platforms to support proto- type iteration should be natively hybrid 

(additive/subtractive), capable of targeting predominantly one, or more locations with or without part 

reorientation, and able to accurately detect and implement small- scale localised changes. Of samples 

analysed, the minimum volumetric difference detected was 3.6 mm3(0.3%) for additive changes, and -

1.2 mm3(-0.1%) for subtractive. The avg. volume of change in the sample data was 4.2% or 1942 mm3 

based on the avg. V1 sample (Table 1). Whilst the points above reflect on the implications of this work 

in terms of physical characterisation, findings related to qualitative aspects of iteration highlight 

further avenues for research. Most prominently, investigating how prototype iterations change over 

time from a situated perspective can offer significant insight as to the ways in which designs evolve, 

and the practices of designers involved in their development. This study finds that a vast majority of 

samples feature a single change between iterations and are often for the purpose of refinement, 

supporting the notion that most product development involves the steady evolution of an initial design 

(Clarkson et al., 2004). Study Limitations: whilst the method affords a large number of samples to be 

evaluated, results could be indicative of the stage of prototype, rather than of prototyping in general. 

For different prototype stages, there could be different results, in particular to do with the volume, and 

spread of change. The method also introduces bias towards parts designed for desktop 3D printing as 

the majority of parts shared are designed by users with consumer 3D printing equipment. Furthermore, 

the experience level of designers is unknown, thus difficult to differentiate between the habits of a 

professional design engineer against a hobbyist. A study of this nature could provide better insight to 

the practices of professionals. Future works using prototype capture methods such as pro2booth 

(Erichsen et al., 2021) could allow for a broader range of prototypes to be evaluated across different 

stages. Where this study considers volumetric difference as the principal measure of change, other 

measures, for example performance related evaluation could provide additional insight. Finally, this 

study raises a number of additional questions for research, notably, to what extent are changes in the 

dataset influenced by the tools available to make them? and, would different tools shape the changes 

that designers make?  

5 CONCLUSION 

This study examined the characteristics of design changes in a sample dataset of 50 real-world proto- 

types. Samples were each analysed and evaluated against a set of quantitative and qualitative metrics 

to provide a range of descriptive statistics for the changes detected. Results show that the reason for a 

design change is, in certain cases, highly correlated to the scale of change measured between versions. 

Certain types of change are observed to be more common amongst samples than others, and the scale 

of change on average to be small between versions (4.2%). The implications of this work give 

direction to future research exploring prototyping strategies to implement rapid physical design 

change, such as remanufacture (Real et al., 2022), and their wider applications in NPD.  
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